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Focus on seasonal cycle
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Predicted/Projected SST changes around Antarctica
(50 to 70S) due to Ozone and GHG variations
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Predictions depend, of course,

on the form of the 07
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For discussions of the response of the SO
(SST and sea-ice) to ozone forcing, see:

Sigmond and Fyfe, 2010,

Bitz and Polvani, 2012,

Smith, Polvani et al (2012)

Ferreira et al, (2015)

Purich, Cai, England and Cowan (2016)
Kostov et al (2016)

Holland et al (2016)




Inferred response of Southern Ocean SST to a step increase in SAM
(from control runs)

Kostov et al, 2016

Response to a 1o Step Increase in the SAM Index
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Seeking to engage modeling groups to map out Ozone response functions

MITgcm, CCSM, GFDL-JH

Will Seviour

Report on experiments with new GISS couped model



GISS ModelE Configuration: beta-CMIP6-ish

CMIPS5 resolution (Max Kelley) Annual-mean SST and summer
updates to

Ocean (R)

*  Mesoscales: 3D K, GM in thickness-diffusion form
* Diapycnal mixing: tidal dissipation contribution
* Advection: Prather scheme

Atmosphere

* Clouds: new moist convection, treatment of
stratiform mixed-phase

* Radiation: improved LW at low WV amounts (high
latitudes)

* Boundary Layer: stronger mixing for unstable case

Main impacts on Southern Ocean from

* Mesoscales: reduced ACC transport and reduced
open-ocean deep convection. Much improved @ Obs |
stratification and sea-ice cycle . New GISS

* Clouds + ABL: reduced excessive SW absorption T s 0 s B 45 4

Latitude

Pre-industrial control is perturbed by a perpetual ozone hole, circa 2000



January SST anomaly

10-ensemble members

Ensemble mean of anomalies
relative to the control
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Pronounced seasonal cycle

150m

Slower subsurface warming trend

Importance of seasonal cycle emphasized in:

Purich, Cai, England and Cowan
Nature Communications, 2016

N

Enhanced winds in summer

upwell cold water from below Discuss role of enhanced
vertical mixing due to SAM

Matt England’s presentation



Summertime AWm-2
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Role of SAM-induced anomalous mixing
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warm fresh water to depth and
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Composite of cold
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Comparing several models

CIRN

time

CCSM




Conclusions (provisional)

In response to a ‘step’ ozone hole

Observe two timescales

Anomalous vertical mixing plays a key role in
the seasonal cycle

At the edge of the seasonal ice zone,

heat sequestered to depth in the summer is
brought to the surface in the wintertime,
leading to the demise of sea-ice

On longer timescales,
subsurface does not continue to warm
but episodically vents to the atmosphere

1979-2013

Change tendency
Observed change
MMM CMIPS change

‘Warming atmosphere
(heat fluxes)

Strengthening and poleward shifting jet

Mean-state cool layer below surface during summer
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Purich et al (2016)
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