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A Note on Rotational and Divergent Eddy Fluxes

JOHN MARSHALL AND GLENN SHUTTS

Atmospheric Physics Group, Imperial College of Science and Technology, London, England
27 May 1981 and 9 September 1981

ABSTRACT

If the deviation of mean flow from mean temperature contours is small, it is shown that a part of the
eddy heat flux can be separated out which circulates around eddy potential energy contours, and
has a component up/down the mean temperature gradient if there is flow advection of eddy potential
energy into/out of the region. If the mean flow is strong, this rotational flux is large and results in regions
of up- and downgradient flux. It is a prominent feature of maps of geostrophic eddy fluxes in the ocean

and atmosphere.

1. Introduction

In baroclinically unstable flow, average eddy heat
fluxes must have a net component down the
mean gradient in order that mean available po-
tential energy may be released. Similarly, quasi-
geostrophic potential vorticity fluxes must have a net
component down the mean potential vorticity gradi-
ent to offset dissipation of the eddy enstrophy (see
Holland and Rhines, 1980; Rhines and Holland,
1979; Rhines, 1979). However, locally this associa-
tion between mean gradient and eddy flux is not so
strong (in regions where mean flow is large), because
the sense of the eddy fluxes reflects not only the
generation of eddies but also their decay down-
stream. Eddy fluxes in the atmosphere (Lau, 1978;
Lau and Wallace, 1979, hereafter LW) and ocean
(Holland and Rhines, 1980, hereafter HR) often
have large rotational parts with both up- and down-
gradient components. Here it is shown that it is a

rotational part of the eddy heat flux, circulating
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around eddy potential energy contours, that repre-
sents the spatial growth and decay of eddies, and
balances the mean flow advection of eddy potential
energy.

2. Up- and downgradient eddy fluxes

The steady-state eddy potential energy equation
(see HR) relates the flux of heat across the mean
temperature gradient v'T’ - VT, to the rate of conver-
sion of eddy potential energy to eddy kinetic energy
w'T'0T/0z, and the advection of eddy potential
energy by the flow v-VI'%2. It can be written,
neglecting sources and sinks of heat and the advec-
tion of eddy potential energy by the eddy velocity,

2
V-V - + VT VT + w'T' T _ 0,
2 0z

¢Y)

where v is the horizontal velocity, w the vertical
velocity and T is the temperature (taken propor-
tional to the density). The overbar represents a time-
average long compared to an eddy life time, and
prime the deviation from the average.

In baroclinically unstable regions, loss of eddy



1678

potential energy, by both its conversion into eddy
kinetic energy w'T'0T/dz > 0 and its transport
downstream, v - VT’2/2 > ( is balanced by the down-
gradlent transfer of heat with v'T' -VT < 0. But in
regions of eddy decay, where w'T"97/dz is small or
even negative, the spatial decay of eddies v- v
< 0 often results in upgradient transfer of heat with
vT'-VI > 0.

In the case of potential vorticity, local dissipa-
tion by the enstrophy cascade can be balanced by
both conversion from the mean field and flow ad-
vection. In decay regions, flow advection can
dominate, resulting in upgradient potential vorticity
fluxes.

Thus HR explamed why, in much of the energetic
upper layer of an ocean basin, the Austausch co-
efficient for temperature and potential vorticity can
be negative if eddies, generated in boundary cur-
rents, decay away in the interior. HR also mention
the role played by advection in eddy fluxes in the
atmosphere: upper-level heat fluxes generated by
transient weather systems are along isotherms, and
even upgradient, over the western United States
and Europe (see LW). In this note the advective
contribution in the eddy potential energy equation
is investigated further.

3. Rotational fluxes balancing flow advection

We define a reference mean state v,, T, as mean
flow along mean temperature contours, and the de-
viation from this state (induced by heat sources and
sinks, eddies and vertical motion) v,, T,:

so that R o
Vo' VT, =J (o, To) = 0
and therefore ) o 2)
Yo = Yo(To)
If v, <V, T,<T, then Eq. (1) may be ap-
proximated by
™™ — . — T
VooV—+ VT VI, + w'T — =0,
2 0z
where

4y
vo=k/\v¢o=%

0

kAN VT,

using (2). Noting that
(k A\ VT,)-VI? = —(k /\ VI"®)-VT,,
we may write the eddy potential energy equation
in the form
— . —— 0T
VT VTy + w'T' —
0z

2

(V'T')R'VT(, + ‘-'o'vT—z—

JOURNALb OF PHYSICAL OCEANOGRAPHY

VOLUME 11

where

VT = V’T’ = (V'T")g,

‘l"’] N VT2,
T

0

VT

So if the deviation of the mean flow from the mean
temperature contours is small, the eddy heat flux
separates naturally into two parts.

