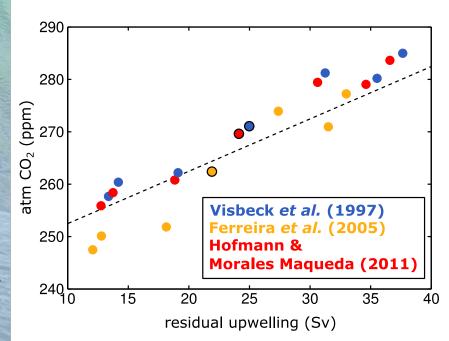
A new framework for quantifying the drivers of Southern Ocean airsea carbon fluxes

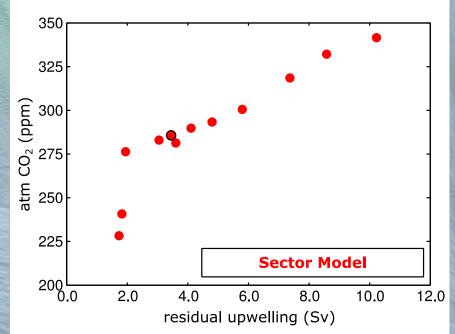
Jonathan Lauderdale^{*1}, Stephanie Dutkiewicz¹, Richard Williams² & Michael Follows¹.

* jml1@mit.edu
 ¹Massachusetts Institute of Technology, Cambridge, MA, USA.
 ²University of Liverpool, Liverpool, UK.


Massachusetts Institute of Technology

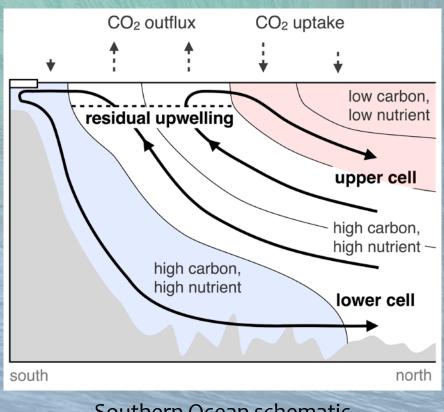
UNIVERSITY OF LIVERPOOL

What influences CO₂ fluxes?


- Surface flux proportional to ocean pCO₂, which responds to a variety of factors.
- Can the key processes be separated (e.g. Murnane et al., 1999; Takahashi et al., 2002; 2009; and others)?
- Can we mechanistically map these drivers of the carbon flux?

Southern Ocean upwelling vs atm pCO₂ [Lauderdale, Williams, Munday and Marshall, 2016; Climate Dynamics]

What influences CO₂ fluxes?


- Surface flux proportional to ocean pCO₂, which responds to a variety of factors.
- Can the key processes be separated (e.g. Murnane et al., 1999; Takahashi et al., 2002; 2009; and others)?
- Can we mechanistically map these drivers of the carbon flux?

Southern Ocean upwelling vs atm pCO₂ [Lauderdale, Williams, Munday and Marshall, 2016; Climate Dynamics]

What influences CO₂ fluxes?

- Surface flux proportional to ocean pCO₂, which responds to a variety of factors.
- Can the key processes be separated (e.g. Murnane et al., 1999; Takahashi et al., 2002; 2009; and others)?
- Can we mechanistically map these drivers of the carbon flux?

Southern Ocean schematic [Lauderdale, Williams, Munday and Marshall, 2016; Climate Dynamics]

Start from a DIC budget...

 $\frac{\partial C}{\partial t} = -\nabla \cdot (\vec{u}C) + \nabla \cdot (\kappa \nabla C) - F_C - C_o F_{FW} - R_{C:P} S_{bioP}$ $-S_{CaCO_3}$

Change of DIC DIC conc. Advection

DIC Diffusion

Air-sea exchange

FW Dilution Biological Activity

... assume steady state over a seasonal cycle.

$$F_C = -\nabla \cdot (\vec{u}C) + \nabla \cdot (\kappa \nabla C) - C_o F_{FW} - R_{C:P} S_{bioP} - S_{CaCO_3}$$

Further break down into effects of temperature, salinity and alkalinity

Surface FW flux

Nutrient fields

Biological Activity

 Biological activity related to changes in DIC concentration via nutrient field changes.

