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A pedagogical example of Eulerian and Lagrangian
flows induced by Rossby wave rectification in an

ocean basin

by John Marshall1

ABSTRACT
The time-mean flow of eddying wind-driven gyres is used as a tutorial example of the relationship

between Eulerian and Lagrangian mean flow. The Eulerian mean in the far field of the baroclinically
unstable jet is shown to be well represented as the rectified flow of Rossby basin modes. The Stokes drift
of particles released in the wave field all but cancel out the Eulerian mean, resulting in vanishingly
small Lagrangian mean flow. By reformulating the interaction between eddies and mean flow in
terms of, so-called, residual mean velocities and residual eddy fluxes, it becomes clear that only the
component of the eddy potential vorticity flux that crosses mean potential vorticity gradients, must
be parameterized.

1. