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Two parallel implementations of a state-of-the-art ocean model are described
and analyzed: one is written in the implicitly parallel language Id for the
Monsoon multithreaded dataflow architecture, and the other in data-parallel CM
Fortran for the CM-5. The multithreaded programming model is inherently more
expressive than the data-parallel model but is not especially adapted to regular
data structures common to many scientific codes. One goal of this study is to
understand what, if any, are the performance penalties of multithreaded execution
when implementing a program that is well suited for data-parallel execution. To
avoid technology and machine configuration issues, the two implementations are
compared in terms of overhead cycles perrequiredfloating point operation. When
flows in complex geometries typical of ocean basins are simulated, the data-parallel
model only remains efficient if redundant computations are performed over land.
The generality of the Id programming model, however, allows one to easily and
transparently implement a parallel code that computes only in the ocean. When
ocean basins with complex and irregular geometry are simulated the normalized
performance on Monsoon is comparable with that of the CM-5. For more regular
geometries that map well to the computational domain, the data-parallel approach
proves to be a better match. We conclude by examining the extent to which
clusters of mainstream symmetric multiprocessor (SMP) systems offer a scientific
computing environment which can capitalize on and combine the strengths of the
two paradigms. © 1998 Academic Press

1. INTRODUCTION

In this paper we present a case study of a state-of-the-art ocean circulation model
[31, 32] implemented in Id (a truly implicitly parallel language) [34] on Monsoon
(a multithreaded dataflow machine) [38] and then critically compare it with the same
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algorithm developed in a data-parallel Fortran dialect on the CM-5 (a massively parallel,
distributed memory, Von Neumann architecture) [25]. The ocean model contains abundant
data parallelism and attains good performance on the CM-5. The process of implementing
the multithreaded Id version gives us insight into the techniques necessary to attain
good performance, on real scientific applications, using implicitly parallel languages,
multithreaded architectures, and data-driven computation.

Multithreading is the simultaneous parallel execution of multiple threads of compu-
tation: threads can spawn new threads and may synchronize with other threads. In the
arbitrarily general form of multithreading presented by Id on Monsoon the sequence of
computation is entirely data-driven and controlled solely by data dependencies in the un-
derlying algorithm. This allows all forms of parallelism in an algorithm to be exploited.

Despite the elegance of this approach, the arbitrarily general multithreading program-
ming model has not gained widespread usage in parallel scientific codes. Instead the
single program multiple data (SPMD) approach has been widely adopted for production
parallel codes. Here the inherent data parallelism common to many scientific codes is
exploited and a rigid regime of synchronous computation followed by communication
is followed. Although an expressively restrictive framework which only exploits certain
forms of parallelism, this programming model is generally acknowledged as being highly
efficient for many scientific codes in which the data structures are highly regular.

The data-parallel model implementation examined here uses CM Fortran, which
exploits data parallelism at the statement level. Another common approach in scientific
computing uses shared-memory or message-passing multiprocessing to exploit data
parallelism at the subprogram level. In either case the computational model is limited to,
and can only really work efficiently for, problems that are predominantly data-parallel
and regular. In contrast, the fully general multithreaded environment presented by Id on
Monsoon can exploit all the forms of parallelism, including data parallelism, that an
algorithm possesses, and so imposes less restrictions on expression. However, a lack of
mainstream software and hardware support and a consequent lack of absolute performance
have precluded much serious attention being given to such general multithreading by the
architects of present-day parallel scientific applications.

Even within the discipline of computer science, there are relatively few studies of mul-
tithreaded implementations of large scientific applications carried out on multithreaded
architectures. Closely related to this study, Hickset al. [22] considered the performance
of Id on Monsoon for several applications and compared it to sequential performance in
C or Fortran 77 on a conventional RISC architecture. Yeung [48] uses the preconditioned
conjugate gradient algorithm to study the effects of architectural support for synchro-
nization on the MIT Alewife architecture. Hiromotoet al. [27] have performed detailed
performance studies of various scientific applications for the Denelcor HEP. Hammeset
al. [21] have performed a comparison of Id and Haskell for a Monte Carlo photon trans-
port code. Sur and Bohm [46] study different Id implementations of FFT in the context
of solving partial differential equations and implementations of the Dongarra–Sorensen
eigensolver [45]. Arvind and Ekanadham [8] have compared the implementation of the
hydrodynamics modeling application SIMPLE in Id and in Fortran; Arvindet al. [7]
have also explored the benefits of fine-grained parallelism in scientific applications. In
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one of the original papers about programming for dataflow machines, Denniset al. [16]
describe the process of implementing a weather modeling code for a theoretical static
dataflow architecture as well as the sources of parallelism within the code.

Other related work includes high-performance implementations of functional lan-
guages. Most notably, SISAL has shown very good performance on a number of “con-
ventional” parallel architectures [12] as well as multithreaded architectures [20, 36, 44]
and has been used to write a number of scientific applications [12]. Miranda has been
used to code an oil reservoir simulation [37]. Haskell has been used to code a parallel
finite-element problem [19].

The authors believe that this study is the first detailed system-level comparison of
a large, real scientific application implemented in a data-parallel environmentand a
multithreaded environment. Comparison is possible, but definite conclusions are difficult
to draw because of the differences in languages, compilers, architectures, technology, and
investment levels in manpower. Nonetheless, in accounting for some of these differences,
we conclude that overheads for the two implementations come from very different sources
and that, surprisingly, they balance out for realistic problems.

The paper is organized as follows. Section 2 begins with a brief algorithmic description
of the model and an analysis of its computational requirements (readers primarily
interested in the computer science aspects of this study may choose to skip Section 2
without much loss of continuity). Section 3 and Section 4 describe the programming,
optimization, and best case performance of the data-parallel and multithreaded versions
of the ocean model, respectively. Section 5 compares the performance of the two versions
when they are adjusted for overheads seen in real problem definitions. Finally, Section 6
considers the relevance of this research in the context of current trends—toward SMP
clusters—in the design of high-performance parallel systems.

2. THE OCEAN MODEL

The model used in this study is the MIT ocean circulation model, referred to in
this paper as the “General Circulation Model” or GCM. It is being actively used in
oceanographic research, and daily production runs are performed on a CM-5 and, more
recently, on high-end symmetric multiprocessor systems.

The physical basis of the model and its continuous and discrete forms are described
briefly in the Appendix, and more detailed accounts can be found in [23, 31, 32]. The
model is based on the incompressible, Boussinesq form of the Navier–Stokes equations
and can be used to study the ocean from convective (∼100 m in the horizontal) up to
planetary scales. The numerical procedure involves alternating prognostic and diagnostic
steps: prognostic to step the ocean currents and thermodynamic variables forward in
time, diagnostic to find the pressure field that drives the motion. The “pressure correction”
method is used to ensure that the evolving velocity field remains nondivergent. A Poisson
equation with Neumann boundary conditions is solved to diagnose for the pressure field.
This latter step is computationally challenging because it involves communication of
information across the whole model grid to the boundary, in a geometry as complicated
as that of an ocean basin.
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2.1. Ocean Geometry and State

The ocean is confined to a basin that can have a highly irregular geometry. Ageometry,
which defines the shape of the ocean basin, is represented as a three-dimensional array
of finite volumes that we callzones. The faces of the zones must be chosen to coincide
with coordinate surfaces, except when they abut a solid boundary (the coast or bottom).
At these solid boundaries the zones may be “sculptured” to fit them to irregularities
in the topography [1, 31]. Each element of the geometry array specifies whether the
corresponding zone is land or water. We will assume here that the ocean has a rigid lid
at the upper surface. The rigid lid is a device to filter from the model rapidly propagating
surface gravity waves that would severely restrict the possible length of the model time-
step. For some integrations a free surface is admitted, but handled implicitly as discussed
in [31]. The geometry array is constructed from bathymetry—a two-dimensional array of
depths for each column of the ocean at a chosen horizontal resolution. A highly idealized
geometry for a 4×4 ocean with four layers of water is shown in Fig. 1. The white zones
are water; the gray zones land. A more realistic geometry is shown in Fig. 2, representing
the Pacific basin at the resolution of 1◦ of latitude by 1◦ of longitude; there are 171 zones
along each line of parallel, 93 zones along each line of longitude, and 4 zones in the
vertical. In typical ocean modeling applications the number of zones stacked on top of
one another is between 1 and 100, generally fewer than the number employed in the
horizontal.

Each zone has six faces, and these faces may be categorized according to orientation:

• longfaces: vertical faces running along longitudes
• parfaces: vertical faces running along parallels
• horfaces: horizontal faces.

The faces of the zones remain fixed during the integration over time; they are dependent
only on the geometry of the ocean basin and the resolution at which it is discretized.

FIG. 1. Ocean states are represented as three-dimensional arrays. Some elements of the arrays represent land
zones and some represent water zones.
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FIG. 2. A significant percentage of real ocean geometries may be land. In this 171× 93× 4 Pacific basic
geometry, 40.0% of the zones represent land. Land zone states remain constant over time.

The state of the ocean is described by the velocityv = (u, v, w), the pressurep, and
the densityρ. The density is a function of the (potential) temperatureT , the salinityS,
and the pressurep. Zone quantities—p, ρ, T , and S—are defined at the center of the
zone and are implemented aszone arrays. Face quantities are defined on the faces of the
zones—velocity componentsv—in longface arrays(u), parface arrays(v), andhorface
arrays (w). Zone and face arrays are three-dimensional arrays, and typically there are a
dozen such arrays in use at any one time.

In certain applications of the model (see [32]) appropriate periodicity conditions must
be employed.

2.2. The Numerical Algorithm

The heart of the model is a main time-stepping loop that is repeated many times.
Depending upon the dynamical process being studied, each time step may represent
several days or hours of time or just a few seconds; a typical simulation entails
thousands or millions of time steps. The main loop computes the changes in the values
of v = (u, v, w), p, T , and S by applying the laws of classical mechanics and
thermodynamics to the fluid contained within the zones. Discrete forms of the continuous
equations are deduced by integrating them over the zones and using Gauss’s theorem.
From p, T , andS the densityρ is computed using an equation of state.

During each time step, it is also necessary to compute the forces normal to the faces
of the zones to yield, according to Newton’s laws, the acceleration of fluid parcels. This
is done by evaluating the pressure gradient forces and inertial, Coriolis, and applied
stresses and frictional forces (lumped into a vectorG), as described in [31, 32]; see also
the appendix.

A high-level description of GCM is shown in Fig. 3. Steps 1, 3, 4, 5, and 6 only
require local communication and nearest-neighbor communication to update ocean state
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FIG. 3. High-level specification of the GCM algorithm.

arrays, but Step 2 necessitates solving a discrete form of the Poisson equation for the
pressure, the linear system

A pn+1 = f (Gv, vn), (1)

whereA is a sparseN × N matrix whereN is the number of zones.
Our algorithm is designed to perform efficiently across the scales of interest in the

ocean, from nonhydrostatic phenomena on the smallest scales, to the highly balanced
hydrostatic flows on large scales. The approach, which involves separating the pressure
field into its hydrostatic, surface, and nonhydrostatic components, is set out in [32]. In
the hydrostatic limit, Eq. (1) is a two-dimensional inversion for the surface pressure
(on the rigid lid), with N = Nx × Ny. The pressure in the interior of the ocean
is then obtained on integration vertically using the hydrostatic approximation. But in
nonhydrostatic applications of the modelN = Nx × Ny × Nz is the total number of
zones,p is a vector of lengthN carrying the pressure of each zone, andf is the source
function. In typical ocean modeling applications,Nx and Ny range from 100 to 1,000,
and Nz from 1 to 100. Thus,A is potentially huge, and special techniques must be used
to invert Eq. (1) forpn+1. Because nonhydrostatic simulations are the most demanding
computation, that limit is the focus of attention in this paper.

2.2.1. The Elliptic Problem. Solving Eq. (1) efficiently requires an understanding of
the form taken by the matrixA; its structure is sketched schematically in Fig. 4. The
column vectorp in Eq. (1) comprises the pressure in every zone in the ocean. Its singly
subscripted elements arepl , where points in each vertical column are enumerated first,
then points in the horizontal directions,

l = k+ Nz( j − 1)+ NzNy(i − 1),

wherei is an index increasing eastwards,j is an index increasing southwards, andk in-
creases downwards. There areN = Nx × Ny × Nz elements in total.