Carbonate cycling related to S_{bioP} through constant rain ratio.

$$S_{bioP} = -\nabla \cdot (\vec{u}P) + \nabla \cdot (\kappa \nabla P)$$

Carbon Partitioning Scheme

 DIC in the mixed layer can be separated into different components after Williams & Follows (2011):

$$C = C^{sat} + C^{res}$$

C^{sat} depends on temperature, salinity and alkalinity (e.g. Goodwin & Lenton, 2009; Lauderdale et al., 2013; 2016).
The influence of salinity is negligible (... but it is included).

$$\delta C^{sat} = \delta T \frac{\partial C}{\partial T} + \delta A \frac{\partial C}{\partial A} + \delta S \frac{\partial C}{\partial S}$$

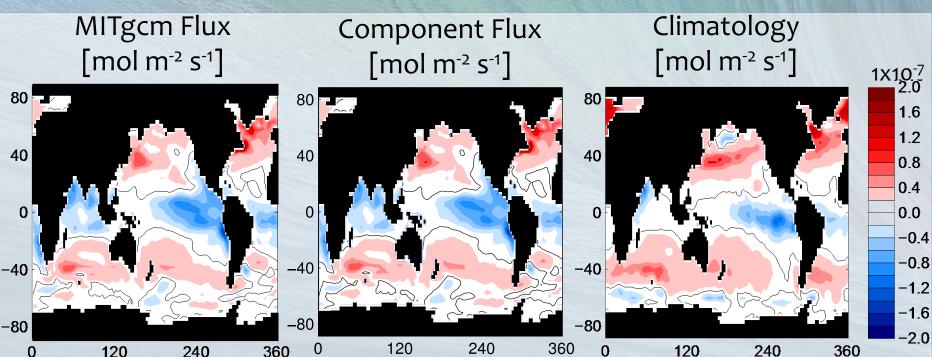
Carbon Partitioning Scheme

 Defining relationships for δT and δA (and δS) based on advection, diffusion and surface fluxes:

$$-\nabla \cdot (\vec{u}T) + \nabla \cdot (\kappa \nabla T) = F_{Heat}$$

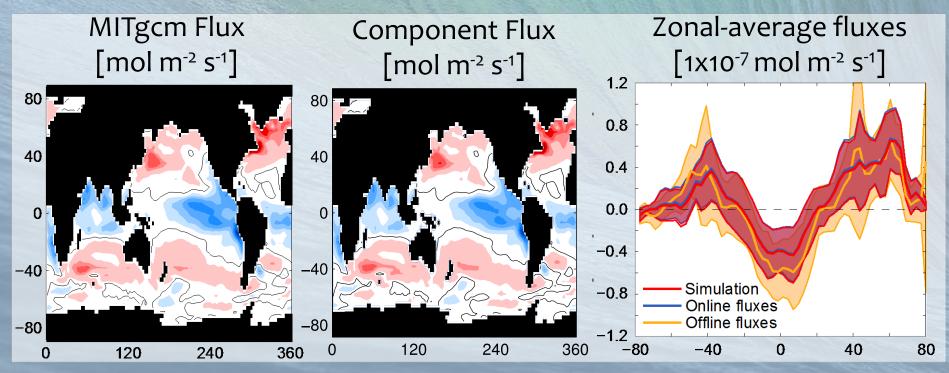
$$-\nabla \cdot (\vec{u}A) + \nabla \cdot (\kappa \nabla A) = A_o F_{FW}$$

We leverage the tight relationship between A and S in the surface ocean. Any (small) biogenic effects are collected in C^{res}.
 C^{res} is the residual, but represents two key processes of upwelling and solubility changes.


