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ABSTRACT

Numerical models of the ocean typically employ gridpoint techniques in which the dynamical variables defining
the state of the ocean are held on a staggered grid. One common arrangement of the variables, known as the
Arakawa C-grid, is particularly prone to gridscale noise that is due to spatial averaging of Coriolis terms and
that is manifest when the grid resolution is coarse with respect to the deformation radius. Here, the authors
analyze the problem in the context of linear inertia–gravity waves and discuss the reason for the prevalence of
noise. They suggest a solution to the problem in which the C-grid model variables are augmented with D-grid
velocity variables. An analysis of the resulting C–D grid indicates favorable behavior and numerical results are
presented to demonstrate this. Finally, they discuss the similarity in nature between the C–D grid and the Z-
grid, to explain why the C–D grid works well at both high and low resolution.

1. Introduction

Models of ocean circulation typically employ grid-
point techniques in which the variables defining the state
of the ocean (velocity components, temperature, salin-
ity, and pressure) are held on a staggered grid. The most
common grids employed in ocean models are the B-,
C-, and E-grids [in the nomenclature of Arakawa and
Lamb (1977)]. Linear analysis of the representation of
inertia–gravity waves on each grid shows the C-grid to
have the most satisfactory properties; provided the grid
resolution is high relative to the deformation radius.
However, since the deformation radius in the ocean is
only 30 km or so, most global (and even regional) ocean
models coarsely resolve the radius of deformation. The
conventional formulation of Coriolis terms in a C-grid
model involves spatial averaging because the horizontal
components of velocity, u and y , are staggered in space.
This averaging allows gridscale noise to persist in the
divergence of u and y and hence, in the vertical velocity
field. For example Fig. 1a shows the vertical velocity
in the Massachusetts Institute of Technology (MIT)
ocean model (Marshall et al. 1997) after only a brief
period of spinup from rest. The model shown here is a
full three-dimensional general circulation model with
realistic topography and forcing that employs just a con-
ventional C-grid for the horizontal discretization. The
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noise, as seen at this early stage in the integration, is
generated at boundaries and over topography and then
rapidly propagates into the interior of the model. As the
integration proceeds matters become worse with intol-
erable levels of noise. The prevalence of noise can be
traced back directly to the discretization of the Coriolis
force. This problem does not arise in B-grid models,
where u and y are collocated (Bryan 1969; Mesinger
and Arakawa 1976).

When the deformation radius is well resolved, C-grid
models yield the most accurate numerical solutions.
Consequently, many ocean models based on the C-grid
have been developed for use at high resolutions (e.g.,
Smith et al. 1990; Haidvogel et al. 1991; Blanke and
Delecluse 1993; Marshall et al. 1997). In subsequent
attempts to apply such models to large-scale and global
simulations at low resolution they have proved suscep-
tible to gridscale noise. This is, in part, because there
are many potential sources of gridscale energy, among
them flow over topography that can vary rapidly from
grid point to grid point. Several ‘‘fixes’’ to deal with
the noise have been proposed and are frequently em-
ployed. Most involve some form of higher-order, scale-
selective dissipation that aggressively damps gridscale
phenomena, thus papering over the problem at the ex-
pense of accurate dynamics. For example, one such
method is ‘‘divergence damping’’ (Smith et al. 1990);
here terms are added to the momentum equations that
damp only the divergent part of the flow. Divergence
damping presumes that the important dynamics are in
the rotational flow, which is not necessarily true, es-
pecially at low latitudes.
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FIG. 1. The vertical velocity field at z 5 225 m in two three-dimensional models of the Pacific
basin after one month of spinup. They solve the primitive equations on the sphere on (a) the C-
grid and (b) the C–D grid. The models use realistic topography and forcing. Contour interval is
0.01 mm s21.