The (v'T"), flux is associated with the spatial

growth and decay of eddies and balances the mean
flow advection of T'2: it circulates around the 7°2
contours and has a component up/down the mean
temperature gradient if there is a transport of 77
into/out of the region (see Fig. 1). The (v'T’), flux
balances the conversion of eddy potential energy to
kinetic energy: it has a component down the mean
gradient if there is conversion of eddy potential
energy to eddy kinetic energy. )
_ If there is a linear relationship between i, and
T,, with dy,/dT, a constant independent of hori-
zontal position (the ¢, flow is equivalent baro-
tropic), then (v'T’), becomes a nondivergent, purely
rotational heat flux, rotating around the 7’2
contours. It is closely related to the rotational
flux identified in LW. (LW assumed ' o T' rather
than ¢ < T. The correspondence is exact if the
total flow is equivalent barotropic.)

The extension to potential vorticity or relative
vorticity fluxes is straightforward. This time we
choose a 4;0 Yo(Go) as a reference, where g, is the
mean quasi-geostrophic potential vorticity. If the
deviation from this state is small, a component of
the eddy potential vorticity flux (v'q’)z can be
separated out which balances the flow advection of
eddy enstrophy in the eddy enstrophy equation.

— 1dy, —

v'g')p = —— k A\ Vq'%

(v'q')p 2 da, q
—

(VT)vT < O

\—-_ - T

/\

Fi1G. 1. Schematic picture showing rotational heat fluxes
(arrows) in relation to the mean temperature (open contours)
and the eddy potential energy (closed contours). Eddies generated
near A grow, move downstream and decay near B. The rotational
heat fluxes circulate anticyclonically around the eddy potential
energy contours. Downgradient rotational fluxes balance the
spatial growth of eddies near A and upgradient fluxes balance
the spatial decay of eddies near B.
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Again, if di5,/dg, is a constant independent of hori-
zontal position, the (v'q’)g is a nondivergent vector
flux. The remainder of the ¢ flux is downgradient
if there is local dissipation of eddy enstrophy.

a. Eddy fluxes in the ocean

The above analysis is particularly relevant to the
eddy-resolving ocean model of Holland (1978). Here
the temperature is set up mainly by the upper layer
flow, ¢s;, with weak eddy driven flow in the lower
layer, {s; (compare Fig. la with 1c in HR). Because
Y3 < s, then, to good approximation

J(J’z: Bz) =0
in the sense that %%};3 /lJ(J;Z, hy)| > 1 and
(—Iﬁ = a known positive constant,
dh,

where ), is the stream function at the interface,
and h, is the height of the interface proportional
to the temperature s; — Yi3.

The purely rotational flux
Tdbay Vh,'?

2 dh,

is a dominant feature of the maps of v,'h,’ (Fig. 11,
HR) rotating around contours of eddy potential
energy P’ (Fig. 4c, HR). For this reason the
Austausch coefficient Ar = —v, ', - Vhy! | Vh,|?
(Fig. 12, HR) is a misleading indicator of eddy-mean
flow interaction: a negative A, does not necessarily
imply that the eddies are sharpening up the mean
gradients. The extensive negative regions are due
largely to dynamically inert, nondivergent eddy
fluxes, balancing the mean flow advection of 4,2,

The remaining component of the eddy heat flux
(vo'hy)p does represent conversion from the mean
field, and its divergence can alter the mean tempera-
ture gradient. Maps of (v,'h,"), in relation to &, or
maps of (Ap), = —(vz'hz’)D-th/]th}2 would give
a more reliable indication of the sense of the po-
tential energy conversions.

In a continuously stratified ocean, beneath the
surface Ekman layer and away from diffusive
boundary currents, mean flow along g, contours is a
good approximation, provided the eddy-driven
mean flow is weak. In the Holland model, though,
the upper layer flow is driven across.the g contours
by the wind-stress curl and our assumption s,
= Yo(go) 1s not valid. However, the association be-
tween mean flow advection and rotational fluxes is
still evident. In the upper layer with strong mean
flow the eddy g flux has a large rotational component
(see Fig. 7d, HR)! and is directed up the mean

Vo'hy')e =

* Fig. 7 of HR is labelled incorrectly: (a) to (c) are lower
layer fluxes, (d) to (f) upper layer fluxes.
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gradient where there is transport of eddy enstrophy
into the region. In the lower layer with weak mean
flow, the rotational component has almost disap-
peared (see Fig. 7a, HR)' and the eddy g flux is
directed down the mean gradient.

b. Eddy fluxes in the atmosphere

In an analysis of Northern Hemispheric synoptic
charts LW finds that eddy fluxes are dominated
by rotation above 500 mb (see Fig. 6, LW) and that
only in the lower troposphere are the fluxes irrota-
tional and directed down the mean temperature
gradient (see Fig. 3, LW). If the eddy heat flux near
the tropopause, however, is separated into rota-
tional and irrotational fluxes, the rotational fluxes
circulate around the storm tracks, with irrotational
fluxes directed down the mean temperature gradient
(see Fig. 7, LW).

These observations again support the idea that ro-
tational heat fluxes are associated with flow advec-
tion of eddy potential energy. In the upper tropo-
sphere the rotational component is large and it
rotates in the correct sense to balance the flow
advection of 72 by the jet stream. Lower down,
where mean flow is weaker, the eddy heat flux, no
longer dominated by rotation, points down the mean
temperature gradient.

4, Discussion

Lau (1978) recognized that midlatitude eddy fluxes
in the atmosphere have large rotational parts cir-
culating around the storm tracks, as a consequence
of the quasi-geostrophy of the eddy motion.

In this note we have pointed out that such rota-
tional fluxes are also a feature of quasi-geostrophic
fluxes in the ocean models. Further, we suggest
that it is the rotational, nondivergent fluxes that
largely balance the flow advection term in the eddy
variance equation, implying that they are associated
with the spatial growth and decay of eddies. The
irrotational, divergent flux is left to balance conver-
sion from the mean field. The dominance of the ro-
tational component (particularly in regions of eddy
decay) can mask dynamically important divergent
fluxes which are interacting with the mean. Cross-
gradient eddy heat fluxes must balance both con-
version from the mean field and flow advection of
eddy potential energy. Thus the local Austausch
coefficient for heat contains information about the
local conversion and transport of eddy potential
energy. Similarly, the Austausch coefficient for
potential vorticity contains information about the
local dissipation and the transport of eddy enstrophy.
This detracts from inferences drawn about eddy-
mean flow interaction based on local measurements
of the Austausch coefficient.

Geostrophic eddy parameterization schemes for
use in low resolution atmosphere and ocean
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models, seek a closure for the eddy flux divergence

of potential vorticity. Schemes based on the local .

downgradient transfer of potential vorticity (White
and Green, 1981; Marshall, 1981) may not be so
grossly in error (in strong, curved flow regimes) as
previously suggested (Harrison, 1978; Holland and
Rhines, 1980) if the transfer coefficients are reinter-
preted as relating the divergent part of the flux to
the meéan gradient. It is intended to carry out
calculations using the eddy statistics from an
eddy resolving model, to test whether a diffusive
parameterization for the irrotational, divergent
potential vorticity flux is appropriate.
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A Weak Formulation of the Shallow-Water Equations for a Rotating Basin
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ABSTRACT

A weak formulation of the equation for the elevation field arising from the shallow-water equations for a
rotating inviscid fluid has been developed.

The difficulties of this problem, which are due chiefly to the fact that the normal velocity along the contour
is given by a linear combination of normal and tangential derivatives of the elevation field, are overcome.
As aresult, many problems, until now treated using the elevation and velocity component variables, might

be solved dealing only with the elevation.

1. Introduction

It is well known that the linear shallow-water
equations for a rotating basin, in the case of inviscid
fluid and time-harmonic motion, can be reduced to a
single equation in the elevation field. However,
rarely has this equation been approached numeri-
cally, because of its boundary conditions which
involve a linear combination of normal and tangen-
tial derivatives.

For example, if the depth is assumed to be con-
stant, such an equation reduces to a normal Helm-
holtz equation for which a variational formulation
exists. However, this formulation relates the eleva-
tion field to its normal derivative, that is no more
proportional to the normal velocity field, as in the
case in which the earth’s rotation can be neglected.
Hence, such a formulation is scarcely meaningful

0022-3670/81/121680-03$04.75
© 1982 American Meteorological Society

from a physical point of view and turns out to be
of little help.

Now we will present a weak formulation of the
problem which has the advantage of relating the
elevation field to the normal velocity along the con-
tour, and hence can be directly used in practical
problems.

2, Basic equations

Let { be the elevation field, u the velocity, g the
gravity acceleration, & the depth of the considered
basin, f the local Coriolis parameter (f = 2§} sing,
where () is the angular speed of rotation of the earth
and ¢ is the latitude) and o, either real or complex,
the angular velocity of the motion, assumed to de-
pend on the time 7 by the factor ™7, where ¢ is
the imaginary unit.

Then the linearized shallow-water equations read

1)
2

—iou + fk X u + gV{ = 0,
—wl + V-(hu) =0,