$$C = C^{sat} + C^{res}$$

Carbon flux framework

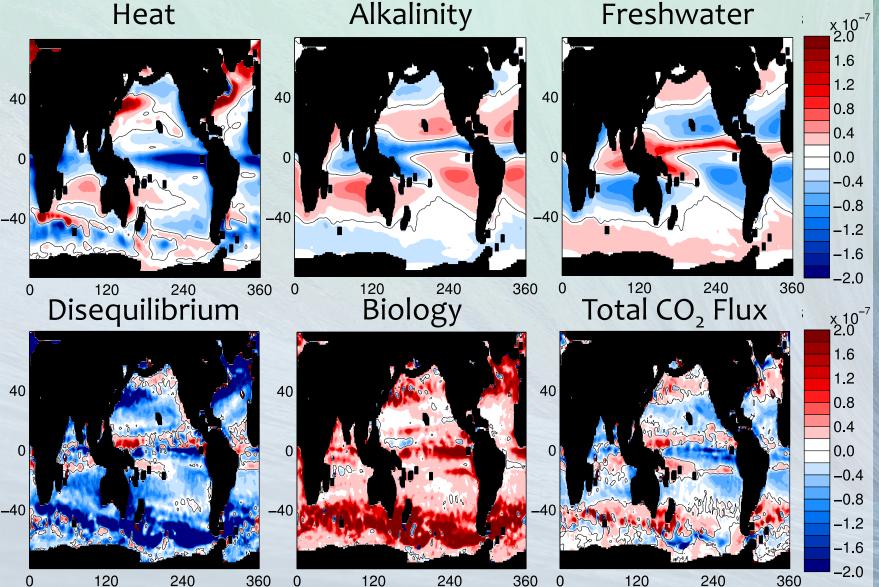
$$\begin{split} F_{CO_2} &= \gamma_{\theta} \frac{F_{heat}}{\rho C_p} & \text{CO}_2 \text{ flux driven by surface heating.} \\ &+ \frac{F_W}{\rho_{fw}} \left(\gamma_S \overline{S} + \gamma_{A_T} \overline{A_T} - \overline{C_T} \right) & \text{Net CO}_2 \text{ flux driven by freshwater fluxes.} \\ &- R_{C_T:P} \Big(-\nabla \cdot (\vec{u}P) + \nabla \cdot (\kappa \nabla P) \Big) h \\ &\quad \text{CO}_2 \text{ flux driven by biological activity.} \\ &- \frac{1}{2} R_{CaCO_3} R_{C_T:P} \Big(-\nabla \cdot (\vec{u}P) + \nabla \cdot (\kappa \nabla P) \Big) h \\ &\quad + \Big(-\nabla \cdot (\vec{u}C_{res}) + \nabla \cdot (\kappa \nabla C_{res}) \Big) h & \frac{\text{CO}_2 \text{ flux driven}}{\text{by}} \\ &\text{See: Lauderdale, Dutkiewicz, Williams & Follows (2016), Quantifying the drivers of ocean-atmosphere CO, fluxes, GBC, accepted yesterday!} \end{split}$$


Carbon Fluxes in the Model World

- Coarse resolution MITgcm w/biogeochemistry model (Dutkiewicz et al., 2006).
- Substitute in the fluxes for the diagnostic equation and sum all components.

Carbon Fluxes in the Model World

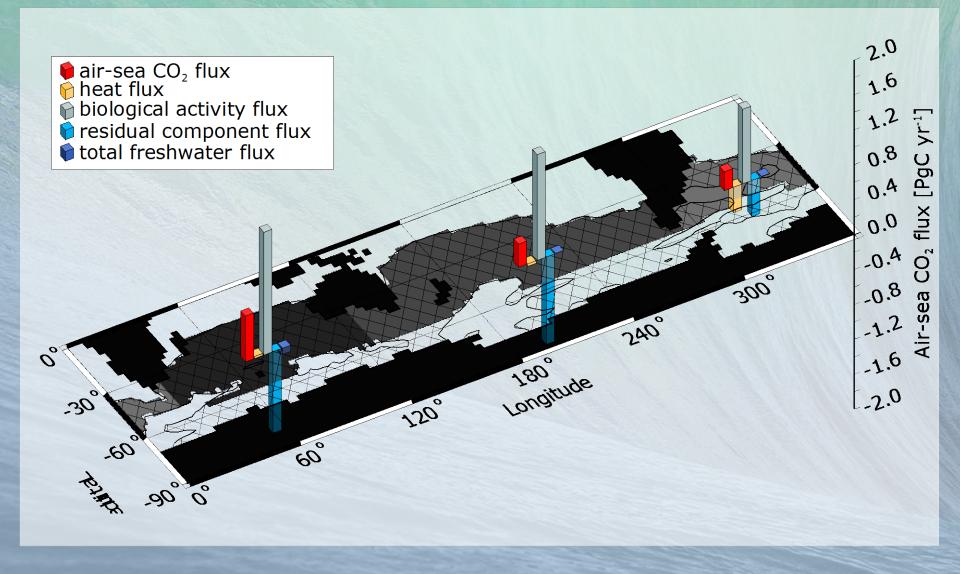
- Coarse resolution MITgcm w/biogeochemistry model (Dutkiewicz et al., 2006).
- Substitute in the fluxes for the diagnostic equation and sum all components.