In this note we reassess the conventional formulation
of Coriolis terms on the C-grid and suggest a new ap-
proach which involves augmenting the C-grid velocities
with those from a D-grid. The resulting grid, which we
call C–D, yields satisfying results at both fine and coarse
resolution—see, for example, Fig. 1b in which we have
implemented the MIT ocean model on the C–D grid.
Moreover, this approach can readily be switched back
to a C-grid for use at high resolution. In section 2 we

discuss the essence of the C-grid problem. We suggest
the C–D grid as an alternative and describe the approach
in section 3. We then test the C–D grid side-by-side
with C-grid and B-grid models in section 4.

2. Inertia–gravity waves on the C-grid

Consider the following second-order discretization of
the linear shallow water equations on a C-grid:
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FIG. 2. The spatial arrangement of variables on (a) the C-grid, (b) the D-grid, and (c) the C–D grid. Note that the number of velocity
variables per pressure point on the C–D grid is twice that of the C- or D-grid.

FIG. 3. The arrangement of variables on the timeline. The velocity
variables are staggered with respect to the pressure. This allows the
pressure term (g9=h) to coincide with the acceleration (dtu) and the
horizontal divergence (Ho= · u) to coincide with the vertical velocity
(dth).

1 g9xytd u 2 f y 1 d h 5 0t xDt Dx

1 g9xytd y 1 f u 1 d h 5 0t yDt Dy

1 1 1
d h 1 H d u 1 d y 5 0.t o x y1 2Dt Dx Dy

Here, (1/Dt)dt, (1/Dx)dx, and (1/Dy)dy are the centered
discrete operators that approximate the continuous par-
tial derivatives ] t, ]x, and ]y, respectively (e.g., dtu 5
u(t 1 Dt/2) 2 u(t 2 Dt/2)). The 2t, 2x, and 2y op-
erators are, respectively, centered in time and in the x
and y directions (e.g., 5 [u(t 2 Dt/2) 1 u(t 1 Dt/2)]).t 1u 2

Figure 2a shows the spatial layout of variables on the
C-grid. Note that the Coriolis terms are centered in time
by use of the 2t operator, required because u and y are
both evaluated at the same time level. The pressure term
is staggered in time with respect to the velocity (see
Fig. 3 for temporal discretisation) allowing g9=h and
Ho= · v to be time centered and explicit.

To analyze the gravity waves in the above system,
we assume a simple wave solution of form ei(kx1ly2vt) .
On substitution into the unforced, inviscid system we
obtain the discrete dispersion relation

2 2 2 2 2 2 2s 5 f c c c 1 g9H (s 1 s ), (1)v k l v o k l

where

2 vDt
s 5 sin ,v Dt 2

2 kDx
s 5 sin ,k Dx 2

2 lDy
s 5 sin ,l Dy 2

vDt
c 5 cos ,v 2

kDx
c 5 cos ,k 2

and

lDy
c 5 cos .l 2

In the limit of infinitesimal time step, Dt → 0, and grid
spacing, Dx → 0 and Dy → 0, then the trigonometric
quantities become sv → v, sk → k, sl → l, cv → 1, ck

→ 1, and cl → 1 and the discrete inertia–gravity modes
(1) asymptote to the more familiar continuum modes

v2 5 f 2 1 g9Ho(k2 1 l2). (2)

The form of the discrete dispersion relation (1) deter-
mines the behavior of inertia–gravity waves in the dis-
crete model. The behavior is characterized by the wave
resolution, r, defined as

Ïg9HL or
r [ 2 5 2 .

Dx fDx

There are two regimes of behavior: (i) low resolution,
r , 1, where the frequency is dominated by the Coriolis
frequency since all wavelengths permitted on the grid
are long relative to the deformation radius, and (ii) high
resolution, r . 1, where the waves are more dispersive.
Figure 4 shows the nondimensional frequency v/f for
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FIG. 4. Inertia–gravity wave frequency in the ‘‘low’’-resolution (r 5 ½) regime. The nondimensional frequency v/f is contoured for (a)
the continuum, (b) the C-grid, and (c) the C–D grid. A contour interval of 0.05 is used for all plots.

