John Marshall

Cecil and Ida Green Professor of Oceanography, MIT

Open-ocean convection: Observations, theory, and models

Open-ocean convection: Observations, theory, and models.

(Marshall, J and Schott, F), REVIEWS OF GEOPHYSICS, vol. 37, no. 1, pp. pages, 1999.


We review what is known about the convective process in the open ocean, in which the properties of large volumes of water are changed by intermittent, deep-reaching convection, triggered by winter storms. Observational, laboratory, and modeling studies reveal a fascinating and complex interplay of convective and geostrophic scales, the large-scale circulation of the ocean, and the prevailing meteorology. Two aspects make ocean convection interesting from a theoretical point of view. First, the timescales of the convective process in the ocean are sufficiently long that it may be modified by the Earth’s rotation; second, the convective process is localized in space so that vertical buoyancy transfer by upright convection can give way to slantwise transfer by baroclinic instability. Moreover, the convective and geostrophic scales are not very disparate from one another. Detailed observations of the process in the Labrador, Greenland, and Mediterranean Seas are described, which were made possible by new observing technology. When interpreted in terms of underlying dynamics and theory and the context provided by laboratory and numerical experiments of rotating convection, great progress in our description and understanding of the processes at work is being made.

doi = 10.1029/98RG02739