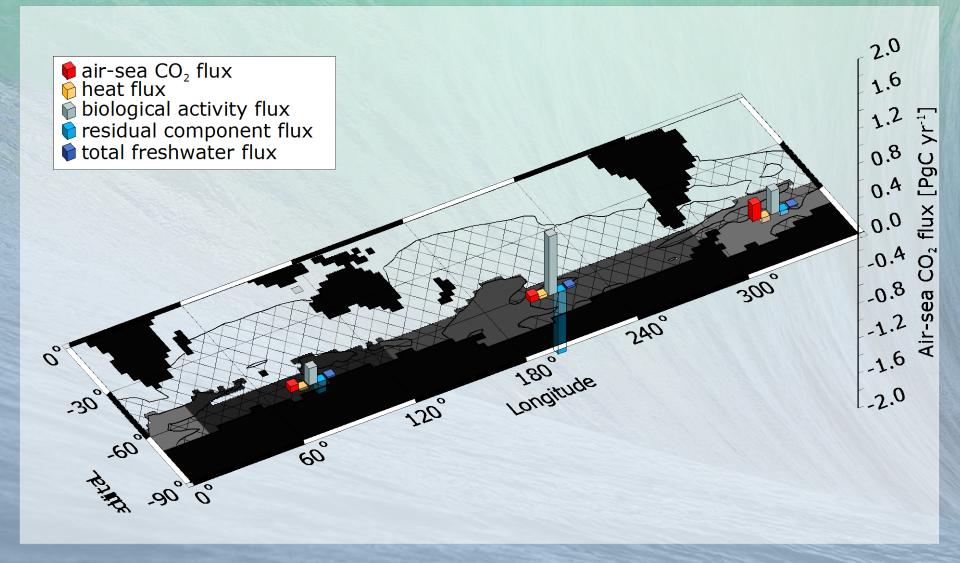

Carbon Fluxes in the "Real" World

Variable	Product	Reference
12x U, V, W, Kz, Kh	Ocean Comprehensible Atlas (OCCAv2)	Forget et al., 2010
12x T, S, P	World Ocean Atlas 2013 (WOA13)	Locarnini et al., 2013; Zweng et al., 2013; 2xGarcia et al., 2013
12x Q, FW	ERA-Interim	Dee et al., 2011
1x DIC, ALK	GLODAPv2	Key et al., 2015; Olsen et al., 2016; Lauvset et al., 2016

 Monthly values for DIC and ALK reconstructed from GLODAPv2 single temporal snapshot using mixed layer depth (after Williams & Follows, 1998).

Carbon Fluxes in the "Real" World


Heat


CO₂ Flux [mol m⁻² s⁻¹]

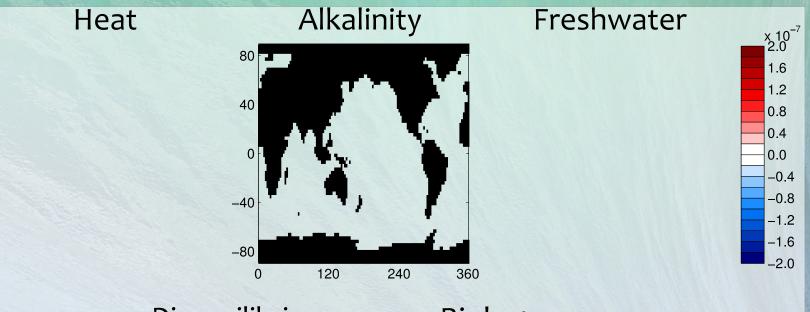
0

Midlatitude Southern Ocean Carbon Fluxes

Southern Ocean Carbon Fluxes

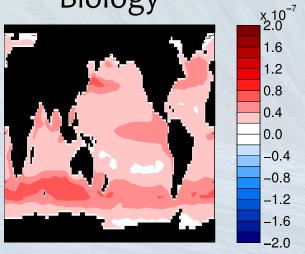
Conclusions

 Mechanistic framework to interpret local drivers of air-sea CO₂ fluxes developed.


- Dominant drivers are the heat flux-driven component and opposing combination of biological activity and disequilibrium.
- Net freshwater effect is actually small because dilution of Alkalinity (in C^{sat}) and DIC mostly cancel.

Framework readily extendable to:

- Cover non-steady state solutions natural.
- Handle anthropogenic CO₂ perturbations.


See: Lauderdale, Dutkiewicz, Williams & Follows (2016), Quantifying the drivers of ocean-atmosphere CO, fluxes, GBC, accepted yesterday!

Carbon Fluxes in the Model World

Disequilibrium

Biology

Longitude