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ABSTRACT

A continuously stratified, steady thermocline model is formulated in which a mixed layer of variable depth
and density overlies a stratified thermocline. Rather than prescribe the distribution of density and vertical
velocity at the top of the permanent thermocline, we explicitly represent the dynamics of the vertically ho-
mogeneous layer that overlies it; the density distribution at the sea surface, the depth of the mixed layer, and
the structure of the thermocline are all found for prescribed patterns of Ekman pumping and surface buoyancy
fluxes. If the potential vorticity of the thermocline is assumed to have a uniform value on isopycnal surfaces,
it is shown that the problem can be reduced to one of finding the distribution of a single scalar field, the mixed-
layer density, by the method of characteristics. Given this field and knowledge of the potential vorticity distribution
in the thermocline, all other variables of the model can be found. The resulting model seems ideally suited to
the study of the interaction of 2 mixed layer with a stratified thermocline, since it explicitly represents the lateral
geostrophic flow through the sloping base of the mixed layer.

Idealized solutions are presented for both subtropical and subpolar gyres in which, in response to patterns of
wind and diabatic forcing, isopycnals outcrop into a mixed layer of variable thickness and density. The effect
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of both warming and cooling of the mixed layer on the structure of the gyre is investigated.

1. Introduction

Here we describe the formulation of, and present
solutions from, a steady thermocline model in which
a continuously stratified thermocline is overlain by a
vertically homogeneous mixed layer of variable depth
and density, exposed to mechanical and thermody-
namic forcing. The physical motivation behind such
a model is set out in Woods (1985). There, emphasis
is placed on the need to take account of regional vari-
ations in the depth of the mixed layer and the need to
develop models that are driven by surface fluxes rather
than prescribing the density of the sea surface. In the
present model, an Ekman pumping field at the sea sur-
face drives a lateral circulation in the mixed layer that
flows geostrophically through its sloping base into the
main thermocline. The mixed-layer density and depth
are found rather than prescribed. Although the model
is steady, its formulation renders it a useful tool to
study the interaction between the mixed layer and the
stratified thermocline if the mixed-layer depth of the
model is interpreted as representing annual maximum
values.

The study complements the ventilated thermocline
models of Luyten et al. (1983), Huang (1988a,b;
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1989), and Williams (1989). In these models the
mixed-layer density and depth fields are prescribed,
and the potential vorticity field in the thermocline,
consistent with a given pattern of wind forcing, is then
determined. The surface heat flux is diagnosed.

Instead, in the formulation of the thermocline prob-
lem developed here, it is assumed a priori that the in-
terior potential vorticity distribution is known even on
those isopycnal surfaces that outcrop into the mixed
layer. This great simplification of the physics permits
an elegant mathematical formulation of the thermo-
cline problem, allowing the mixed-layer depth and
temperature to vary both with latitude and longitude.
We proceed to calculate the mixed-layer density and
depth variation (and, through knowledge of the poten-
tial vorticity field, the structure of the thermocline)
induced by prescribed wind and thermodynamic forc-
ing. Given only the potential vorticity distribution of the
moving fluid in the thermocline, the wind stress, and
the applied surface density flux, a complete solution
can be found in which isopycnals outcrop into a mixed
layer of variable thickness and density.

The resulting model is clearly relevant to the en-
trainment regime of the subpolar gyre. We believe,
however, it may also have diagnostic value in the sub-
tropical gyre.

For simplicity, the potential vorticity distribution
has been chosen to have an unchanging uniform vatue
on each isopycnal wherever the fluid is in motion. It
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is not completely unrealistic; observations suggest that
the gyre at depth is confined to regions where potential
vorticity gradients are small, and there may be venti-
lated surfaces on which gradients of subducted potential
vorticity may also be small (Williams 1991). However,
uniform potential vorticity is best thought of as a con-
venient device enabling us to readily obtain physically
interesting solutions without imposing the density and
thickness of the mixed layer. Solutions are presented
for idealized patterns of surface forcing for both sub-
polar and subtropical gyres. The influence of variations
in the temperature and thickness of the mixed layer
on the thermocline below is studied.

The model has also been used to study the entrain-
ment and subduction of fluid between the mixed layer
and the thermocline. The sense of the mass flux, that
is, whether it is directed into or out of the mixed layer,
depends on the sign of the diabatic forcing. The mag-
nitude of the mass flux is set by the diabatic heating
rate, the depth of the mixed layer, and the isopycnal
spacing (the potential vorticity) at the base of the mixed
layer. Study of this point using the model deserves at-
tention in its own right and is described in detail in
the companion paper, Nurser and Marshall (1991,
hereafter NM).