The elements ofA compose the discrete representation of the Laplacian operator∇2

(in the three space dimensions), suitably modified to take account of boundary conditions
on the upper, lower, and lateral boundaries; it is constant in time and depends only on the
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FIG. 4. Matrix A, of sizeN × N, whereN = Nx × Ny × Nz.

basin geometry.A is symmetric and, although huge, has only seven diagonals representing
the coupling in the three space dimensions. The three central diagonals are flanked, on
both sides, by diagonals displaced a distanceNz and Nz× Ny from the central diagonal,
as indicated in Fig. 4.

To write down the complete form ofA consider the representation of∇2p for one
particular zone (labeledC) in terms of the six surrounding zones (labeledU , L, N, E,
S, andW). Suppose that the dimensions of the zones are1x by1y by1z, where1x is
the length in the eastward direction,1y is the length in the southward direction, and1z
is the length in the vertical extent of the zone. Then∇2p, to an accuracy which is second
order in the1x, can be written (keeping1x = 1y and1z constant for simplicity)1

∇2 p = pU + pL − 2pC

(1z)2
+ pN + pS+ pE + pW − 4pC

(1x)2

= 2

(1z)2


{

1

2
pU − (1+ 2ε)pC + 1

2
pL

}
︸ ︷︷ ︸

same vertical column

+ ε{pN + pS+ pE + pW}︸ ︷︷ ︸
same horizontal plane

 , (2)

whereε = (1z/1x)2 measures the aspect ratio of the zones.

The detail of the structure underlyingA is now readily understandable; the three leading
diagonals are the coefficients multiplyingp in the samevertical columnof ocean (pU ,
pC, and pL ); the four diagonals in the wings are the coefficients multiplyingp in zones
surrounding the zone of interest in the samehorizontal plane(pN , pS, pE, and pW).

The inner three diagonals ofA can thus be blocked and arranged as shown in Fig. 5,
where each blockD is a tridiagonal matrix representing the communication between
zones in the same vertical column of ocean;D is a matrix of sizeNz × Nz where
there areNz zones in each column of ocean (there areNx Ny such blocks, one for each

1In applications,1x, 1y, and1z may vary and often do.
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FIG. 5. Blocked representation of matrixA. M = Nx × Ny, and each block is of sizeNz × Nz. The D and
ε blocks are themselves tridiagonal and diagonal matrices, respectively.

column of ocean). Theε’s are Nz × Nz matrices made up ofε along the diagonal and
zero elsewhere:

ε =


ε

ε
. . .

ε

 .
For example, if the ocean were only four zones deep at a particular horizontal position,

then by inspection of Eq. (2) theD would have the form

D =


− (1

2 + 2ε
) 1

2 0 0
1
2 −(1+ 2ε) 1

2 0

0 1
2 −(1+ 2ε) 1

2

0 0 1
2 − (1

2 + 2ε
)

.

Note that the elements at the top left and bottom right of the matrix have been
appropriately modified to take account of the boundary conditions at the top and bottom
of the ocean. If at another horizontal position the ocean were only three zones deep, then
D would have zeros in the last row and column.

The entries ofA must also be modified for zones that are laterally adjacent to a rigid
boundary, whether it is the coast, a submerged island, or an island that cuts the ocean’s
surface. For example, suppose the north face of zone C is the coast. Then homogeneous
Neumann condition onp must be imposed here (see [31, 32]), which in discrete form is

pN − pC

1x
= 0,
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and the entries ofε are appropriately modified; zeros will appear at appropriate positions
along the diagonal.A, however, will remain symmetric.

One further property ofA must be noted.ε is typically very much less than unity.
This is because the ocean is a thin film of fluid filling a basin that is several thousand
kilometers wide but only a few kilometers deep—the∇2 p operator is dominated by
∂2/∂z2. So A is dominated by the elements of the blocksD. This is exploited by the
solution method.

The size ofA and the distance of the outer diagonals from the main diagonal make
direct methods of solving the system difficult for large geometries because the inverse
of A is dense. Operating with the inverse would involveN2 multiplications, and this
is an unrealistic task given that typicallyN > 105. An iterative procedure is adopted
that exploits the sparseness ofA and its diagonal dominance. The procedure involves
repeated multiplication of the iterative solution byA and by another sparse matrixK ,
an approximate inverse ofA; K is called the preconditioner. The iterative algorithm
employed to solve the linear system is called thepreconditioned conjugate gradient
algorithm and is described in more detail in the next section.

2.2.2. Preconditioned Conjugate Gradient Algorithm.The preconditioned conjugate
gradient (PCG) algorithm has been extensively studied and is a popular algorithm for
implementation on highly parallel platforms because it is easily parallelized. Barrettet
al. [9] give a good overview of various iterative methods for solving linear systems
including conjugate gradient; Golub and Van Loan [17] is a good general reference for
matrix computations including conjugate gradient; and Shewchuk [42] gives a clear and
light introduction to conjugate gradient. Here, a brief derivation of the preconditioned
conjugate gradient method is provided.

Pre-multiply Eq. (1) by a (carefully chosen) preconditioning matrixK , which is an
approximate inverse ofA. Equation (1) can then be written (dropping superscripts) as

(I − C)p = K f,

whereC = I − KA . If C is closeto zero then the above suggests the iterative scheme,
wherei is the iteration step,

pi+1 =Cpi + K f

= pi + bi ,

where

bi = Kr i

is called thesearch directionand

r i = f − A pi

is theresidual vector. Ther i ’s andbi ’s can be deduced from the previous iteration using
the relations

r i+1 = r i − Abi

bi+1 =Kr i+1.
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FIG. 6. The preconditioned conjugate gradient algorithm, which solves the linear systemAp = f in an
iterative fashion. The variableτ is the tolerance andp0 is an initial estimate ofpfinal.

The above iterative procedure, referred to as the Richardson iteration, can be
accelerated by choosing search directions in a more optimal way. In GCM, theconjugate
gradient methodis adopted, which selects search directions as linear combinations of the
previous search directionbi and current gradientr i+1 modified by the preconditionerK :

bi+1 = ξ i+1+ βbi

where

ξ i+1 =Kr i+1.

Conjugate gradient also selects a parameterα to minimize the magnitude of the residual
vector as measured bye·Ae, where (if there were no preconditioning)e= pi − panswer

is the error vector along the directionbi . Choosing the optimal values ofα andβ results
in the algorithm shown in Fig. 6.

We have designed a preconditionerK such that (i) it can be efficiently stored, (ii) the
number of operations one has to perform when multiplying by it is as small as possible,
(iii) it is a good approximation toA−1, allowing the iterative procedure to converge
more rapidly, and (iv) it requires as little communication as possible in the data-parallel
implementation. After considerable experimentation, we have chosen ablock-diagonal
preconditioner (a matrixK whose diagonal is made up of the inverse of the tridiagonal
matricesD defined above):

K =



D−1
1, 1

D−1
1, 2

D−1
1, 3

. . .

D−1
Nx, Ny

 .
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Evaluation of the inner products to computeα andβ in the above involves forming the
vectorξ , where

ξ = Kr.

Multiplication by the preconditionerK is thereforeNx × Ny independent (Nz × Nz)
matrix multiplications, each one corresponding to a column of water ati, j :

ξi j = D−1
i , j r i , j .

Dispensing with the subscripts,

ξ = D−1r.

If the ocean model has many levels, thenD−1 will also be dense; consequently, storing
and multiplying byD−1 is also demanding of resources. So, GCM exploits the fact that
D is tridiagonal and uses LU decomposition to solve the preconditioning equations for
ξ in the form

Dξ = r.

We write D = LU whereL is a lower triangular matrix andU an upper triangular ma-
trix. Solving for ξ is then equivalent to solving the two sets of equations

Lξ ′ = r

Uξ = ξ ′,
first for ξ ′ and then forξ . This is straightforward because of the triangular structure of
L andU. (See [15] for more details of the tridiagonal LU decomposition.)

Ignoring the operations for LU decomposition, these forward and backward substitution
steps involveO(Nz) operations as compared toO(N2

z ) if we had used the inverse directly.
However, because the geometry (and consequentlyA) are fixed, LU decomposition ofD,
the block diagonal elements ofA, is performed only once. Notice that the multiplication
by the preconditioner is actually implemented asNx × Ny independent tridiagonal linear
equation solvers of sizeNz× Nz.

The resulting preconditioner was found to be a good compromise: it significantly
reduces the number of iterations required to find a solution to Eq. (1), it is an
acceptable approximation to the inverse ofA, it is sparse, and its application requires no
communication across the network in the data parallel implementation of the algorithm.

2.3. Computational Characteristics

To effectively program GCM for a parallel platform, we first determine how much
computation must be performed in each step of the algorithm and then consider what
sources of parallelism are available.

2.3.1. Distribution of Overall Computation Time.Figure 7 shows how many floating
point operations are required in the GCM’s main time-stepping loop. There are also
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FIG. 7. Step 2 (diagnose_pressure) of the time stepping loop contains the preconditioned conjugate gradient
algorithm. In the situations we focus on in this study, this step may iterate hundreds of times until convergence,
making it the dominant step in the algorithm.

initialization and termination phases that are not considered in this table. These only
occur once per model run, and will not be a significant factor in long simulations.

From Fig. 7 we can see that a fully general implementation of GCM requires that
the PCG algorithm be implemented efficiently. For example, if the number of PCG
iterations exceeds 300 per time step, thediagnose_pressurestage will dominate the total
count of floating point operations, accounting for more than 90% of the operations.
This scenario is typical of extremely high-resolution (∼100 m resolution laterally and
vertically) nonhydrostatic ocean simulations, the focus of this study.

Time is also spent in communications, non-floating-point computation, and idling due
to load imbalances; however, for GCM, the style of computation in all of the steps is
similar enough that floating point operation counts give a fair view of the distribution of
time. To optimize GCM, we must concentrate on the time spent in nonessential floating
point and other overhead operations, because given a particular model run, the number
of essential floating point operations is fixed.

Although ocean modeling applications do perform substantial amounts of I/O,
we do not analyze I/O costs here. Rather, we focus on the comparison of two
different computational models. The difference in performance of I/O subsystems is not
predominantly a function of the computational model. Thus, to expose the impact of the
computational models, we have removed I/O costs from both implementations.

2.3.2. Distribution of Computation in PCG.The PCG algorithm itself can be further
decomposed into four simple components: 3D inner product, 3D daxpy, 7-point stencil,
and preconditioner. These components can be seen in the algorithmic outline in Fig. 6;
the actual number of floating point operations contributed by each component is shown
in Fig. 8.

Each of the components operates on three-dimensional state arrays. The 7-point
stencil component implementsAb (the multiplication of the Laplacian operator) and the
preconditioner component performs the multiplication of the preconditionerK , which is
actually implemented as a tridiagonal linear equation solver (see Section 2.2.2).

To efficiently implement the PCG algorithm, each of the components must also be
implemented efficiently. In Sections 3 and 4, the implementations of these components
in both the data-parallel and multithreaded models are described.
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FIG. 8. PCG is composed of four simple components. Each component performs a set number of floating
point operations per zone, and some components occur more than once in PCG.

2.3.3. Available Parallelism. Most of the potential parallelism in GCM comes from
the data parallelismin updating each of the large ocean state arrays. This parallelism is
typically sufficient to keep a large parallel computer busy and, because this computation
is so regular, it lends itself well to vector computation.

There is alsoprocedure-level parallelismavailable: for example, much of Step 4 can
be done in parallel with Steps 1, 2, and 3, and within individual steps some blocks can
be executed in parallel. In Step 2, for instance, at least three separate state arrays can be
computed in parallel. This source of parallelism can be exploited by the multithreaded
implementation, but not by the data parallel implementation.

Producer–consumer parallelismis also plentiful in GCM, because the computation of
new state arrays always depends upon old state arrays. Given appropriate linguistic and
architectural support, the computation of parts of new state arrays can begin as soon as
the parts of the old state arrays they depend upon are computed.

3. PROGRAMMING DATA PARALLEL GCM

Given the algorithmic specification in Section 2, the high-level view of both the
data parallel and multithreaded implementations are very similar. Both implementations
define the same high-level procedures, and both have the same structure in the time-
stepping loop.