FIG. 5. Inertia–gravity wave frequencies in the ‘‘high’’-resolution (r 5 2) regime. Here, v/f is contoured for (a) the continuum, (b) the C-
grid, and (c) the C–D grid. A contour interval of 0.1 is used for all plots.

(a) the continuum and (b) the C-grid, both in the low-
resolution regime (r 5 ½). The C-grid exhibits false
minima that are not present in the continuum. The false
minima are due to the presence of the factor ckcl in the
dispersion relation. Here, ckcl causes the inertial oscil-
lation term ( f 2) to vanish for waves with either k 5
p/Dx and/or l 5 p/Dy. These conditions correspond to
long/short-meridional and short/long-zonal structures
that describe the patterns of noise seen in the GCM
calculation, Fig. 1a. The false minima also mean that
the group velocity has an incorrect sign for some waves.
In a well-behaved system, perturbations on the gridscale
would adjust to balanced flow through the transmission
of energy by inertia–gravity waves. Instead, on the
C-grid, gridscale waves feed energy into short-scale per-

turbations thus allowing standing gridscale noise to per-
sist. Figure 5 shows v/f for (a) the continuum and (b)
the C-grid, both for a wave resolution of r 5 2 (i.e., in
the high-resolution regime). The structure of the C-grid
dispersion relation resembles more closely that of the
continuum. There are no false minima and the frequency
increases monotonically with wavenumber.

The conventional wisdom, then, is that the C-grid is
well behaved in the limit of high resolution (r . 1) but
is prone to gridscale noise at the low resolution (r ,
1). This property can be traced back to the spatial av-
eraging of the Coriolis terms on the C-grid. More com-
prehensive analyses of the adjustment process can be
found in Arakawa and Lamb (1977) and Fox-Rabinovitz
(1991) and a further analyses for Kelvin and Rossby
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waves, not discussed here, can be found in Wajsowicz
and Gill (1986a,b,c).

3. The C–D grid

The existence of false minima in the discrete disper-
sion relation (1) is a consequence of the spatial aver-
aging of the Coriolis terms on the C-grid. Spatial av-
eraging leads to cosines ( ) that multiply the Coriolis2 2c ck l

frequency in the dispersion relation and that tend to zero
for gridscale wavelengths. If this averaging can be
avoided, the dispersion relation will be improved.

One way forward, and this is the contribution of the
present note, is to employ a combination of the C- and
D-grids. On overlaying the C-grid (Fig. 2a) and D-grid
(Fig. 2b) such that the pressure points in the respective
grids are aligned, we obtain the spatial distribution of
model variables depicted in Fig. 2c. We label the ve-
locity variables with subscripts according to the subgrid
(C or D) with which they are associated. The second-
order discretization, centered in space and time, of the
linear inertia–gravity wave terms for this C–D grid is

1 g9td u 2 f y 1 d h 5 0, (3a)t C D xDt Dx

1 g9td y 1 f u 1 d h 5 0, (3b)t C D yDt Dy

1 1 1
d h 1 H d u 1 d y 5 0, (3c)t o x C y C1 2Dt Dx Dy

1 g9 xytd u 2 f y 1 d h 5 0, (3d)t D C xDt Dx

and (3e)

1 g9 xytd y 1 f u 1 d h 5 0.t D C yDt Dy

The first three equations are the same as in a con-
ventional C-grid discretization except for the Coriolis
terms where we have used the D-grid velocities that
require no interpolation. The last two equations can then
be viewed as auxiliary to that of the C-grid model re-
quired to predict the velocities for use in the C-grid
Coriolis terms. Note that the D-grid equations [(3d) and
(3e)] are only required in the interior because the Cor-
iolis terms in (3a) and (3b) are not evaluated on the
boundary. Again, assuming a wave solution we obtain
five modes that are

s 5 0, (4a)v

2 2 2 2 2s 5 f c 1 g9H(s 1 s ), (4b)v v k l

and (4c)
2 2 2s 5 f c .v v

The first mode (4a) is the geostrophic mode; on a
b-plane it would be a planetary Rossby wave. The mid-

dle pair of modes (4b) are inertia–gravity waves and the
last pair (4c) are computational modes. These compu-
tational modes are a consequence of using twice as many
velocity variables as on the C-grid alone. Note that there
is no spatial averaging in the dispersion relation of the
inertia–gravity waves on the C–D grid (4b). The right-
hand side is monotonic in k and l implying the sense
of the group velocity is always faithful to that of the
continuum, independent of spatial resolution (Figs. 4c
and 5c). This is also a feature of the E-grid, Eliassen
grid, and Z-grid (see discussion Randall 1994). The dis-
persion of inertia–gravity waves is therefore now ‘‘prop-
erly’’ modeled in that energy is not transmitted in the
wrong direction. This indicates the gridscale noise will
not persist as standing patterns, unlike in a pure C-grid
model, as will be demonstrated later in a numerical C–
D model.

Filtering the computational modes

The computational modes on the C–D grid take the
form of inertial oscillations and have no particular spa-
tial characteristics. They can readily be filtered by use
of an implicit time-stepping technique. In the previous
section we used a Crank–Nicholson time-stepping
scheme, yielding Coriolis terms that were centered and
implicit in time. If we now replace the Crank–Nicholson
method with an implicit backward scheme, then the in-
ertial oscillations will be damped, together with the
computational modes. Damping is not the same as dis-
sipation; additional dissipation would alter the balanced
state whereas here, only the transients about the bal-
anced state are damped. We will now describe in detail
how this is achieved.

The C–D discrete equations, using a general time-
stepping scheme for the Coriolis terms and now in-
cluding forcing and dissipation, can be written as

1 g9t (x)d u 2 f ỹ 1 d h 5 t 2 eu , (5a)t C D x CDt Dx

1 g9t (y)d y 1 f ũ 1 d h 5 t 2 ey , (5b)t C D y CDt Dy

1 1 1
d h 1 H d u 1 d y 5 0, (5c)t x C y C1 2Dt Dx Dy

1 g9 xy xyt (x)d u 2 f ỹ 1 d h 5 t 2 eu , (5d)t D C x DDt Dx

and

1 g9 xy xyt (y)d y 1 f ũ 1 d h 5 t 2 ey , (5e)t D C y DDt Dy

where the tilde operator is defined as

ũ 5 au(t 1 Dt/2) 1 (1 2 a)u(t 2 Dt/2),t

and a is a time-weighting factor. For a 5 0, ½, and 1
we obtain, respectively, the Euler forward, Crank–Nich-
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olson, and implicit backward time-stepping schemes for
the Coriolis terms. Note that the velocities and pressure
remain staggered in time ensuring that the gravity wave
terms are centered, second-order accurate in time, and
can be evaluated explicitly.

A stability analysis of the Coriolis terms is made by
setting the right-hand sides of Eq. (5) to zero, along
with e and g9, and looking for solutions of the form
elte2ivDt. Solving for the absolute frequency v and ex-
ponential growth rate l we find

2 2 21 1 (1 2 a) Dt f
2lDte 5 ;

2 2 21 1 a Dt f

Dtf
tanvDt 5 .

2 21 2 a(1 2 a)Dt f

We note the following properties. For the system to be
stable (l # 0) to the Coriolis term, it is sufficient that
a $ ½. For long time steps, the frequency of oscillation,
v, is slowed suggesting that it is useful to damp the
motion by using forward weighting (a . ½). With full
forward weighting (a 5 1) the system is damped at the
rate l 5 (21/Dt) log(1 1 Dt2f 2). Over the time period
f 21, the amplitude of oscillation is multiplied by the
damping factor e2Dtf /2 . For large time steps, Dtf k 1,
the damping is essentially instantaneous; for interme-
diate time steps, Dtf ; 1, the damping factor is about
60% and even for moderately small time steps, Dtf ;
1/10, the damping factor is still 95%.