The formulation of the model is described in section
2. In section 3 the method of solution is outlined and,
in section 4, solutions for subpolar and subtropical
gyres are presented.

2. Formulation of the model

We consider a steady ocean made up of a vertically
homogeneous mixed layer, within which horizontal
advection of heat balances prescribed diabatic sources
and sinks, overlying an “ideal”’—that is, inviscid and
adiabatic—thermocline. The vertical structure of the
model is illustrated in Fig. 1; it is in accord with the
conceptual model advocated in Fig. 3 of Woods (1985).
The mixed-layer thickness, /, should be interpreted as
the depth to which water is mixed in winter.

The depth-integrated transport is determined by the
wind stress curl—the Sverdrup constraint—but the
vertical structure of the gyre depends both on the po-
tential vorticity distribution in the thermocline and the
temperature of the mixed layer. The formulation of
the model is inspired by that of Niiler and Dubbelday
(1970), who adopted a Needler (1967) similarity so-
lution for the thermocline. Instead, here we invoke po-
tential vorticity homogenization to choose an idealized
but physically motivated thermocline solution.

Previous authors have shown that if the mixed-layer
density is known, together with a hypothesis for the
variation of potential vorticity in the moving ther-
mocline with density (e.g., Pedlosky and Young 1983;
Nurser 1988), or with density and streamline (Huang
1988a), thenthe Sverdrup constraint allows one to solve
for the depth of the “bowl” within which the moving
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F1G. 1. A schematic diagram of the vertical structure of the model
showing (1) the shallow Ekman layer (2) the vertically homogeneous
mixed layer of depth A(x, y) and density p,.{x, ¥), (3) the moving
thermocline waters separated by the “bowl” z = —D(x, y) from (4)
the resting abyssal fluid with reference stratification p = po(2).

thermocline waters are confined. Once the depth of the
bowl is known the full solution then follows.

Here, rather than specifying the mixed-layer density
field everywhere, we allow it to be determined from
the mixed-layer thermodynamic equation. It will be
shown that if the mixed-layer density is known at a
given point, we can evaluate the part of the mixed-
layer velocity that advects the mixed-layer density at
that point. The mixed-layer thermodynamic equation
can thus be expressed as a quasi-linear PDE.in terms
of the mixed-layer density field alone; this PDE prop-
agates known values of the mixed-layer density on the
boundary into the interior. Once the mixed-layer den-
sity field is known, the rest of the solution then follows.

The model is formulated in terms of a local Cartesian
frame with eastward, northward, and upward coordi-
nates x, y, and z. Results, however, are evaluated and
presented in full spherical geometry.

a. The mixed layer

The mixed layer is vertically homogeneous, with
density p,{(x, y) and thickness 4(x, y). It is exposed
to thermal and mechanical forcing. Mechanical forcing
is confined to a thin surface Ekman layer; below this
Ekman layer the flow is supposed to be in geostrophic
and hydrostatic balance, with

Un =k X Vpu/(pf)

i)
22 4 gom =0
4
where p,{(x, y, z) is the mixed-layer pressure field, f
the Coriolis parameter, p a mean density, and g the
acceleration due to gravity.

(1)
(2)
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We assume that there is no jump in density between
the base of the mixed layer and the thermocline.
Therefore, the density budget of the layer, separating
out advection by the Ekman flux from that by the geo-
strophic flow, is

0
apH,
Wy, Vpudz =— £ n
h

——l—kXT-me+f (3)

of -
where ar is the expansion coefficient, %, is the heat
input/unit surface area, ¢ is the specific heat of water,
and 7 is the applied wind stress. Density inputs resulting
from changes in salinity associated with fluxes of fresh-
water have been neglected, but can readily be included.

It is considerable simplification to include the ad-
vection by the Ekman flux in a net heating. So, defining

Cw

c
Z\et='%n——u—/kx'r'vpms 4)
agpf
(3) simplifies to
0
Z,
f Wt Voo, =_.M_ (5)
~h Cw

By geostrophy and hydrostasy the velocity shear is in
thermal wind balance, so

u, =k X Vps/(ﬁf) —gzk X me/(;if) (6)

where the surface pressure p; = p|,—o. Within the mixed
layer, therefore, the velocity component along the
temperature gradient is independent of depth, and we
may replace u,,, + V p,,, in the integral in (5) by its surface
value. Equation (5) then takes the form, dividing
through by 4,
1 g et

5kaVp, Vom hey
This thermodynamic equation (7) is the key equation
of our model; given p, and 4, it can be used to find the
mixed-layer density field from the %, field. In order
to solve it, we will show how our assumption of uniform
potential vorticity, used in conjunction with the Sver-
drup constraint, allows p; to be expressed as a function
of p,, alone; this allows (7) to be written in a quasi-
linear form and solved by the method of characteristics.
We must first relate p; to the hydrography of the ther-
mocline, which will be constrained by our assumption
of uniform potential vorticity. This is done in the next
section.

(7)

b. The thermocline

We suppose that the moving waters of the thermo-
cline are divided from the motionless abyss by the
“bowl” z = —D(x, y). Density is assumed to be con-
tinuous across this bowl.

Outside and on the bowl the stratification takes up
its reference state denoted by subscript zero (see Fig.

1):
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p=po(2); z=2(p) (8)
as does the pressure
0
p=m =g (). ©)

So, equating the pressure on the bowl to the reference
pressure, by hydrostasy

0 0
pstg f_D p(x,y,2)dz=g f_D podz

and integrating by parts and then reexpressing in terms
of p,

Ds(x,y) = —g{fm z(p, x, y)dp — f ° Zo(P)dP]

Pm Pmo

(10)

where pp(x, ¥) = po(—D) is the density on the bowl.
We have thus related the surface pressure field, and
hence mixed-layer velocity field, to the density structure
in the thermocline.

Now the geostrophic velocity in the thermocline can
be expressed as

1
u=—kXVM
of ?
where V, = i(8/0x)|,=const + #(3/0Y)|,=const» and the
perturbation Montgomery potential follows from the
density structure by

M'(p, x,y) = —gfpp {z(p, x, ¥) — 20(p)}dp. (11)

Equations (10) and (11) are completely general; in
the following paragraphs we specialize them to the case
where the potential vorticity within the moving ther-
mocline is uniform.

We now hypothesize that everywhere in the moving
thermocline, potential vorticity is specified as a func-
tion of Montgomery function and density: Q = Q(M’,
p). For analytical convenience and hence clarity
of exposition, we suppose it to be uniform on
each isopycnal, even on surfaces that outcrop: Q
= —fp~'9p/8z = Qu(p). In particular, we choose

1 900

Qo(p) = —fop 9z °

that is, the value to which Q is homogenized on every
surface is the value appropriate to the reference strat-
ification at f = f;, defined here as the zero wind stress
curl line. Thus,

(12)

dp  fo dp
The ratio of the actual isopycnal layer thickness to the
reference layer thickness—the thickness ratio—is in-
dependent of depth and equal to f/ fo: isopycnals are
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squashed together in a subtropical gyre but pulled apart
in the subpolar gyre.

Because the thickness ratio is independent of depth,
we may integrate (13) up from the bowl z = —D to
give the position of an isopycnal in the thermocline
z(p) expressed in terms of its reference position zo(p)
and D. Thus,

z+D=£(zo+D). (14)
Jo
Furthermore, 4 and D are related through
D—h=£(D—h0) (15)
Jo

where hy = —2zo(pm). Equations (14) and (15) have
been derived before: see Marshall and Nurser (1988)
and Nurser (1988), where they have been used to in-
terpret observations of the Gulf Stream. In the present
context, however, they tell us that if any two of D, A,
and p,, are known, then the other can be found from
(15) and the whole structure of the thermocline can
be deduced. In particular, using (14) to eliminate z
from the expression (10) for the surface pressure field

allows it to be expressed
2D, o f) = —g[ [ (fi Z0(p) + D (% - 1))dp

'm

- f Zo(p)dp]- (16)

Our knowledge of the potential vorticity field has re-
duced the problem to the determination of two fields,
D and p,,, say. Two constraints are needed to determine
the two fields. These are provided here by the mixed-
layer thermodynamic equation (7) and the Sverdrup
constraint for the depth-integrated flow, described in
the next section.

Note that a specification of Q = Q(M’, p) leads (see
Huang 1988a) to a second order ODE for M’ in terms
of p, rather than the simple first-order expression for
z, (13). Integration of this second-order ODE gives
(rather more complicated ) expressions for z(p, D) and
h(pn,, D) analogous to (14) and (15), but the ther-
mocline structure is once more completely set by the
two fields D and p,,.

¢. The Sverdrup constraint

As long as the bowl does not strike the ocean floor,
w=0at z= —D, and the depth-integrated geostrophic
flow is constrained by the Ekman suction w, = k-V
X(7/fp);

0
ﬁf vdz = fw,. (17)
-D
The geostrophic flow is linked to the hydrography by
thermal wind. But, because potential vorticity is uni-
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form, the hydrography is completely determined by D
and p,,. Hence, the Sverdrup relation provides the sec-
ond required constraint relating D and p,,.

Here we reformulate the Sverdrup constraint in
terms of the depth integral of the pressure, which can
be elegantly linked to the density structure—the hy-
drography. Consider the depth integral of the pertur-
bation pressure

0
P’=f {p(x,,2) = po(2) }dz. (18)
-D

Contours of constant P’ are streamlines of the depth-
integrated flow; in the fplane limit P'/(fp) is the
streamfunction for the depth-integrated geostrophic
flow.

In terms of P’, the Sverdrup constraint (17) takes
the form :

pf ox F
So, on a 8 plane, supposing that P’ = P is known at
the eastern boundary x = xg,

x =2
P'=f B %e 4+ pp
XE ﬁ

In terms of the spherical polars used to produce the
results of section 4, we have

A =42
P’=f MRcosﬂd)\+P,'5,

AE

(19)

where \ and 6 are longitude and latitude, respectively,
R = 6370 km is the radius of the earth, and A = Agis
the eastern boundary, along which the pressure is Pf.
The pressure field for the depth-integrated flow is de-
termined by the Ekman pumping field, together with
an appropriate eastern boundary condition— P’ is im-
posed by the Sverdrup constraint.

We wish to link the depth-integrated perturbation
pressure field P’ to the density field.

Consider the actual and reference pressure parts of
the definition ( 18) separately. Consider first the actual
pressure integral. Integrating by parts and using hy-
drostasy,

0 0
f pdz = [pz]%p + f pzgdz,
D D

and integrating by parts a second time

0 0 0
f pdz = l:pz+§p22] -8 z
-D _D

dp
2 9P
2 2 ) dz

az

Treating the integral of the reference pressure similarly,
noting that pressure and density return to their refer-
ence values on the bowl, yields

P= § U " 220, x, y)dp - f ’ Zoz(p)dp} - (20)

Pm Pmo



1784

Here, as before, z and z; are the actual and reference
positions of the isopycnals, with p,, and p,,( the actual
and reference values of the surface density. The integral
'h& [ z’dp is the continuous representation of the
Yop 2i gih? form for the depth-integrated pressure
that appears in the layered models (e.g., Luyten et al.
1983).

Equation (20) is quite general and makes no as-
sumption about the interior potential vorticity field.
Since P’ is fixed by the imposed Ekman pumping field,
Egs. (19) and (20) provide a constraint on the hy-
drography. The immediate elimination of P’ between
(19) and (20) leads to a formula similar to that ob-
tained by Huang (1989) and Williams (1989). The
thermocline models of these authors use this to help
find the potential vorticity distribution.

However, we know the potential vorticity distribu-
tion; thus, the density structure z(p, x, y) is given by
(14) and (15) in terms of D, p,,, and the known field
f1/o. Substituting (14) and (15) into (20),

P'=P(D, pm f)
oD 2
=-§U [{ZO(P)'*‘D(%— 1)] dp
—f:bzoz(p)dp}. (21)

Thus, P’ depends only on D and p,, (and f/f,). But
P’ is known independently from the Sverdrup con-
straint (19). Hence,

D= D(P, pmaf) = D(pm, x, .V)

If p,, is prescribed, as in Pedlosky and Young (1985)
or Nurser (1988), the problem is solved; we iterate
(21) to find the D that gives the correct value of P/,
and then use (14) to find the density field. In the present
model, however, we first have to find p,,; the method
of solution involves the mixed-layer thermodynamic
equation and is described in the next section.

3. Method of Solution
a. Transformation of the thermodynamic equation
The steady thermodynamic equation (7)

aE oz net

1
— kX Vp Vo, =
hCW

of
is now transformed into a single equation in p,,. We
do this by reformulating the advection term in the
quasi-linear form u. - V p,, where the characteristic ve-
locity u, at each point can be calculated from the values
of p,, at that point only. In order to do this we use the
fact that we know p; = py(D, f, pm) = Ds(pm, X, y) from
(16) and (21).
We find (details appear in the appendix) that (7)
can be written
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w- Vo, =— QES net
he w
where the characteristic velocity u, is (22)

= (Ak X VP'+ Bk X V)/(pf)
and the coefficients A4 and B in (22) are
1

=D_LY.I|/IO (23)
and
al, 1)/ I, — /1,
= — = 24
Jo D—al/l (24)

where a = f/f, and

oD
IO=IO(D,pm)=gf dp

Pm

oD
Il=Il(D:pm)=gf (D + zo)dp

2D
L =5L(D, pm) = gf (D + 2)%dp.
Pm

Hence, A= A(p,., D,f)and B= B(p,, D, f), from
which D can be eliminated in favor of P, f, and p,,
using (21). Thus, u. = u.(p, X, »), the x and y de-
pendence arising from the known spatial variation of
P’ and f. Similarly 4, which is by (15) a function of
pm and D, also reduces to a function of p,,, X, and y.

Thus, as long as #pet = Znet(om> X, ¥), (22) is one
equation in one unknown p,,. It should be noted that
#,e 1s not the surface heating #,, but rather, (4), the
surface heating less the advection by the Ekman flux,
which is of comparable magnitude. Should we so wish,
(4) could be used to eliminate ¢ from (22), yielding

apHin
hCW ’

1
u+—kX7|Vp,=—
( © hof ) g
and the model is thus driven by #,. However, for
simplicity, in the solutions presented in the next section
we choose to specify #,. and use (22).

The characteristic velocity is built up of Ak X VP’
and Bk X Vfterms. The Ak X V P’ term is the mixed-
layer velocity expected if the slope of the isopycnals
within the bowl did not vary with depth. Because po-
tential vorticity is uniform within the bowl, this is true
for the zonal slope. The Bk X Vfterm is an eastward
correction, which arises from the thickening of the is-
opycnals toward the north required to assure unifor-
mity of potential vorticity.

Where the mixed layer has a honzontal temperature
gradient (and hence vertical velocity shear), u. can be
shown to be equal to the velocity at a point lying be-
tween the base and the midpoint (z = —A/2) of the
mixed layer.
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Luyten and Stommel (1986a,b) and Veronis (1988)
transformed the thermodynamic equation for a model
with two active layers constrained to be in Sverdrup
balance into a form very similar to (22). In their sim-
pler problem they were able to interpret the charac-
teristic velocity as that of a Rossby wave suffering ad-
vection by the Sverdrup flow.

b. Integration of the characteristic equation

If p,, is known along a curve that crosses the char-
acteristics, we can integrate along the characteristics to
find the p,, field. In the runs described in section 4, p,,
has simply been specified on the boundary of the do-
main of interest wherever the characteristic velocity is
inward. We integrate inward along the characteristics
and interpolate to find the p,, field everywhere. The D
field and the rest of the solution then follow. The do-
main has been chosen such that all characteristics orig-
inate from the boundary, so there are no closed char-
acteristics.

In more detail, we integrate along characteristics as
follows:

(i) at our starting point (x, y) = x = x°, we know p,,
= pm’ (say);

(ii) we calculate u,, & and #;;

(ii1) then at the next point on the characteristic curve

x!' =x%+ Aru,
where

pm1 = pmo - At aE%\et/(hCW)-

Step (ii) is then repeated using the new values x' and
pm'.. . . Theintegration (which is actually performed
by a fourth-order Runge-Kutta scheme) is carried on
until we pass out of the domain of interest.

In order to calculate u, and 4, we need first to find
D from p,,, x, and y. We do this by iterating (21) by
a Newton-Raphson method to find the value of D,
which, for given values of p,, and f, gives the correct
value of P'. Then 4 is immediately given by (15). The
fields of V P’ and V fare known, so we simply need the
coefficients 4 and B in order to evaluate u,.

Note that, because (22) is a quasi linear, if unsuitable
pm values are specified at the boundaries, the charac-
teristics may cross or fail to cover the domain of interest
(Luyten and Stommel 1986¢c; Veronis 1988).

4. Some idealized experiments
a. The subtropical gyre

Note that all results have been calculated using full
spherical geometry, and so are presented in terms of
longitude A and latitude 6. We suppose the subtropical
gyre to fill the region Ay < A < Ag; 05 < 6 < 0y, with
Aw = —80°, \g = —20°; 65 = 15°, O = 40°.
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Within this region we apply a sinusoidally varying
Ekman pumping field:

0—8
W, = w¥ sin b = b5) , (25)
Oy — Os
with a maximum Ekman pumping w¥ = —1.5 X 107¢

m s~! =~ 47 m yr~!, It is plotted in Fig. 2a. The depth-
integrated flow follows contours of the depth-integrated
perturbation pressure, which is set by the Sverdrup
constraint (19), so

_ pf*R cosf
B

We have specified P’ = 0 at the eastern boundary, thus,
forbidding any barotropic flow across it.

Contours of P’ are plotted in Fig. 2b. The total
southward geostrophic flow across a line of latitude is
P'/5f: This reaches a maximum of ~30 Sv (Sv = 10°
m? s7!), representing the transport of the gyre.

P= (M= Ap)we(8).  (26)

1) BOUNDARY CONDITIONS

We wish to ensure that the flow is confined within
the gyre; that is, there is no zonal flow across the eastern
boundary at any depth. This is only consistent [see

(a) -15

15 T T T T T
-80 =20

FIG. 2. The forcing applied to the subtropical gyre. The model
subtropical basin extends from 15° to 40°N and from 80° to 20°W.
(a) Contours of Ekman suction in meters per year. (b) Contours of
the depth-integrated perturbation pressure, P’, units: 10> N m™".
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-80 =20

15 : . . T .
80 -20

FIG. 3. A subtropical gyré with mixed layer of uniform density, ¢ = .26.75. (a) A zonal cross section at latitude 27.5°N, halfway up the
gyre. The mixed layer is stippled heavily, the moving thermocline left blank, and the motionless abyss stippled lightly. Isopycnals are plotted
every 0.2 kg m~>, (b) A meridional cross section at longitude 80°W, on the western edge of the gyre. Notation as in (a). (c) Contours of
the surface pressure field, p,, units: 10° N m~2. (d) Contours of the Montgomery function on the isopycnal surface ¢ = 27.0, units: 103

Nm™2

(21)] with the vanishing of the perturbation pressure,
P = 0, if the mixed-layer density reaches its reference
value, p,, = pmo, On the eastern boundary. Care must
be taken to ensure that the inflow condition on the
western boundary and any applied thermal forcing are
consistent with this requirement.

2) THE REFERENCE STRATIFICATION

For convenience we choose the linear reference
stratification

po(z) = 1026.6 — 1073z, (27)

This is a uniform density gradient of 1 kg m™/km.

For these subtropical runs we choose a reference mixed-

layer density-—the density of the mixed layer on the
eastern boundary—of p,,0 = 1026.75, which implies

that the “reference thickness” of the mixed layer Hy
= —2o(pmo) = 150 m.

3) A MIXED LAYER OF SPECIFIED UNIFORM DEN-
SITY

We first adopt a mixed layer whose density is every-
where uniform and is equal to its reference value; this
is the case treated by Pedlosky and Young (1983) and
by Nurser (1988). Thus, p,(A, 8) = pme = 1026.75.
Since p,, is known, the bowl depth D follows imme-
diately from (21), with P’ given by the Sverdrup con-
straint (26). Fields of z, AL, and p, then follow from
(14), (11), and (10), respectively.

Everywhere inside the bowl the isopycnals dip to-
ward the west to accommodate the southward Sverdrup
transport (see the zonal section Fig. 3a). Because po-
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tential vorticity is uniform in the thermocline, their
slope is independent of depth. In particular, the o
= 26.75 isopycnal (here o is simply given by p — 1000),
which marks the base of the mixed layer, must slope
down: the mixed layer thickens toward the west.

The meridional section in Fig. 3b shows, with little
difference from Fig. 7a of Rhines and Young (1982),
the poleward deepening of the bowl so characteristics
of the observations. As ftends to fp and hence dp/9z
within the bowl tends to dpy/dz, D must increase in
order to ensure substantial downward deviation of the
isopycnals and increasing depth-integrated pressure.

The surface pressure field and the Montgomery
function on the ¢ = 27.0 surface are plotted in Figs.
3¢ and 3d, respectively.
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FIG. 4. A subtropical gyre with a warm mixed layer in the center.
(a) Contours of surface density p,, in terms of ¢ = p — 1000. (b)
Contours of the surface pressure field, p,, units: 10° N m™2 (c¢) Con-
tours of the Montgomery function on the isopycnal surface ¢ = 27.0,
units: 10° N m~2. (d) Meridional section at 80°W. Notation as in
Fig. 3a. (e) Contours of the Montgomery function on the isopycnal
surface o = 26.7, units: 10> N m~2. Stippling denotes where the surface

"has outcropped into the mixed layer.

Note that all of the Ekman pumping is absorbed
into the mixed layer. There is no ventilation of the
stratified thermocline in this steady model.

4) WARM MIXED LAYER IN THE CENTER OF THE
GYRE

The thermodynamic equation is now used to set the
density of the mixed layer by advecting in the density
field from values set at the boundary of the domain.
There is no diabatic heating. The characteristics that
advect the mixed-layer density field are, as we shall see,
dominated by the Sverdrup flow. It is thus the inflow
condition along the northern part of the western
boundary of the half-disk that sets the density field.
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Note that the inflow condition sets the mixed-layer
density field only on that part of the western boundary
through which inflow is taking place.

Suppose a density inflow condition

pm = 1026.75 — 025 X (40 — 6°)  (28)
that becomes less dense (i.e., warmer) to the south. A
warm mixed layer (Fig. 4a) is advected into the center
of the gyre. Since the model is adiabatic, the charac-
teristics coincide with contours of the mixed-layer
density. They are pushed eastward a little from the
streamlines P’ of the barotropic flow by the Vfterm.
The warm pool in the center of the gyre implies, by
thermal wind, anticyclonic shear throughout the mixed
layer. This drives a surface flow considerably stronger
(Fig. 4b) than would occur (Fig. 3c) if the mixed layer
were of uniform density. On the other hand, the flow
in the thermocline is weakened; compare Fig. 4c, the
flow pattern on the ¢ = 27.0 surface (reference depth
400 m), with Fig. 3d, the corresponding flow pattern
when the mixed layer is uniform. This weaker flow is
associated with a somewhat shallower bowl; compare
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the meridional section at 80°W (Fig. 4d) with the cor-
responding section (Fig. 3b) for the case with uniform
mixed-layer density. Why is the bowl now shallower
than in the reference solution?

The response of the depth of the bowl to a change
in the density of the mixed layer is given by differen-
tiating (21) by p,, and D and combining the resulting

equations to yield
_(2P [ (9P
3pm oD

i
= . (29
A=/ (-z1dp” >

»
pm

P’,f=const

In the subtropical gyre f/fo < 1; as z < 0, the de-
nominator is positive. Thus, if the mixed layer becomes
warmer, then the bowl must shoal (and vice versa).
The magnitude of D/dp,, lies generally in the range
200-1000 m/kg m™~3 for the runs described here. The
bowl depth is therefore little affected by mixed-layer
density variations of order 0.1 kg m™ as chosen here.

C)

() —

0
(©

1000

2000

-80

=20

FIG. 5. A subtropical gyre exposed to heating. (a) Contours of net
heat input into the mixed layer (in W m~2). (b) Contours of surface
density p,,, in terms of ¢ = p — 1000. The characteristics (dotted
lines) are superimposed. (c) Meridional section at 80°W. Notation
as in Fig. 3a. (d) Contours of the Montgomery function on the iso-
pycnal surface o = 26.5, units: 10> N m™2. The stippled region denotes
where the surface has outcropped into the mixed layer.
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It should be noted that now isopycnals outcrop into
the mixed layer; however, there is no transfer of fluid
between the mixed layer and the thermocline. This is
evident in, for example, the flow on the outcropping
o = 26.7 surface (Fig. 4¢). The reason that ventilation
does not occur is that (see NM ) no net diabatic heating
is applied to the mixed layer: #,, = 0.

5) WARMING OF THE SUBTROPICAL GYRE

The mixed layer is now diabatically warmed by the
net heating field (Fig. 5a)

70— 05)\ o[ TA = Aw)
0N"“05 )\E—>\W

Fner = H et Sinz( ) (30)

where the maximum heating rate #%, = 10 W m 2

We choose the inflow condition (28), which is warmer
to the south as in the previous example.

The heating causes the density to decrease along
characteristics (the dotted lines in Fig. 5b). The tongue
of low-density water in the southwest corner marks the
water that has a long track over the region of strong
warming. Note that density does not vary along the
characteristic originating from the western boundary
at 40°N, a consequence of the form (30) of the heating.
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Where the mixed layer has been warmed it shoals and,
to a lesser extent, (see the meridional section Fig. 5¢),
so does the bowl.

As a consequence of the applied heating, there is
now transfer of fluid from the mixed layer into the
thermocline. This “subduction” is evident in Fig. 5d,
the plot of Montgomery function on the ¢ = 26.5 sur-
face. It is also clear in Fig. 6, the perspective plot of
this same surface; fluid spirals down on the ¢ = 26.5
surface, leaving the mixed layer along the outcrop line.

We refer the reader to NM for more discussion of
the processes that set the rate at which fluid passes into
the thermocline.

b. The subpolar gyre

We now apply the model to a subpolar gyre: Ay < A
< \g; 05 < 0 < 0y, with Ay and Ag as before, but now
6s = 40°, 8y = 65°. An Ekman suction is imposed of
exactly the same form and strength as (25) but opposite
sign.

Potential vorticity in the thermocline is now assumed
to be homogenized to its reference value on the south-
ern edge of the gyre. To model the thicker mixed layer
observed in the subpolar gyre, a reference mixed-layer

F1G. 6. A perspective plot of the upper 800 m of the subtropical gyre, viewed from the southwest.
The o = 26.5 surface appears as a net; its depth is contoured every 25 m. The velocities on this
surface are proportional to the length of the arrows. The “wall” denotes where the ¢ = 26.5

surface outcrops into the mixed layer.

A grey scale is used to represent the density field, both on the surface of the mixed layer and
on the vertical planes. Each element of the grey scale covers a density range of 0.1 kg m~>. The
mixed-layer base is delineated by a dashed line, and the “bowl” by the dotted line.
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thickness of 200 m is chosen and, in order to maintain
consistency with (27), a reference density pmo
= 1026.8. We choose one example only, in which the
mixed-layer inflow becomes cooler to the north:

pm = 1026.8 + .03 X (8° — 40),

and the mixed layer is subjected to a net cooling of the

same form as (30) but now #¥, = —40 W m™2,
Standing out in the surface density field (Fig. 7a) is

the tongue of high-density water lying to the north-

FIG. 7. A subpolar gyre subjected to cooling. (a) Contours of surface
density p,,, in terms of o = p — 1000. The characteristics (dotted
lines) are superimposed. (b) Contours of mixed-layer depth (in me-
ters). (c) Meridional section at 80°W. Notation as in Fig. 3a. (d)
Contours of the surface pressure field, p;, units: 10> N m™2 (e) Con-
tours of the Montgomery function on the isopycnal surface ¢ = 27.4,
units: 10> N m~2, The stippled region denotes where the surface has
outcropped into the mixed layer.

west—the model Labrador Sea—marking water that
has been exposed to cooling over a prolonged track.
This cold mixed layer is also very thick, attaining a
maximum thickness of almost 800 m—see the mixed-
layer thickness field (Fig. 7b) and the meridional sec-
tion (Fig. 7c).

The upward doming of the isopycnals toward the
center of the gyre, necessary to generate the cyclonic
depth-integrated flow, is evident in the meridional sec-
tion (Fig. 7c). The increasingly dense fluid on the
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FIG. 8. A perspective view of the upper 1200 m of the subpolar gyre, viewed from the southwest. The
o = 27.4 surface appears as a net, and its depth contoured every 50 m. Grey scale interval is again 0.1
kg m=.

northern flank of the inflow prevents the mixed layer
from surfacing, but cannot prevent a slight shallowing
toward the center of the gyre (Figs. 7b and 7¢).

The surface flow (Fig. 7d) is intensified by the cy-
clonic shear in the mixed layer. More interesting is the
flow in the thermocline; Fig. 7¢ shows contours of M’
on the o = 27.4 surface. Note the entrainment of fluid
into the mixed layer: Fluid flowing along this constant
density surface runs into the mixed layer where it has
cooled enough to burrow down across this density sur-
face.

The upward spiraling of fluid, until it strikes the
downward burrowing mixed layer, is clear in the per-
spective diagram of the ¢ = 27.4 surface (Fig. 8). This
transfer of fluid into the mixed layer from the ther-
mocline, a consequence of the applied cooling field, is
discussed in more detail in NM.

5. Conclusions

We have shown how to formulate and find solutions
for a steady ideal thermocline underlying a vertically
homogeneous mixed layer exposed to mechanical and
thermodynamic forcing. The mathematical elegance
and tractability of our model follows from the simpli-
fying assumption that the potential vorticity of the
thermocline has a uniform unchanging value. This al-
lows us to drive the model with nontrivial patterns of
wind and thermal forcing and permits a mixed layer
whose depth and temperature vary both with latitude

and longitude. The surface temperature is found rather
than prescribed.

In a companion paper, Nurser and Marshall (1991),
we employ the model to study those factors that control
the magnitude and sense of flow between the mixed
layer and the thermocline.

The model can be generalized to accommodate a
potential vorticity that is a function of both Montgom-
ery potential and density. The present formulation may
also provide a stepping stone to a model allowing time
dependence and so incorporate a seasonally varying
mixed-layer pulsing fluid into the thermocline.
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APPENDIX
The Thermodynamic Equation
The steady thermodynamic equation (7)

O H pet

ka Vps'vpm = -
hCW

pf
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is now transformed into a single equation in p,,. In
order to do this we exploit the fact that p; = p(D, f,
Pm) = Ds(Pms X, ¥)-

The surface pressure gradient is expressed in terms
of the gradients of D and p,,. From (16), p; = p,(D,
pm f), and so

ap; ops ap;
Vp, - (aD )vu + ( > )Vf+ ( m)vp,,,

Now the Sverdrup constraint is used to eliminate VD.
By (21), we have P' = P'(p,., D, f), so, taking the

gradient,
oP' oP' oP'
VP = \%
(GD) D+(6f )Vf+( m)me
Eliminating VD gives
Vps,=AVP + BVf+ CVp,,
where

op, oP’
= (55)/ )
=6_p;___ ap; \ [ oP' gi'
7~ (3)(5)/ ()
oo s _ (d0\(3P'\ [ (3P
" 9pm (aD)(apm)/(ab)'
Therefore,

KX Vp,-Vp,=(Ak X VP' + Bk X Vf)-Vp,,

and

since k X Vp,, cannot advect p,,. Thus we arrive at
(22)
OIEX net

u-Vp, =-— he
w
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where the characteristic velocity u, is
w = (4k X VP' + Bk X V1) /(pf).
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