We begin with the data parallel version because we feel that the reader is likely to be
more familiar with it, and many studies have been done on the performance of the CM-5
and other data parallel platforms.

Although programming models are separate from the hardware they are implemented
on, there is a very close relationship between what the programmer writes and what is
executed on the hardware. Without a clear understanding of how the hardware works
and how a high-level programming language construct is mapped to the hardware, the
programmer cannot develop an efficient implementation of his application. Therefore, we
first describe the hardware at a level of detail that is relevant to the user or the reader
of this paper, then the programming and compiling of components of GCM, and finally
evaluate the overall performance of the data parallel implementation of GCM.
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3.1. The CM-5 Hardware

Figure 9 shows a high-level view of the CM-5 architecture. Scalar computation and
control are performed on the front-end workstation, which is typically a Sparc 10, while
parallel computation is performed on the nodes. Each node consists of a 32 MHz Sparc
2 processor with four 16 MHz vector units (VUs), with each VU capable of 32 Mflop/s
64-bit floating point peak performance. Memory is local to each node, and each VU
has direct access to its own bank of memory. Every node is connected to two separate
networks: a data network and a control network, which perform different kinds of data
parallel communications. The data network is capable of a maximum of 20 MB per
second per node, and is optimized to handle short messages. The control network is used
for global synchronization, broadcast, and reduction operations.

The CM-5 nodes are controlled by the Sparc 2s, which have poor floating point
performance. The Sparc 2s should be considered sequencers or controllers for the VUs,
which are fairly powerful—a VU can simultaneously generate memory addresses, load
data, and execute pipelined floating point operations if properly scheduled by the CM
Fortran compiler. Figure 10 shows a simplified verson of VU assembly code emitted

FIG. 9. The CM-5 consists of nodes connected through a point-to-point data network and a global control
network. A front end workstation is used for scalar computation, while nodes are used for parallel computation.
Each node consists of a Sparc 2 microprocessor and four vector units, which provide most of the computing
power.
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FIG. 10. The sequence of steps executed by each vector unit for the daxpy computationZ = aX + Y as
generated by the CM Fortran compiler.S is a scalar register andV1 and V2 are vector registers that hold
eight doublewords. The cycles counted are 16 MHz VU cycles and are only approximate counts used by the
compiler.

by the CM Fortran compiler for the inner loop of theaX + Y daxpy computation. An
estimated cycle count and exact floating point operation count are annotated by the
compiler. (Note that Step S1 seems to belong outside of the loop; in this case, the CM
Fortran compiler may not have been able to determine that it was a loop constant.)

The VUs can be very powerful and efficient when executing highly regular vector
code, as seen in Step S3, where the VU performs a vector load simultaneously with a
multiply–add operation. The Sparc 2 can execute concurrently with the VU, as is shown
in Step S4, where the loop compare-and-branch is handled by the Sparc 2, while the
vector register store is handled by the VU.

If we only consider this daxpy inner loop, a floating point operation is executed every
28/16 = 1.75 VU cycles. This ratio is considerably smaller than on most conventional
RISC processors for this computation, especially for large problem sizes where the RISC
processors would go out of cache. Because the VU is also a memory controller, the VU
does not stall for memory operations that are vectorizable.

We should note, however, this inner loop of the daxpy computation is about as efficient
as the CM-5 gets. Furthermore, there are other overheads such as garbage padding, even
for this computation, and the cycle count estimate generated by the compiler is over
optimistic. As we will see in Section 3.3, the actual speed of the daxpy code is not as
fast as this inner loop would indicate.

The CM Fortran compiler can also generate code to run without VUs (i.e., directly
on the Sparc processors), but the performance is exceptionally poor because the code
generated for execution without VUs is naive, and the Sparc processors themselves have
very poor floating point performance. Therefore, in this study we have chosen to show
performance numbers only for the CM-5 with VUs.

All performance measurements on the CM-5 were taken with the CM-5 hardware
timers, which can measure at microsecond resolution time spent by the front end,
the vector units, control communications, and data communications. Front end scalar
computation can execute at the same time as parallel computation on the nodes, so in the
best case, time spent in scalar computation is completely masked by parallel computation,
where we expect most of the work to be done.
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3.2. Data-Parallel Programming in CM Fortran

CM Fortran (CMF) [47] is a data-parallel extension to Fortran 77 for the CM-5.
Many of the features of CM Fortran are present in Fortran 90 and High Performance
Fortran (HPF) [28]. CM Fortran includes syntax for array operations such as elementwise
operations, permutations, and extraction of array subsections. The CM Fortran compiler is
back-compatible to Fortran 77, but will not automatically parallelize Fortran 77 code: the
programmer must explicitly specify parallel array operations that the compiler distributes
among the nodes.

Execution of a CM Fortran program on the CM-5 comprises alternating computation
and communication phases with each phase separated by a global synchronization barrier.
During the computation phases, the front end is responsible for scalar computation such
as the addition of two scalar values, as well as the overall control of the program, such
as looping, procedure calls, and conditionals. The nodes are responsible for parallel
computation, and all nodes perform identical operations on different data. Although
the nodes may be closely synchronized, each node computes results and modifies data
independently, and consequently modified data values are exclusive to individual nodes.
At the end of a computation phase, communication between nodes and between the front
end and the nodes is orchestrated by the front end.

Data-parallel communication occurs primarily in two highly stylized manners:

• Control communication, which includes barriers, reductions, and broadcasts.
These operations are mapped to the control network on the CM-5.

• Data communication, which causes the rearrangement of elements of an array, is
mapped to the data network. It includes nearest neighbor communication, which is used
in the GCM code, and more general permutations of data that are significantly more ex-
pensive.

In the next sections, we describe how the data-parallel version of GCM is written, and
some of the decisions we had to make to optimize its performance.

3.2.1. Array Operations and Layout Directives.CM Fortran allows the expression
of elementwise array operations to be specified very concisely. For instance, a three-
dimensional daxpy computationaX + Y can be expressed as

Z = a*X+Y

whereX, Y, andZ are declared statically as array variables, anda is a scalar variable.
Parallelism for the above expression is exploited by different nodes performing

operations on different parts of theX, Y, and Z arrays. How the work is divided up
is determined by the layout of the arrays across the nodes—each node only works on
portions of the arrays that are in its local memory.

Array extents and layouts must be explicitly declared at compile time. For example, a
state array for GCM of size 171× 93× 5 may be declared as follows:

real X(5,171,93)

cmf $layout X(:serial, :NEWS, :NEWS)
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FIG. 11. Array distribution on distributed-memory parallel computer. The water zones are in white, and land
zones are in gray; distribution of water on nodes differs widely.

Given this declaration, we have decided to map the up–down (k) dimension to the left-
most index, the east–west (i) dimension to the second index, and the north–south (j)
dimension to the rightmost index.

The :serial layout declaration for thek axis places elements within the same column
(i.e., with the samei and j coordinates) on the same processor. The:NEWSdeclaration
spreads the elements along that axis across the machine. The resulting array is laid out
along the nodes as shown schematically in Fig. 11. All of the ocean state arrays in the
GCM code have the same extents and layouts as described above.

For given array extents, array layout, and machine size, the CM Fortran compiler
cannot always distribute the array across the machine evenly, for the simple reason that
array extents do not always divide evenly across the machine. Furthermore, the unit of
division is not nodes, but VUs, so for a 32-node CM-5, the two:NEWSdimensions of the
array must be divided across 128 VUs. The arrayX as declared above is therefore padded
out to size(5,172,96) to fit evenly on the CM-5—the additional padding elements are
“garbage” elements that are added to the sides of the arrays.2 These garbage elements
are ignored by the VU hardware but add overhead in the sense that a problem of size
171× 93× 5 requires exactly the same amount of time to execute as a problem of size
172× 96× 5.

Because the array layout declarations affect padding, we must choose the layouts
carefully not just to minimize interprocessor communication, which is the primary
concern in selecting a layout, but also to make sure that there is no more padding
than is necessary. For example, if we decide to make only one of the axes:NEWS, then
more garbage padding is necessary to make the array distribution even over the machine.
Because there are 128 VUs, the:NEWSaxis must be padded out to a multiple of 128.

If we have the option of choosing our problem sizes, it is usually easy to choose a
problem size which does not require too much padding, if any. In the case of GCM, the
problem size is often determined by external factors (such as the data collection intervals

2The array is actually padded out to 192× 96 × 5 unless the compiler flag-nopadding is used—the
larger amount of padding is a historical artifact due to the desire to make iterations over array dimensions even
multiples of the VU vector length of 8. The flag-nopadding refers to vector padding, not garbage padding
as described above.
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of satellites), so a seemingly odd problem size such as 171× 93 is actually used despite
the additional, though generally small, overhead it may incur.

3.2.2. Array Reduction.The vector inner product of two arraysX · Y can be
expressed as

b = sum(X*Y)

wheresum is a CM Fortran function that sums the elements of the array passed by its ar-
gument. The control network is used in operations that requirereductionof values across
the whole machine. Thesum function is implemented by sequentially summing elements
local to each processor and then globally summing the results of each processor using
the control network.

The CM Fortran compiler tends to do less analysis beyond a single array operation than
other Fortran compilers, which try to group array operations and execute them together to
reduce memory accesses. This sort of optimization is especially crucial for cache-based
RISC machines. Instead, the CM Fortran handles each array operation individually, using
temporaries rather than attempting to gain performance through loop fusion and chaining
vector registers. On the one hand, this simplifies the job of programming because we can
estimate the speed of each individual line of code and determine the overall performance
of a procedure by simply summing the times required by each line of code. On the
other hand, even for an operation as simple as this inner product, the CM-5 performs
the operation in two steps: by first multiplyingX and Y and storing the result into a
temporary array and then calling thesum library function with the temporary array as
an argument. The time breakout for the reduction communication shown later therefore
includes time spent summing the local parts of the array.

The scalar valueb that is calculated by the reduction network is sent to the front end
processor, which uses it for scalar computations. If a scalar value is needed for a parallel
computation by the nodes, the front end must broadcast it to them using the control
network. In general, the movement of scalar values between the front end and nodes are
not expensive because the control network has fairly low latency.

3.2.3. Shifting Array Elements.Some computations in GCM require each element of
an array to be calculated using values from neighboring elements of other arrays. In CM
Fortran, this operation is implemented byshifting entire arrays by one element and then
performing elementwise operations in the shifted arrays.

Shifting an arrayX to the north one direction can be expressed as

Y = CSHIFT(X, +1, 3)

where+1 indicates shifting in the positive direction and3 indicates shifting of the third
dimension of the arrayX. (Array dimensions are named 1, 2, 3, respectively). Each value
at location (k, i, j + 1) in arrayX is now residing at location (k, i, j) in array Y. The
values residing at the border wrap around to the other side in the obvious manner. The
wraparound behavior is correct for representing circular geometries such as the globe,
but in cases where the geometry is not circular, a “ghost zone” of land is added around
the entire array on each side. These ghost zones are part of the application code and may
cause additional garbage padding to be introduced by the compiler, as discussed earlier.
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The core of the 7-point stencil used for the matrix–vector multiplicationAb can
therefore be expressed as follows:

&

&

&

&

&

&

&

Ab =
b

+ CSHIFT(b, +1, 1)

+ CSHIFT(b, -1, 1)

+ CSHIFT(b, +1, 2)

+ CSHIFT(b, -1, 2)

+ CSHIFT(b, +1, 3)

+ CSHIFT(b, -1, 3)

∗ AC

∗ AL

∗ AU

∗ AE

∗ AW

∗ AN

∗ AS

The “vector” b is actually a three-dimensional array, andA is represented only by its
diagonals in the three-dimensional arraysAC, AL, AU, etc. Although this is a very nonin-
tuitive way of performing matrix–vector multiplication, this stencil actually implements
the multiplication using a data representation that fits the model, and using operations
that map well to the CM-5. (The “&” character is used to continue the statement to the
next textual line in the program.)

Note thatAL, AE, andAN represent the symmetric diagonals ofAU, AW, andAS in theA
matrix and are therefore identical arrays, shifted by one element. In the Id version, we use
one array to represent both diagonals because we assume a shared memory model where
accessing an element and its neighbor cost the same amount. For CM Fortran, if the
machine configuration has enough memory, we keep separate versions of the diagonals
to avoid additionalCSHIFTs, becauseCSHIFTs can cause a large amount of additional
communication.