The consequence of such damping is that the forward
weighting in time of the Coriolis terms is a very effec-
tive filter of inertial oscillations unless the time step is
extremely small. For all the timescales of interest and
relevance to large-scale oceanography, inertial oscilla-
tions will, in practice, be fully filtered. We will now use
this implicit damping to eliminate the computational
modes modes from the C–D grid. It should be reiterated
that such filtering is not the same as introducing explicit
dissipation. Implicit dissipation would dissipate energy
from the balanced state whereas the time filtering de-
scribed here does not. Instead, implicit damping extracts
energy only from inertial oscillations and faithfully sus-
tains the balanced state.

4. Numerical results

We now present results from three numerical codes:
a C-grid code, an implementation of the C–D scheme,
and a B-grid code for comparison. All calculations will
use the linear shallow water equations with bottom fric-
tion since these are sufficient to expose the issues. The
time stepping is identical for all models; implicit back-
ward for the Coriolis term, centered in time for the
gravity wave terms, and Euler forward for the bottom
friction.

The domain is a flat-bottomed, square basin of depth
Ho 5 400 m, length L 5 4000 km with solid boundaries
on all sides. The Coriolis parameter has a value of f o

5 1 3 1024 s21 in the middle of the basin and varies
linearly with latitude; ] f /]y 5 b 5 1 3 10211 s21 m21.
A zonal wind applies a surface stress of form t x 5 t o

sin py/L, where 2L/2 , y , L/2 and t o 5 0.2 N m2

spinning up a single anticyclonic gyre. We choose the
reduced gravity to be g9 5 1 3 1022 m2 s21 so that the
Rossby deformation radius Lr 5 g9Ho/ f o 5 20 km.Ï
The bottom drag (e 5 1 3 1026 s21) gives a Stommel
layer width of dS 5 e/b 5 100 km. The time step is Dt
5 1728 s (50 steps per day). The low-resolution cal-
culations (20 3 20 points) have a grid spacing of Dx
5 200 km so that the Stommel layer is barely resolved
but stable, and the wave-resolution r 5 2Lr/Dx 5 0.2
is small. The high-resolution calculations (200 3 200
points) have a grid spacing of Dx 5 20 km so that the
Stommel layer is well resolved and the wave-resolution
r 5 2 is sufficiently large for qualitatively good behavior
on the C-grid.

Figure 6 shows the horizontal divergence field after
100 days of integration from rest for all calculations.
The contour interval is 2.5 3 1029 s21 and is the same
in all plots.

The left column of panels correspond to the C-grid,
C–D grid, and B-grid, all at low resolution (Dx 5 200
km), typical of coarsely resolved ocean models. The
C-grid (Fig. 6a) exhibits the characteristic gridscale
noise anticipated by the analysis of the dispersion re-
lation and is reminiscent of the GCM vertical velocity
field (Fig. 1a). The C–D grid (Fig. 6c), by contrast, has
no gridscale noise. Further, the solution is very similar
to that obtained on the B-grid (Fig. 6e), often the pre-
ferred grid at low resolution. It appears, then, that the
C–D grid has overcome the difficulties inherent in the
C-grid at low resolution.

At high resolution, we believe the C-grid solution
(Fig. 6b) to be most accurate. The C–D grid solution
(Fig. 6d) is convincingly similar to the C-grid while the
B-grid solution (Fig. 6f) exhibits gridscale noise con-
fined to the boundary. These results are all consistent
with the analysis.

The numerical results demonstrate that the C–D grid
is well behaved in both the low- and high-resolution
regimes. However, unlike the B- and C-grids, the C–D
grid can be used in either regime. Moreover, the C–D
grid is capable of modeling the ‘‘gray area’’ of inter-
mediate resolution (r ; 1 or Dx ; Lr).