Although the stencil computation does not require creation of full temporaries to hold
shifted arrays, the CM Fortran compiler does not do analysis to determine that most of
the elements required by a processor are already local to the machine and accessible with
some address calculation. Rather, temporary shifted arrays are usually created because
the vector units pay little penalty for the memory accesses.

3.2.4. Computational Masks.Some calculations require different behavior at zones
that have a land boundary than at zones that are completely surrounded by water.
Whenever possible, we handle these cases by setting land or border zones to special
“benign” values that make the array computation uniform for land zones and water zones.
For some computations, this is not possible, and we must handle the borders differently
and explicitly as shown by the following example.

TheA matrix (consisting of the arraysAC, AN, etc.) used in the stencil computation is
calculated once at the beginning of the program from data on the size of each zone and
a few other physical constants. Zones for the different components of theA matrix that
are on the border of water and land must be calculated in a slightly different manner than
water zones that are completely surrounded by water. For example, to computeAC and
AN, the central and the north diagonal of theA array respectively, we first compute these
quantities as if all zones were water zones and were surrounded by water on all sides.
Then, we fix the zones that are adjacent to land zones. In the following code, we make
the correction when a water zone has a land zone as its northern neighbor (WLMASKis
an array that contains 1s on land zones, and 0s on water zones):
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where ((CSHIFT(WLMASK, +1, 2)-WLMASK)

& .eq.-1)

AC = AC + AN

AN = 0.d0

endwhere

The statements within thewhere block are evaluated only on the points where the
predicate is true; on other points, values of the variables remain unchanged. The
expression

(CSHIFT(WLMASK, +1, 2)-WLMASK).eq.-1

describes those water zones that have a land zone as a northern neighbor.
This manner of handling conditional execution in the data-parallel programming style

is inefficient because only a tiny fraction of the elements of an array are on the border,
but the entire array must be tested with the mask to determine which elements should be
handled. Furthermore, each of the north, south, east, west, up, and down borders must be
handled separately. TheCSHIFT is also expensive but, because the geometry of the ocean
does not change significantly, the masks can be computed once and reused if there is
sufficient memory to hold arrays determining the borders. For the GCM code, however,
this sort of computational masking is used only during initialization, and is not a serious
overhead.

3.2.5. Computing on Array Subsections.As discussed in Section 2, the precondition-
ing step of the PCG actually performs a forward–backward substitution using precal-
culatedL and U arrays for each column of the ocean independently. Note that for our
data layout, the preconditioning step does not require any communication between nodes
because each column lies in the same node. The preconditioner and array layout were
chosen explicitly for this reason; although we could use a different and more efficient
preconditioner for the multithreaded version, we use the same preconditioner chosen for
the data parallel version to give a better comparison between the two.

To exploit data parallelism in CM Fortran, the expression of the preconditioning step
requires that all of the linear solvers for each column be executed in lockstep. That
is, rather than expressing the computation in the most natural fashion, asNx × Ny

independent forward–backward substitutions, we perform the first step of the forward
substitution on every element of the top layer of the ocean then continue with each layer
of the ocean down to the bottom of the ocean.

The backward substitution happens in the reverse manner, starting from the bottom
layer, and then substituting up for each layer to the top. In the following code,UD, MD,
and LD represent, respectively, the upper, middle, and lower diagonals of theL and U
factors of theD matrices, andq(K, :, :) refers to the horizontal slice of the arrayq

at depthK of the geometry (theD matrices represent the diagonal block elements of the
A matrix):

C Forward Substitution

q(1, :, :) = MD(1, :, :)*r(1, :, :)

DO K = 2, NZ

q(K, :, :) = MD(K, :, :)*

& (r(K, :, :) −LD(K, :, :)*q(K −1, :, :))
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ENDDO

C Backward Substitution

DO K = NZ−1, 1, −1

q(K, :, :) = q(K, :, :) −
& UD(K, :, :)*q(K+1, :, :)

ENDDO

Because the ocean has different depths at different places, the linear systems for each
column of water may be of different sizes, but the data-parallel programming model
forces us to treat each column as if it were the same depth as the deepest column in the
ocean, padding land zones representations with null equations.

3.2.6. Putting It Together.With the pieces we have described so far, we can implement
the preconditioned conjugate gradient solver, which has four basic operations: inner
product, daxpy, 7-point stencil, and preconditioner. Figure 12 shows the PCG loop
expressed in CM Fortran. For clarity, we have omitted array declarations and layout
directives—all of the arrays in this loop have identical extents and layouts. Also, in the
actual code, the procedure calls tomultiply_by_A andprecondition are written in-
line, rather than implemented as separate procedures, in order to eliminate procedure call
overhead.

Because PCG is the key inner loop for the entire application, we have taken care to
eliminate expensive operations; there are no mask operations in this loop, and there is no
use of the data network, except for theCSHIFTs in multiply_by_A . Thesum reduction
operations use the control network, which is relatively inexpensive.

As our analysis in Section 2.3 indicated, for extremely high-resolution problems, the
vast majority of the time in GCM is spent in the PCG kernel, so the overall GCM
performance is almost completely dependent upon PCG. We should note, however, that
the issues important for executing PCG efficiently are the same ones that come up in
optimizing the rest of GCM.

FIG. 12. The preconditioned conjugate gradient loop written in CM Fortran is very concise because of the
array syntax. Note that the results of the two subroutine calls tomultiply_by_A and precondition are
returned through arrays passed to those routines, namelyAb andxi , respectively.
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3.3. Data-Parallel GCM Performance

Figure 13 shows the cycles spent for each floating point operation for the constituent
parts of the preconditioned conjugate gradient. This measure of performance allows one
to factor out machine size, and we have chosen a problem size (256× 256× 32) that
does not produce any garbage padding and is also large enough to factor out idling due
to insufficient parallelism and vector startup.

These times were obtained from the most highly optimized versions of the PCG
components. Note that in our calculation of overhead cycles for floating point operations
here, it is assumed that every floating point operation executed by the CM-5 for these
operations is necessary. In fact, in the GCM code, many of the operations counted could
occur over land and therefore are redundant.

Regardless of these caveats, the performance shown by the CM-5 and CM Fortran
compiler is impressive; if it is assumed that each vector unit has a peak performance of
32 MFlop/s (assuming a multiply–add on every cycle) then GCM achieves approximately
1/6 of the peak performance. A more realistic assumption of 16 MFlop/s as peak would
give GCM 1/3 of peak performance.

Although the compiler estimates for the inner loop from Fig. 10 seemed to show that
the daxpy computation would require only 1.75 cycles per floating point operation, there
is additional overhead due to looping code surrounding the inner loop shown in Fig. 10,
which brings up the cycle count to a little more than 2.5 cycles. This same overhead is
seen in each of the four operations.

The reduction operation in inner product takes a bit more than 0.5 cycles, which should
be the minimum, and the CSHIFT operation in the 7-point stencil is fairly expensive,
as expected. For the most part, the code executed by the front end was insubstantial or
overlapped by parallel computation, except in the forward–backward substitution, where

FIG. 13. VU cycles spent per floating point operations on the CM-5, best case. Times are for a 32-node
machine running a problem size of 256× 256× 32.



COMPARING VERSIONS OF AN OCEAN MODEL 23

the looping control overhead was higher to handle the forward and backward substitutions
in the preconditioner.

The distribution of time in the PCG is a weighted average of the distribution of time
for the components of the PCG. The stencil is most heavily weighted because it accounts
for 13 of the 32 total floating point operations in the PCG. An additional eight floating
point operations per zone come from the inner product, six from the daxpy, and five from
the preconditioner.

We measured the performance of the entire GCM code by running the program for
several hundred time steps to eliminate the effects of initialization of the system. For the
cases we focus on here, the overall distribution of time in GCM reflects PCG, where
most of the time in GCM is spent, and this is clear from the almost identical profiles for
PCG and GCM.

Note that these timings are the absolute best case for the CM-5 because there is
no garbage padding, the ghost zones overhead is negligible, and the problem size is
sufficiently large to allow the VUs to work at full speed. Section 5 shows how to
compare the these best-case numbers against the performance statistics for the Id and
Monsoon versions.

4. PROGRAMMING MULTITHREADED GCM

The data-parallel model of computation is ideally suited for an application such
as GCM that uses large, regular data structures, and where most of the work is in
element-wise operations over these data structures. For other, less regular applications,
the data parallel model is too restrictive in the way that parallelism can be expressed.
Multithreading is a more general model of parallel computation that allows different
processors to work on different tasks at the same time in a less synchronous fashion.
Consequently, multithreading has some overheads that result from more dynamic
scheduling and synchronization. In the case of GCM and other highly structured codes,
the multithreading overheads may be unnecessary because the applications may not
require the expressiveness multithreading offers. One goal of this study was to quantify
and characterize multithreading overhead and contrast it with some of the overheads of
data-parallel execution.

Figure 14 gives a high-level view of the multithreaded execution model. Each procedure
may be associated with an activation frame, which is local to a processor; a procedure
may fork off child procedures that may execute in parallel with the original procedure,
either on the same processor or a different one. Similarly, the iterations of a loop may
also execute in parallel. These procedures and loops may access data in a global heap of
shared objects. Multithreading can be expressed in various languages and can be executed
on different kinds of machines. The semantics of threads and styles of communication and
synchronization between threads vary significantly, as can the typical length of threads,
depending upon the language and architecture.

The programming language used to exploit multithreading may be explicitly parallel
such as Cilk [10] or Mul-T [29] (allowing the programmer to annotate procedures or
loops that should be executed in parallel), or implicitly parallel such as Id [34] (allowing
the compiler to decide how to parallelize the code). Furthermore, the memory models for
the languages can differ considerably. For example, most data structures in Id are based
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FIG. 14. A high-level view of multithreaded execution; activation frames are associated with procedure
invocations and parallel loop iterations while data structures reside in a shared global heap.

on I-structures, which are implicitly synchronizing; a fetch of an I-structure element will
not return until the store to that element is executed.

The degree of hardware support for multithreading may also vary, as Cilk has been
implemented on the CM-5, networks of workstations, and SMPs, none of which have
special support for multithreading. Mul-T has been implemented on Alewife, which has
support for scheduling and synchronization primarily at the basic block level [2], and Id
has been implemented on Monsoon [38], which has support for multithreading down to
the instruction level. Monsoon also has direct support for I-structures. Other architectures
that support instruction-level multithreading and I-structure-like memory include HEP
[43], Sigma-1 [26], EM-4 [40], and Tera [3].

We have implemented GCM in Id on Monsoon, which is one extreme of multithreaded
architectures. In doing so, we try to exploit parallelism at the instruction-level, procedure-
level, and loop-level, incurring various execution overheads despite extensive hardware
support for multithreading in Monsoon. We begin our discussion of the multithreaded
implementation of GCM with a description of the Monsoon hardware and its execution
model that is based on dataflow graphs. We then discuss how GCM was coded in Id. Next,
we describe some practical problems in running GCM for realistic data sets on Monsoon.
Finally, we describe optimizations that are performed by the compiler and programmer
to obtain good performance on Monsoon and give some performance figures for the
multithreaded implementation.

4.1. The Monsoon Dataflow Machine

Figure 15 shows a high-level view of the Monsoon multiprocessor. Monsoon [38]
consists of eight 64-bit processing elements (PEs) and eight I-structure memory modules
(or IS’s) connected via a multi-stage packet switched network. Each PE is an eight-stage
pipelined processor that handles dataflowtokens. On each processor cycle, a token enters
the pipeline and its result is available eight cycles later. Each token carries with it (1)
a value, (2) a pointer to an instruction to execute, and (3) a pointer to a context, or
activation frame, in which to execute the instruction. The execution of an instruction
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FIG. 15. Monsoon consists of processing elements (PEs) connected to I-structure memory modules (ISs)
through a multistage network. Each PE is an eight-stage pipelined dataflow processor.

may cause the creation of up to two more tokens, which may be circulated locally or
sent out on the network to other PEs. Each PE can process 10 million tokens per second
and has 256K 64-bit words of local memory where activation frames are allocated.

Globally shared heap objects reside in the ISs, each of which contains 4M 64-bit words
of memory. Both frame and heap memory have presence tags associated with each word
to support fine-grain synchronization. Each IS memory access goes over the network.
Monsoon’s network has a bandwidth of 100 MB per second, and the network interface
can accept or deliver a message every cycle. Messages are sent from PEs to ISs for heap
references, or from PE to PE to communicate data between procedures or loops. All
heap locations are equidistant from all the PEs. Heap objects are interleaved by hardware
across the ISs and in general, data mapping has no effect on performance.

Every Monsoon instruction executes in one or two cycles. A binary instruction
synchronizes on the arrival of its two inputs: the data from the first input token is
stored in the activation frame and abubble is passed in the pipeline, while the arrival
of the second token causes the instruction to execute, producing more tokens. Unary
instructions execute in one cycle without a bubble, as do binary instructions with one
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constant input. Global memory accesses are handled in a split-phase manner; a message
is sent out to the network to the IS memory, and a result or acknowledgment comes back
from the network at an arbitrary time later. During this time, Monsoon can process other
tokens, using parallelism to mask the latency of the memory operation. Keeping an eight
processor Monsoon busy requires at least 64-fold parallelism because each stage of the
pipeline executes a different thread, and some additional parallelism to mask the latency
of heap memory references.

To measure performance, each Monsoon processor has 16 cycle counters that can keep
exact instruction counts (these counters were used for all measurements in this paper). We
also have a cycle-level simulator, called MINT (Monsoon Interpreter), which is capable
of running small programs. MINT has played a crucial role in micro-benchmarking and
enhancing our understanding of various factors that affect performance.

4.1.1. Dataflow Graphs for Parallel Execution.In contrast to conventional RISC
processors, the machine language of Monsoon isdataflow graphs. Dataflow graphs
specify only a partial order on instructions and thus implicitly represent instruction-
level parallelism; in contrast, conventional superscalar RISC processors dynamically
detect opportunities for instruction-level parallelism within a linear instruction stream.
To illustrate several features of the Monsoon execution model, consider the innermost
loop of the 3D inner product:

ku∑
k=l

a[k, j, i]*b[k, j, i]

Assuming the arrays are stored in row major order, Fig. 16 shows the Monsoon dataflow
graph for the body of the loop, including the loop predicate.

The nodes of a dataflow graph represent instructions, and dataflow tokens flow along
the arcs to pass values generated by parent instructions to their children. Because
Monsoon instructions can send a value to at most two destination instructions, thefork
operator is required when a value is needed by more than two destination instructions.
Because of instruction encoding limitations, some instructions can send a value to only
one destination instruction. The arcs leading from the twoi-fetch instructions to the
floattimesinstruction are drawn as dotted arcs to emphasize that I-structure references
are split-phase.

Literals and loop constants are represented in light gray in Fig. 16. Literals are stored
into local memory at load-time by the loader, while loop constants must be stored
into local frame memory at run-time using theconstant-storeinstruction. Both types
of constants can be accessed at run-time without incurring a bubble in the pipeline.

Control in Monsoon is implemented by using theswitchoperator that steers an input
value to one of two locations, depending upon the value of an input predicate. Figure 17
shows the “sequential” loop schema for the loop body shown in Fig. 16. Before the first
iteration of the loop begins, loop constants are stored into the activation frame. The initial
values for the input variables are fed to the top of the loop body, and then the loop body
in Fig. 16 is executed. The resulting values are either steered back to the top of the loop,
or else output as the final values. The values are steered usingswitch instructions, with
one switch for each induction variable. If there are more than two induction variables,
forks are needed to distribute the predicate value to the switches. Because the switch
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FIG. 16. Monsoon dataflow graph for the body of the innermost loop of a three-dimensional inner product
code.

instruction can steer a value to only one destination instruction, additional forks are
often required after a switch.

Sequential loops only execute on one processor, and generally use the activation frame
of the surrounding procedure. In the next section, we show how interprocessor parallelism
is exploited in Monsoon for both procedure-level parallelism and loop-level parallelism.

4.1.2. Run-Time System and Interprocessor Parallelism.In Monsoon, dataflow-style
instruction-level parallelism is exploited only within a PE, to keep the eight pipeline
stages busy. Interprocessor parallelism is exploited by allocating activation frames on
remote PEs. Activation frames are allocated when a procedure is called or a parallel
loop is initiated, and the frame may be allocated on an arbitrary Monsoon PE, although

FIG. 17. Sequential loop implementation of the inner loop of 3D inner product. The sequential loop executes
on one PE, and only exploits instruction-level parallelism.
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frames do not migrate once they are allocated. Thus, the mapping of work to processors
is governed by the frame allocation policy, which is a part of the Monsoon run-time
system (RTS).

In the Monsoon RTS [13], frame memory on each processor is divided equally among
all processors, so that each processor manages part of the frame space of every other
processor. Frame allocation requests are then handled locally in a round robin fashion
across all of the processors to provide load balancing. Since the RTS is invoked on every
procedure and parallel loop invocation, care has been taken to minimize RTS costs,
to the point where much of the RTS is written in assembly and supported by special
“microcoded” machine instructions. Despite all this care, allocating and deallocating
a frame on Monsoon typically takes about 40 to 50 cycles. This shows that frame
management in this parallel environment is still more expensive than in a sequential
environment, where a simple pointer-bump can allocate or deallocate a stack frame.

A procedure call begins with allocating an activation frame. Once the frame is
returned by the RTS, the arguments to the procedure and the return continuation are
sent as messages to the frame, which is usually on a remote processor. Although the
composition, sending, and receiving of these messages is well supported in Monsoon
hardware, argument passing is still relatively more expensive than register-style argument
passing in sequential processors. In general, the programmer should define most small
leaf procedures as inlinable to avoid procedure call overhead.

Loops can trivially exploit interprocessor parallelism if they are implemented as
recursive procedure calls. However, such an implementation usually uses too many frames
and consequently has a very high overhead both in terms of storage and RTS calls. Id
on Monsoon exploits an alternative compiling scheme known ask-bounded loops [14].
The k-bounded loop schema employs a ring ofk activation frames that are allocated
and linked at the beginning of the loop execution and deallocated at the end of the loop
execution. Loop constants must be stored into each frame in ak-bounded loop, and
induction variables are passed from iteration to iteration like arguments are passed for
procedure calls.

Exploitation of interprocessor parallelism can be expensive even on Monsoon.
In Fig. 18, the cycle counts fork-bounded, sequential, and completely unrolled
implementations of the innermost loop of the 3D inner product are shown. Recall that
the sequential loop schema exploits only intraprocessor parallelism and a loop can be
completely unrolled only if the loop bounds are known at compile time. It takes three
times as many cycles per iteration for thek-bounded loop as the completely unrolled loop!

We explain these cycle counts further to satisfy the reader’s curiosity. The completely
unrolled implementation reflects the instructions in Fig. 16, excluding the instructions
needed to evaluate the loop predicate. The count for the sequential implementation can be
derived by adding the predicate and the two switches shown in Fig. 17. Thek-bounded
implementation uses two message instructions to send the induction variables to the next
iteration. The i-take and i-put instructions are used as semaphores to synchronize between
loop iterations to determine when a frame may be reused for the next iteration. The sync
instructions gather signals from work being performed in the current iteration to ensure
that all work is completed in the current iteration. Additional fork instructions are used
to distribute values to the new instructions.
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FIG. 18. Comparison of cycles per iteration for unrolled, sequential, andk-bounded loop implementations.
The number of bubbles incurred by each operation per iteration are set off in parentheses.

In addition to the per iteration costs shown in Fig. 18, loops have startup and shutdown
costs that may be significant, depending upon the loop schema. Completely unrolled loops
have no startup cost, whereas sequential loops must store loop constants into the frame
before beginning loop iterations. The startup and shutdown costs ofk-bounded loops can
be from about 100 to several hundred cycles perk, to allocate and deallocate frames, to
set up loop constants, and to wire up the frames in a cycle.

Given the widely varying costs of loop execution, even for the same source program, it
is clear that the programmer or compiler must make decisions to expose loop parallelism
while minimizing instruction counts. We will discuss these issues further in Section 4.2.5.

4.2. Programming in Id

Id is a layered language whose core consists of a higher order, statically typed,
polymorphic, non-strict-functional language. Id also has mutable and synchronizing data
structures called I-structures and M-structures. The GCM code is written using only the
functional subset of Id, but the Id compiler transforms functional data structures into
I-structures for execution on Monsoon. I-structures are implicitly synchronizing, so that
a fetch of an I-structure element will not return until the store to that element is executed.
I-structure elements can be written only once (although they can be read any number of
times) to ensure that programs are deterministic.

4.2.1. Array Abstractions. Id has only three built-in operations on arrays; fetch, store,
and fetch array extents. However, it is possible to define powerful array abstractions in
Id and use them repeatedly. Before definingmake_3D_array , an abstraction to create a
three dimensional array, we show how it is used,

x = make 3D array extents f

whereextents defines the extents of the array andf is afilling function. The net effect
is thatx[index] = f index , for each index(k, j, i) that lies within theextents .
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By giving a suitable definition forf we can define each GCM state variable. Note that
x is immutablein the sense that once it has been defined it cannot be modified. Conse-
quently, at each time step a new array for each state variable is created and the old array
is implicitly discarded.

An (inlinable) function definition of 3D daxpy can be expressed as
Zones =

((min Wlongitude, max E longitude),
(min N parallel , max S parallel ),
(surface , max depth ));

defsubst aX plus Y a X Y zone =
a * X[zone] + Y[zone];

defsubst daxpy 3d a X Y =
make 3D array Zones (aX plus Y a X Y);

wherezone represents an index andZones represents the dimensions of the box con-
taining the ocean. One can think ofaX_plus_Y as an inlinable function that takes four
arguments and produces a number. When only three arguments are passed to it, as shown
above, a new function is returned that takes one argumentzone (an index) and returns
a number.

Themake_3D_array function is not a built-in operator in Id: it is defined as a library
function usingarray comprehensionsyntax as follows:

defsubst make_3D_array extents f =

{ ((kl, ku), (jl, ju), (il, iu)) = extents;

in

{3D_array extents of

| [index] = f index

|| i < − il to iu;

j < − jl to ju;

k <− kl to ku;

index = (k, j, i) }};

The initial binding destructures theextents argument into its component parts. The
phrase between “| ” and “|| ,” that is “[index] = f index ,” specifies an index and an
expression to be filled in the indexed slot of the array. The phrases such as “i < − il

to iu ” that occur after “|| ” are calledgeneratorsand define a way to enumerate the
indices.

All of the abstraction involved in the array comprehension, destructuring and higher-
order function call could be extremely expensive, but if the programmer is careful to
declare the filling function and array constructor as inlinable, all of the overhead is
compiled down into an I-structure array allocation and a triply-nested loop that fills the
I-structure using the inlined filling function.

This level of abstraction may seem to be overkill for a simple operation such as daxpy,
but it is also used at every level of the code, simplifying the specification of the algorithm
greatly and also allowing for easier modification to the computation by changing of the
underlying abstraction.
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Notice that, in the Id array constructor abstraction, we ordered the axes as we did in
the CM Fortran code, although for a quite different reason. In Id, we want the innermost
loop to iterate over the vertical axis of the state arrays so that we can avoid computation
on land, and also because we want to unroll the loop completely. Given that the innermost
loop iterates over the vertical axis, we also want that axis to be stride-1, so that we can
avoid overheads from additional support instructions to calculate memory addresses.

4.2.2. Avoiding Unnecessary Computation.In the elliptic solver, we compute four
inner products involving state variables. Because the land zones do not contribute to the
inner product, we could optimize this computation by iterating only over water zones,

defsubst ip_3d a b =

{ s = 0.0 ;

in

{for i < − min_W_longitude to

max_E_longitude do

s_jk = 0.0;

next s = s +

{for j < − northmost_parallel[i] to

southmost_parallel[i] do

s_k = 0.0;

next s_jk = s_jk +

{for k < − surface to

bottom[i,j] do

next s_k =

s_k + a[k,j,i]*b[k,j,i];

finally s_k};

finally s_jk};

finally s} };

where bottom[i,j] is the depth of the ocean at(i,j) . The variablesurface

has been defined as a constant instead of a 2D array without loss of generality.
northmost_parallel[i] andsouthmost_parallel[i] represent, respectively, the
northern most and southern most parallel at longitudei where a water zone may be
found. A note on syntax—thenext qualifier is used to express recurrences infor

loops—“next s ” specifies the value the variables will assume in the next iteration.
The finally qualifier is used to describe the result of afor loop.

We can further reduce the computation by defining some of the state variables only on
water zones, if their values are not needed on land zones. Themake_water_zone_array

abstraction defined below enumerates only water zones:

defsubst make_water_zone_array f =

{3D_array Zones of

| [zone] = f zone

|| i < − min_W_longitude to

max_E_longitude;

j < − northmost_parallel[i] to

southmost_parallel[i];
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k <− surface to bottom[i,j];

zone = (k,j,i) }

Consequently the following daxpy would do fewer floating point operations than the
one defined in Section 4.2.1:

defsubst daxpy_w_3d a X Y =

make_water_zone_array (aX_plus_Y a X Y);

4.2.3. Avoiding Deadlocks Due to Undefined Elements.Sometimes an attempt to avoid
unnecessary computations can lead to deadlocks in the Id code. Consider the stencil
computation in the PCG (as discussed in the data parallel section, the diagonals of
matrix A are symmetric, so only four arrays need to be stored instead of seven),

defsubst seven_pt_stencil b =

make_water_zone_array (multiply_by_A b);

defsubst multiply_by_A b zone =

{ C = A_C[zone] * b[zone];

W = A_WE[Wfz zone] * b[Wzz zone];

E = A_WE[Efz zone] * b[Ezz zone];

N = A_NS[Nfz zone] * b[Nzz zone];

S = A_NS[Sfz zone] * b[Szz zone];

U = A_UL[Ufz zone] * b[Uzz zone];

L = A_UL[Lfz zone] * b[Lzz zone];

in

C + W + E + N + S + U + L }};

where the functionNzz computes the zone to the North of a zone, whileNfz computes
the north face of a zone:

defsubst Wzz (k,j,i) = k,j,i-1 ;

defsubst Ezz (k,j,i) = k,j,i+1 ;

...

defsubst Wfz (k,j,i) = k,j,i-1 ;

defsubst Efz (k,j,i) = k,j,i ;

...

The multiply_by_A filling function will attempt to read elements of the arrayb that
may correspond to land zones, and thus may have undefined values. An attempt to read
an undefined array element in Id will cause a deadlock because the I-structure fetch
will never return. In the CM Fortran version, the ocean is padded with a layer of land
to handle this boundary condition around the edges, and the other land zones are filled
with benign values. The same strategy can be used in the Id version, however, the land
padding cannot simply be initialized once and reused at every PCG iteration. Rather, the
padding must be filled every time because a new array is defined for the variable on
every iteration of the solver.

Note that the land padding is not necessary for the nonstencil operations in the PCG,
so we only pad arrayb, which is needed by the stencil computation. To accomplish this,
we define a different array constructor that fills zeros in all the land zones and use it
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to redefinedaxpy_3d of Section 4.2.1. In the following code,OGrepresents the ocean
geometry:

def make_zone_array’ f =

{3D_array Zones of

| [zone] = {case OG[zone] of

| water = f zone

| land = 0.0}

|| i < − min_W_longitude to

max_E_longitude;

j < − min_N_parallel to

max_S_parallel;

k <− surface to max_depth;

zone = (k,j,i) };

defsubst daxpy_3d’ a X Y =

make_zone_array’ (aX_plus_Y a X Y);

4.2.4. Putting It All Together. An important step in the elliptic solver is the
multiplication by the preconditionerK , which is actually implemented asNx × Ny

independent tridiagonal linear equation solvers of sizeNz × Nz as described in Section
2.2.2. As in the CM Fortran code, each of theNx × Ny independent linear systems is
initially factored intoL andU matrices corresponding to the decomposition of the block
diagonal elements ofA, and these matrices are stored into a constant matrix, which are
referenced in the call tosolve_tridiag_LU :

defsubst precondition r =

{3D_array Zones of

| [zone] = X[k]

|| i < − min_W_longitude to

max_E_longitude;

j < − northmost_parallel[i] to

southmost_parallel[i];

X = solve_tridiag_LU r (i,j);

k <− surface to bottom[i,j];

zone = (k,j,i) };

Given all these functions, it is straightforward to write PCG in Id as shown in Fig. 19.
There are no other issues that arise in coding the whole GCM code; each filling function
is either some sort of a stencil, or involves purely local computation.

After compilation, if all the functions have been declared as substitutable, the resulting
code turns out to be nothing but a nest of nested loops. Most of these loops and the
individual bindings in them can proceed in parallel, as soon as the data dependencies
for the binding are satisfied. Note that because of the elementwise synchronization of
I-structures, parts of state arrays can be filled as soon as the parts of the arrays they
depend on are filled.

4.2.5. Programmer Annotations and Restructuring.Once the functionality of the code
has been implemented, the programmer may have to annotate his code to get good
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FIG. 19. The PCG in Id requires the definition of new state arrays on every iteration. The order of execution
is not necessarily in the textual order—all of the bindings proceed implicitly in parallel and must only wait
for data dependencies to be satisfied.

performance. Standard loop optimizations such as unrolling, peeling, strip-mining, and
interchange can have a larger impact on Monsoon performance than for conventional
architectures because of the overhead of parallel asynchronous execution of loop
iterations in the dataflow model. The Id compiler automatically performs some of these
optimizations, and the others are left to the programmer to be indicated as pragmas. We
discuss the role of loop pragmas here.

Unless otherwise annotated by the programmer, all loops are assumed by the compiler
to be sequential loops. Constructs such as array comprehensions desugar into loops, and
in general, annotations that are used for loops may also be used for array comprehensions.
It is a good rule of thumb to annotateoutermostloops with parallelism to bek-bounded
loops. (It makes no sense to declare the time-step loop in GCM to bek-bounded because
there is not much parallelism between time-steps.) In this way, large chunks of work
are forked to remote processors, and the overheads ofk-bounded loop iterations are paid
less often. Inner loops should be annotated to be unrolled to don iterations at a time to
reduce sequential loop overhead. If the number of iterations is a constant and small, then
the pragma to unroll the loop completely should be used.

Suppose that the programmer has annotated the outer and middle loops of a triply-
nested loop to bek-bounded, with thek-bounds beingib and jb, respectively. In general
k-bounds can be arbitrary expressions that return an integer; in practice, however, they
are usually literals. Figure 20 shows the pattern of frame usage for the two loops when
ib is 3 andjb is 4.

The amount of interprocessor parallelism exposed for such a nested loop is then on
the order ofib× jb. Given a certain machine configuration, we are interested in setting
the productib× jb such that it will keep the entire machine busy. What are the optimal
values of ib and jb, such that the number of instructions executed by the loops are
minimized?

If there are imax iterations of the outer loop executed, then the number of frame
allocations and initializations (requiring hundreds of cycles a piece) is thenib+imax× jb.
For a set amount of parallelismib × jb we wish to exploit in a nested loop, in general
it is better to makeib larger and jb smaller to minimize loop initialization costs. A
possible optimization is to lift middle loop frame allocations so that it occursib times
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FIG. 20. Pattern of frame usage for nestedk-bounded loops for the 3D inner product.

as opposed toimax times. This optimization has been implemented in the Id compiler,
but has not worked reliably.

Large values ofk may not be useful in exposing parallelism if there are dependencies of
any kind (data, control, producer/consumer) between loop iterations, or if the number of
iterations is not significantly larger thank. Choosing loop bounds can make a tremendous
difference in performance, as shown by Culler [14], but to date, no automatic compiler-
directed policy has been implemented that achieves high performance.

Some optimizations cannot be expressed simply with pragmas and require restructuring
of code. For example, the precondition routine in Section 4.2.4 requires allocating a
temporary arrayX for each column(i,j) of the ocean for each iteration of PCG. The
only purpose of this array is to hold the values returned by the tridiagonal solver before
it is copied into the state array. This array is eliminated by making the tridiagonal solver
store directly into arrayxi . Such a program can be expressed in Id by writing the
preconditioner using loops and I-structures rather than array comprehensions. A subtle
issue is that if the ocean has a known uniform depth, then it is also possible to eliminate
another array temporary in the tridiagonal solver.

4.3. Running GCM on Monsoon Hardware

Monsoon was designed at MIT and built by Motorola under a research collaboration
agreement. We received the first Monsoon with one PE and one IS in November 1990.
Two machines, each with 8 PEs and 8 ISs, were delivered to MIT and Los Alamos
National Labs (LANL) in the latter half of 1991. Several more machines with 2 PEs and
2 ISs were built and placed at various research institutions across the country. Detailed
performance studies of Monsoon were conducted in 1991–1992 (see, for example, [5,
22, 46]). During this period, both the Id compiler and the run-time system were being
tuned continually for Monsoon.

By 1993, when the GCM study was begun, the team that had built Monsoon at
Motorola had disbanded; the machine at MIT was maintained by cannibalizing parts
from other Monsoons. At this point, an initial unoptimized version of a fully functioning
multithreaded GCM ran on an 8-PE 8-IS Monsoon approximately 100 times slower than
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the data parallel version on a 32-node (128 VU) CM-5. Given the speed difference,
experiments took many hours to run on Monsoon, and checkpointing was implemented
because the Monsoon hardware had intermittent failures. We started doing most of
the experiments on PCG and 2 PE 2 IS systems to avoid some of these problems.
Our experience with other applications on Monsoon [22] has shown that 2-PE 2-IS
performance translates directly into 8-PE 8-IS performance.

As is often the case in any such study, both implementations were continually being
tuned based on observed performance. However, algorithmic innovations were always
guided by the concerns for greater efficiency on the CM-5, as this was a production
code. It was a difficult task to keep the two implementations consistent for this study,
especially because gathering statistics on a 4- to 24-h run on Monsoon was tedious. A
major milestone in this project was reached in early 1994 when we were able to produce
the same numerical results on both implementations for several large ocean geometries.

The hardware maintenance issue became more serious in 1995 because key personnel
at MIT were concentrating on building new machines, and the condition of Monsoon had
deteriorated. Most of the experiments from 1995 onwards had to be performed on the
2-PE 2-IS machine. No new experiments have been conducted on Monsoon since mid-
1996. Monsoon was decommissioned and donated to the Computer Museum in February
1997, and the CM-5 was decommissioned in July 1997.

Although we also have a robust cycle-level Monsoon simulator, even a 2-PE 2-IS
Monsoon is many thousand times faster. The Monsoon simulator was used extensively
for microbenchmarking, and can run several iterations of PCG with small data sets in
a reasonable amount of time. However, running realistic data sets with the entire GCM
code would be impossible on the simulator, whereas it is feasible on even a 2-PE 2-IS
Monsoon.

4.4. Multithreaded GCM Performance

To factor out machine size and clock rates, as in the data parallel case, we measure
the efficiency of the multithreaded implementation of GCM by determining the number
of cycles spent for each floating point operation. The “Water Only” bar in Fig. 21 shows
the breakdown of the overhead operations executed in the PCG code for a particular
geometry, a 171× 93× 5 ocean with 60% water.

It is clear from this graph that the vast majority of the time is spent in overhead cycles.
“Move” instructions include forks and syncs, “Misc” instructions include switches and
message-passing instructions, “Memory” instructions include i-fetches and i-stores, and
“Int” instructions include ordinary arithmetic and logical instructions. Actual floating
point operations consist of a tiny fraction of overall time.

4.4.1. Decreasing Overhead Cycles.To reduce overhead cycles, we attempted to
simplify the computation by making it identical to the data parallel implementation.
In doing so, we were able to completely unroll the inner loops of each of the PCG
components. Complete loop unrolling is beneficial to 3D daxpy and 3D inner product
because the loop overheads are high relative to the small loop bodies for these PCG
components. It does not help the 7-point stencil computation as much because of the
larger loop body of the stencil. The preconditioner is significantly simplified because of
the elimination of a temporary array.
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FIG. 21. Comparison of the three versions of PCG for a 171× 93× 5 geometry, 60% water. (ib = 5, jb =
3, 2-PE, 2-IS Monsoon.)

I-fetches for the north–south and bottom bounds of the ocean were eliminated,
along with the calculation of the addresses for those i-fetches. By making the ocean
bounds constant, some loop constants can be eliminated by making them literals. These
simplifications reduce the number of cycles per floating point operation from about 35
in the “Water Only” case to about 12 in the “Land+Water” case in Fig. 21.

Note that the “Idle” cycle count is misleading in that thek-bounds for the loops are set
in the context of the entire application, not for the PCG executing in isolation. Those idle
cycles will be overlapped by other work when PCG executes within the entire GCM code.

The reduction in overhead cycles per floating point operation comes from fewer
switches and messages for simpler loops, and from fewer bubbles and forks incurred
by eliminated switches and messages. Address calculation is also simpler, as evidenced
by fewer “Int” instructions, and some fewer memory operations are executed because of
the constant ocean bounds.

It is surprising to discover the degree to which the “Land+Water” version was more
efficient than the “Water Only” version. Part of the explanation is in the very shallow
geometry used; because the innermost loop executes at most four times in the “Water
Only” case, it is difficult to take advantage of regular loop unrolling (as opposed to
complete loop unrolling) to reduce loop overheads. For geometries with more layers, the
difference will not be so marked, although the completely unrolled preconditioner would
remain an advantage of the “Land+Water” version.

4.4.2. Hybrid PCG. Although the “Land+Water” version is much more efficient per
floating point operation executed than the “Water Only” version, it must execute more
floating point operations because of land zones. Despite this, the overheads from land
are more than made up for by the efficiency of the “Land+Water” version for most
geometries; however, we would still like to take advantage of some of the geometry
irregularities that result from land zones, while also using a simplified loop structure.
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To do this, ahybrid version of the PCG was developed which only computes on
the bounding hull of the water on the surface of the geometry, while computing on
entire columns of water within the bounding hull. In this way, much of the computation
on land is eliminated, while still allowing complete unrolling of the innermost loop.
Figure 21 shows that this version has more overhead per floating point operation than
the “Land+Water” version, but less than the “Water Only” version.

The hybrid approach is only superior to the Land+Water approach in situations where
it can take advantage of not having to compute on land. Typically, geometries that we are
interested in simulating have between 30% to 70% of their surface covered with water,
so the hybrid approach actually does pay off most of the time.

4.4.3. PCG Component Performance and GCM Performance.Figure 22 shows the
best case performance in terms of cycles per floating point operations for the four
operations of the hybrid version of PCG, the PCG itself and the overall GCM code.
The constituent parts were timed by extracting the code fragment for the component
from the elliptic solver and running it in isolation. In this case, the same criteria as the
data parallel case is used; it is assumed that all floating point operations executed are
required operations, without taking into account land.

The problem size we use is proportionately smaller than the CM-5 version because
the Monsoon machine configuration is smaller. Note that the Id program is the same for
a 2 PE Monsoon as for an 8 PE Monsoon, except fork-bounds for loops.

We optimized thek-bounds shown in Fig. 21 and Fig. 22 for the entire GCM
computation. By doing so, when we extract portions of the code such as the PCG
computation or components of the PCG, additional idle cycles appear because there is less
work that can be overlapped to eliminate idle cycles. These idle cycles are misleading,
because they could be eliminated by increasingk-bounds, but doing so could distort other
numbers in the overhead accounting.

FIG. 22. The best case performance for the components of the hybrid PCG, the PCG itself, and the whole
GCM ocean modeling code for a 32× 32× 32 ocean with 100% water. (ib = 5, jb = 3, 2-PE, 2-IS Monsoon.)
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It is interesting to compare the performance of the 3D inner product in Fig. 22 with the
detailed cycle count for the completely unrolled inner loop in Fig. 18. In Fig. 18, eight
cycles are spent for two floating point operations, yielding a ratio of four cycles/floating
point operation. In Fig. 22, the full triply nested loop shows a ratio of about eight cycles
per floating point operation, indicating that much of the overhead arises from the outer
two loops of the inner product. This is similar to the CM-5, where the detailed cycle
count for the innermost loop was much better than the actual measured time of the entire
3D inner product.

Compared to the best case numbers for the CM-5, the Monsoon numbers show that
approximately three times as many cycles are necessary for every floating point operation.
However, our choice of performance measure showcases the best aspects of data parallel
computing. In the next section, we attempt to adjust these raw “best case” numbers for
situations that are more realistic.

5. PERFORMANCE COMPARISON

Both GCM implementations use the same numerical algorithm, except for minor differ-
ences such as the order of reductions. Despite this, comparing the two implementations
requires care because of differences between the languages, compilers, programming
models, architectures, implementation technologies, machine configurations, and man-
power expended on software and hardware. In this section, we try to account for some
of these differences and determine the primary characteristics and overheads of the two
implementations.

5.1. Performance Metric

Because both implementations used the same mathematical algorithm, the numerical
results and the number of iterations for the conjugate gradient to converge in each time
step are identical. Consequently, both codes execute the same number of required floating
point operations, though the number and type of overhead instructions executed differ
greatly. We consider floating point operations performed on land zones or land-land
surfaces to be nonessential.

We attempt to factor out most of the differences between the implementations using the
simple metric of cycles perrequiredfloating point operation. Up to this point, we have
been measuring cycles per floating point operation, which includes any extra floating
point operations which are used for computations on land.

The cycles per required floating point metric factors out many of the differences
between the implementations; it does not, however, quantify all the dimensions that
affect performance. For instance, one of the architectures may be easier to implement
at a high clock speed than the other or more cheaply than the other; this metric also
does not take into account the much greater manpower spent in optimizing the CM-5
performance. It would be misleading for us to try and rigorously quantify these factors,
and we leave it to the judgment of the reader to adjust our measurements as they feel
suitable. Nevertheless, as explained below, using this metric (while understanding its
limitations) does yield significant insight into the efficiency with which GCM can be
mapped to the two contrasting computational environments.
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The cycles per required floating point operation metric is clearly better than the cycles
per every floating operation measure we have been using to this point for both the CM-
5 and Monsoon implementations. For example, in Fig. 21, the “Land+Water” version
is more efficient per floating point operation, but many of the floating point operations
that are considered are actually overhead operations because they are executed on land
zones. When taken into consideration, the ratio of cycles per required floating point
for the “Water Only” versus the “Land+Water” versus the “Hybrid” implementations
of multithreaded PCG is actually about 1.0:.44:.35, showing that the hybrid version is
the fastest.

5.2. Quantifying Overheads

Monsoon and CM-5 can be viewed as radically different attempts at feeding relatively
standard FPUs, though this was certainly not a design goal of Monsoon. Taken in this
context, the “best case” numbers clearly indicate that the CM-5 is much better when
the situation is ideal—i.e., when there is no garbage padding, ghost zones are not taken
into account, and the problem size is large enough to overcome vector startup costs. The
rest of this section quantifies further what the effects of the various overheads of each
model are.

5.2.1. Overheads Due to Padding and Ghost Zones.The overhead from garbage
padding on the CM Fortran version is usually not more than 10%; the compiler can
usually find a layout which is fairly close to the one requested by the programmer.
Because of the hardware support for ignoring garbage padding, the CM-5 does not pay
any additional cost in terms of execution for garbage padding, above and beyond the
direct overhead due to unused zones.

Ghost zones are a more serious concern for geometries that are shallow or narrow. The
Id version does not have to work on the faces of the geometry, except to explicitly insert
ghost zones on the step before the stencil computation, and even the stencil computation
itself does not need to compute on ghost zones. Although the Id version also must pay
for the memory, it does not have to pay for the execution time for filling ghost zones.

It is clear that ghost zones are not a serious overhead for wide, deep geometries.
However, we often work with geometries that are of depth 5 to 10, in which case
overhead for ghost zones can range from 20% to 40% or more.

5.2.2. Overheads Due to Water.Figure 23 shows the effect of varying the percentage
of water zones on the surface for the Id and CM Fortran codes. Water zones on the
surface are counted, because the hybrid version of the Id code can only take advantage
of eliminating an entire column of zones at a time.

The number of “required” floating point operations was calculated as all floating point
operations which are performed in columns of the geometry which have a water surface
zone. This is not the actual number of required floating point operations because floating
point operations on land zones are still being executed in the hybrid version of the Id code.
However, given the number of surface water zones, the number of actual required floating
point operations may vary widely, and the purpose of this graph is to compare the Id and
CM Fortran versions against each other, not against an ideal. For these purposes, this
measurement is fair, because any difference between the required floating point operations



COMPARING VERSIONS OF AN OCEAN MODEL 41

FIG. 23. The CM-5 version of PCG is more sensitive to variations in the percent of water than the hybrid
Monsoon version.

in this graph and the actual number of required floating point operations would affect
the performance of both versions proportionately.

The performance for the CM-5 version was calculated by assuming an ideal
performance of 3.5 cycles per floating point operation when the geometry is 100% water,
and then extrapolating backwards by assuming that the execution time will be identical
regardless of the percentage of water zones. We give a zone of performance for the CM-
5, because the ideal performance may vary widely depending upon the padding overhead
and the overhead due to executing a smaller problem size. The upper end of the zone
assumes performance at 100% water of seven cycles per floating point operation; this
number is not necessarily the upper bound of the performance of the CM-5 version, and
may in fact be worse for some problems as seen in the next section.

The performance of the Id version was measured on a large geometry, varying the
percentage of water zones on the surface. The geometry was of size 50× 50× 10,
running on a two-processor system, and is a large enough problem size to keep the
machine busy. We varied the percentage of surface water zones and measured the total
number of cycles as a ratio of required floating point operations.

The performance of both versions deteriorates as the percentage of water decreases,
but as expected the CM-5 version shows more severe degradation, because it carries out
the same amount of computation regardless of the geometry, whereas the Id version does
less work for the geometries with less water. Because many real geometries of interest
consist of 30% to 70% water, this overhead in conjunction with others may make the
performance of the CM Fortran version more comparable with that of the Id version.
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FIG. 24. Efficiency versus problem size for the PCG computation; the CM-5 is more sensitive to problem
size than Monsoon. This difference is primarily due to the added parallelism exploited by the multithreaded
model compared to the data-parallel model.

5.2.3. Overheads Due to Small Problem Size.Both machines will have worse
performance for smaller problem sizes than for larger problem sizes because of less
parallelism to keep the machines busy. Figure 24 shows the effect of varying the problem
size, measured in elements of the geometry per processor. To obtain this graph, the time
needed to perform PCG for various problem sizes is measured on both Monsoon and
the CM-5; the hybrid Monsoon version is employed and only geometries having 100%
water were considered.

The variableN1/2 is typically used for vector processors to measure the vector length
necessary to reach one half of the performance of the machine when it has a problem
with an infinite vector length. In a parallel setting,N1/2 will vary according to the size
of the machine and the problem. For GCM, we see that on the CM-5,N1/2 ∼ 1000 per
VU. To obtain the number for the entire machine, we must multiply by the number of
VUs in the machine. For Monsoon, the same value isN1/2 ∼ 35 per PE.

Because the CM-5 starts out at about 3.5 cycles per floating point operation versus
Monsoon at about 11 cycles per floating point operation, the CM-5 is still better in
absolute terms than Monsoon over much of the range shown in the graph, despite the
fact that its performance deteriorates faster as the problem size decreases. The Monsoon
version reaches peak performance at a smaller problem size because Monsoon exploits
much more parallelism than the CM-5 does. Whereas the CM-5 generally takes advantage
of data parallelism for each operation, Monsoon can take advantage of data parallelism for
multiple array operations at a time, as well as procedural and instruction-level parallelism.

5.2.4. Multiplying Overheads.The three primary overheads (padding, water, and size)
described to this point are multiplicative in nature. Figure 25 shows the effects of these
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FIG. 25. The multiplicative effects of overhead for the PCG as the number of layers is varied.

overheads on some example geometries. The ocean geometry chosen has a relatively
high percentage of water (60% overall and 66% on the surface) compared to some real
geometries. The high percentage of water in this particular geometry favors the data
parallel approach; however, extrapolating the performance of geometries with less water
is straightforward.

The first geometry on the left in Fig. 25 is the five-layer domain. Here, there is a
significant amount of overhead from ghost zones and water. Also, the base cycles per
(every) floating point operation is high because of poor vector unit utilization due to the
relatively small problem size (∼ 600 zones/VU). Garbage padding is a minimal overhead.
For Monsoon, we see a ratio that is fairly close to the “best case” because Monsoon is
less sensitive to problem size and percentage of water.