5. Discussion

The development of the C–D grid was motivated by
the intolerable level of gridscale noise in the C-grid
GCM. Although the noise is generated at boundaries
and over topography, its persistence is due to the spatial
averaging of the Coriolis terms on the C-grid. We have
demonstrated, by analysis and numerical experiments,
that this computational spatial mode does not exist on
the C–D grid. Insight into how the C–D grid treats the
inertia–gravity wave mechanism and the geostrophically
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FIG. 6. The divergence field after 100 days of integration for the C-grid, C–D grid, and B-grid models at both high and low
resolution. Contour interval is 2.5 3 1028 s21.
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FIG. 7. Breakdown of the Z-grid. The balanced flow (uc, y c) is naturally discretized on (a) the D-grid. The gravity wave dynamics,
dominated by the divergent flow (ux, y x), is naturally discretized on (b) the C-grid. (c) The Z-grid subsequently has well-behaved balanced
dynamics and dispersive properties for inertia–gravity waves.

adjusted state can be found by considering how one
would place the variables in a prognostic model ex-
pressed in terms of vorticity and horizontal divergence

]
2D 2 fz 1 g9¹ h 5 · · · D 5 = · ux]t

]
z 1 fD 5 · · · z 5 = ` uc]t

]
h 1 HD 5 0.

]t

The natural grid for these equations is shown in Fig. 7.
To date, the Z-grid has primarily been used for inte-
grating the balanced equations but Randall (1994) has
recently advocated this formulation for discretizing the
primitive equations. The Z-grid model does not involve
any spatial interpolation and consequently has no com-
putational modes and is prognostic in scalar variables
only.1 The resulting dispersion of inertia–gravity waves
and Rossby waves is well behaved and cannot be bet-
tered using second-order finite differencing on any other
grid. The Z-grid has not been widely used in the ocean
because of the ‘‘constant of integration’’ or boundary
condition problem that results from the higher differ-
ential order of the system. In short, in multiconnected
domains, it is unclear how to determine the transport
along channels. Nevertheless, the similarity of aspects
of the C–D grid and the Z-grid should be noted. The
C–D grid, for moderate time steps, faithfully reproduces
gravity wave dynamics because the divergent flow and
pressure are positioned on the C-grid. At longer time-
scales, the C–D faithfully captures the geostrophically
balanced flow because the rotational components of ve-

1 There are difficulties in discretizing vector equations. The evo-
lution of scalar quantities, as described here, can be written as the
divergence of a flux that translates very well to the Eulerian nature
of fixed grid models and is also very suitable for other discretization
techniques such as finite element and finite volume methods.

locity are positioned on the D-grid with respect to the
pressure.

The continuity equation only makes use of the C-grid
quantities so we have been tempted to think of the C–D
grid as an augmented C-grid. This is probably inappro-
priate since the D-grid equations do represent half the
kinetic energy of the system. In the context of a more
comprehensive model, the D-grid velocities could be
used in evaluating other terms such as momentum ad-
vection though we have not yet tried this. The principle
disadvantage of the C–D grid is the doubling of reso-
lution in velocity but not in pressure; the effective res-
olution of the model is the coarsest of the two.

We have chosen not to include the nonlinear terms
here, so that the linear nature of the C-grid noise issue
would be exposed. The gravity wave dynamics are
largely controlled by the C-grid. The D-grid momentum
equations are stepped forward by interpolating the forc-
ing and pressure terms to the appropriate positions. The
D-grid equations are, therefore, predominantly diag-
nostic, by virtue of the implicit backward time stepping
of the Coriolis terms. The potential decoupling of the
C- and D-grid velocities is avoided by the implicit treat-
ment of the Coriolis terms. At the equator, the vanishing
of f renders the Coriolis terms small so we expect that
the D-grid velocities would play no role in the model.

There are no apparent benefits to the C–D grid at high
resolution so we do not advocate the C–D grid in high-
resolution, ‘‘eddy-resolving’’ studies. The C-grid only
needs to be augmented at low spatial resolutions. Our
intent here has been to show that we can successfully
avoid gridscale noise difficulties in a low-resolution
C-grid model without introducing scale-selective dis-
sipation. Instead, we have used the time-filtering prop-
erties of an implicit time-stepping scheme to filter the
fast computational modes on the C–D grid.
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