When we go to a 12-layer geometry, the CM-5 version improves significantly, primarily
because of the better VU utilization due to a larger problem size—this directly effects
the absolute water overhead. The ghost zone padding overhead is also reduced because
of the deeper geometry. The Monsoon version remains about the same because it is not
as sensitive to problem size.

For the final geometry, a 32-layer ocean, the CM-5 has a base cycles per floating point
operation that is still noticeably worse than its best case. The padding and ghost zone
overheads are almost negligible, but the water overhead boosts the ratio to about 9 cycles
per required floating point operation. We were not able to run a problem of this size on
Monsoon, but we predict it would be not much different than the 12-layer case, because
Monsoon is not as sensitive to problem size as the CM-5.

The three problem sizes shown in Fig. 25 are typical of simulations that we perform on
a daily basis on parallel machines. If we had considered a geometry with less water, both
versions would have had higher overheads, but the CM-5 performance would degrade
more than the Monsoon version, because the CM-5 is more sensitive to variations in the
percentage of water.
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5.3. Conclusion

The best case for CM Fortran on the CM-5 is that of very large, all-water geometries,
and the efficiency of the CM-5 for these problems is about 3 times better than for Id on
Monsoon (3.5 versus 10.1 cycles per floating point operation). However, in more realistic
cases, the efficiency of the data-parallel implementation varied from 0.5 to 2 times that
of the multithreaded version. The multithreaded version was more flexible in handling
problem irregularity, and it reached peak performance at a smaller problem size than the
data parallel version.

For both versions, significant programmer tuning was required to obtain good
efficiency, and the type of tuning for each version was very different.

Although multithreading is a far more general model of parallel computing than data-
parallel, our results indicate that even for an application that is ideally suited for the data-
parallel model, a multithreading implementation can be comparable in efficiency to a data-
parallel implementation. Additional minor changes to the Monsoon microarchitecture
(optimizing fanout, bubbles, and switches) could reduce multithreading overhead by
about 30–40%.

6. IMPLICATIONS FOR THE FUTURE

Both the CM-5 and Monsoon are custom, integrated parallel designs—the program-
ming languages, compilers, processors, and networks were all designed specifically for a
parallel computing model. In both cases, scant attention was paid to compatibility with
existing sequential or parallel programs. One lesson of the nineties is that, to take ad-
vantage of the continuous improvements in technology, both the hardware and software
for parallel computers must be derived from the widespread personal computer and asso-
ciated server technology. Although the CM-5 used Sparc microprocessors for its nodes,
most of its computational power came from its custom-built vector units. A modern sym-
metric multiprocessor (SMP) with four microprocessors is a much more general-purpose
building block than the CM-5 node. In the immediate future, Monsoon style multithread-
ing may be incorporated into commercial microprocessors, but the external interface is
more likely to be a sequential machine language than a dataflow graph.

Regardless, parallel computing has truly entered the mainstream in the form of
small-scale 2- to 8-processor SMPs. These SMPs are based on the same commodity
microprocessors used in desktop workstations and PCs, and are being brought to market
simultaneously with workstations and PCs by mainstream computer manufacturers. They
are typically used in the business world either to handle multiple users running sequential
applications, or as large database and World Wide Web servers. Almost incidently, they
can also be used for scientific computing applications such as GCM [24]. For higher
performance levels, clusters of SMPs can be networked using either custom or commodity
networks. Under the U.S. Department of Energy ASCI program [30], two 4-Teraflop
machines are being constructed as clusters of high-end SMPs.

However, so far SMPs have generally not been used for parallel computing in the
traditional sense, and therefore research into the two programming models discussed
in this study are still relevant. Both the data parallel and multithreading programming
models can be implemented on SMPs and clusters of SMPs, and they represent the two
most promising models for exploiting parallelism on these architectures. In the remainder
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of this section, we discuss the implementation of data parallel and multithreading
programming models for SMPs and clusters of SMPs.

6.1. Data Paralleling and Multithreading on SMPs and SMP Clusters

Most parallel computing performed on SMPs today can be characterized generally as
data-parallel or multithreaded, though SMPs have no special hardware support for either
model. At the lowest level, the basic mechanism for exploiting parallelism within an
SMP is OS threads or processes, and communication and synchronization occur through
shared memory. Between SMPs, communication and synchronization are implemented
through explicit message passing.

These low-level mechanisms can be exploited through C or Fortran programs via calls
to parallel “libraries” that can be either multithreaded or data-parallel. Multithreaded-
style lightweight threads libraries are implemented on top of OS threads or processes
and provide primitives for creation and synchronization of lightweight threads. Message-
passing libraries, such as PVM and MPI, provide communications and synchronization
routines for programs that are usually structured in a data-parallel manner (that is, they
usually have a single logical thread of control, interleaving stages of communications and
computation). Thread libraries can be implemented for clusters of SMPs, although the
lack of a shared memory across the cluster becomes problematic. Data-parallel message-
passing libraries are more straightforward to implement both within SMPs and on clusters
because they implicitly have a distributed memory model.

At a higher level, several compilers for High Performance Fortran (HPF) exist for
SMPs—HPF is a successor to CM Fortran that has become the standard data-parallel
Fortran. Using HPF on high-end SMPs, the GCM algorithm that has been under scrutiny
here can deliver a level of performance approaching that of the CM-5 [24]. Several
vendors also provide HPF compilers for clusters of SMPs, and these compilers usually
attempt to structure computation even within an SMP as phases of computation and
message-passing style communication.

The state of the art in high-level programming environments for multithreaded
computation is several years behind data-parallel, and no language or system has been as
widely accepted as HPF has for data parallel computation. We are pursuing our research
into multithreading by compiling Id and a related language, pH, for SMPs [6, 41].
Whereas Id and pH have implicit parallelism and synchronization, other languages require
the user to expose the parallelization and synchronization. Some of these languages
include Mul-T [29], Cilk [10], Concert [39], Cid [35], and Java [18].

6.2. Future Research

It is important to discuss the problems that need to be resolved in order to provide
the user with a single effective programming model which will work on a cluster and
scale down gracefully to a single SMP or a workstation. We discuss both data-parallel
and multithreading models from this point of view.

Most of the technology for compiling HPF for SMPs and clusters of SMPs exists
today, although it needs to be improved. For example, for efficient message passing, the
compiler needs to coalesce messages to increase message granularity, and for a more
effective use of an SMP, the parallel code fragments within an SMP need to maximize
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the use of threads and shared memory. It remains to be seen if the market for HPF is large
enough for commercial vendors to make the required improvements. A way to broaden
the use of data-parallel compiler technology is to apply it to standard Fortran and C
programs. This approach has been taken by the SUIF compiler [4], and research issues
in that direction include detection of parallelism, mapping of data and work, restructuring
of loops to exploit hierarchical memories, and load balancing in the presence of multiple
users and processes.

Although data-parallelism is well suited to GCM and other regular scientific appli-
cations, it is ill matched to the vast majority of commercial applications that run on
high-end computers today. Yet the research in multithreaded computing on SMPs is not
as advanced as for data-parallel computing. The main compiler issues are the ability
to optimize in the presence of hierarchical memories, the implementation of a shared
memory abstraction in a distributed memory environment, and load balancing coupled
with temporal and spatial locality concerns and multiuser environments. The compiler
also needs to be integrated with the run-time system for efficient creation, synchroniza-
tion, and scheduling of threads. Compilation of fine-grain parallel languages like Id also
requires partitioning of work into coarser grain threads for better efficiency. Further re-
search for incorporating multithreading into a mainstream general-purpose language is
also needed. It seems that parallelizing a sequential language for multithreaded execution
would have the biggest impact.

In comparing the suitability of these two models for SMP’s and clusters of SMP’s,
the same issues that we have addressed in this paper arise. Overheads from the data-
parallel model come from poor handling of irregular problems, and overheads from
multithreading come from dynamic parallelism and synchronization. Our study indicates
that in some realistic circumstances overheads for multithreading can be comparable to a
data-parallel implementation even for regular scientific applications. The generality of the
multithreading model may attract greater resources from industry, and may have much
greater impact in the future than the data-parallel model.

APPENDIX A

Mathematical Formulation of Ocean Model

The ocean model solves the full three-dimensional Navier–Stokes equations for an
incompressible Boussinesq fluid in a highly irregular domain such as that of an ocean
basin. Development of such a model is of general interest because:

• Navier–Stokes models can be applied to a vast range of fluid flow problems in
engineering and myriad phenomena in the atmosphere and ocean. In particular, when
viewed isomorphically, the incompressible Navier–Stokes equations can be used to
study a compressible atmosphere—they are the basis of the pressure-coordinate quasi-
hydrostatic atmospheric convection models of Miller and Pearce [33]—see [11]. Thus
incompressible Navier–Stokes algorithms can be used to study motion in the atmosphere
by exploiting a mathematical isomorphism.

• In oceanographic applications, the model is appropriate for the study of processes
from convective scales, where the hydrostatic relation breaks down, right up to planetary-
scale motions. Thus if the resolution of the model were to be continually increased the
model equations would be capable of representing motions down to the scale of meters.
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• Numerical algorithms based on the Navier–Stokes equations need not be any
more complicated (and are sometimes simpler) than those based on approximated forms
and may offer advantages. For example, a common problem in hydrostatic ocean models
is the noise in the vertical velocity field on the grid-scale of the model, particularly in the
presence of steep topography. This noise may be inherent in the numerical algorithm; the
equation that expresses the condition of incompressibility—the continuity equation—is
used to compute the vertical velocity, leading to an accumulation of errors as the vertical
integration proceeds upwards from the bottom.

A.1. The Continuous Equations

The physical variables of the ocean model are the fluid velocityv, the densityρ, the
scaled pressurep defined as the physical pressure divided by a constant average density,
the temperatureT , and the salinityS. The equations of motion are as follows:

Newton’s Law,

∂v
∂t
= Gv −∇ p, (A1)

where

Gv = −v · ∇v+ f + F− D− gêz, (A2)

f is the Coriolis force,F are forcing and dissipation terms, andgêz is the gravitational
force.

The heat equation,

∂T

∂t
= GT , (A3)

where

GT = −v · ∇T + FT − DT . (A4)

The salinity equation has the analogous form

∂S

∂t
=GS (A5)

GS=−v · ∇S+ FS− DS. (A6)

In Equations (A1)–(A6),F, FT , and FS are specified force terms and theDs are
anisotropic dissipation terms of the form

{ D
DT

DS

}
= −KH

(
∂2

∂x2 +
∂2

∂y2

)
− KV

∂2

∂z2

{ v
T
S

}
. (A7)

The velocity field satisfies the continuity equation

∇ · v = 0 (A8)
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and the density is given by a 10-term polynomial approximation to the local equation of
stateρ(T, S).

A.2. Method of Solution

Given the variablesvn, pn, Tn, and Sn, a predictor step of size1t is first taken to
compute an approximate velocity at stepn+ 1,

v∗ = vn +1t (Gv(vn, ρ(Tn, Sn))−∇ pn) (A9)

from which the Euler-backward driving termG at stepn+ 1 is determined:

G∗v = Gv(v∗, ρ(Tn, Sn)). (A10)

To enforce∇ · vn+1 = 0, the pressure at stepn+ 1 is calculated from the Poisson equa-
tion

∇2 pn+1 = ∇ ·G∗v −
1

1t
∇ · vn, (A11)

where the last term is retained to control rounding errors and the velocity is then evolved
to stepn+ 1,

vn+1 = vn +1t (G∗v − ∇ pn+1). (A12)

The temperature and salinity are updated analogously, with predictor step

T∗ = Tn +1tGT (vn+1, T) (A13)

S∗ = Sn +1tGS(vn+1, S) (A14)

followed by the Euler-backward step

Tn+1 = Tn +1tGT (vn+1, T∗) (A15)

Sn+1 = Sn +1tGS(vn+1, S∗). (A16)

All derivatives in Eqs. (A9)–(A16) are approximated by second-order differences with
velocities being defined on the centers of the mesh cell faces andP, S, and T defined
at the cell centers. The Poisson equation is solved by conjugate gradient iteration.
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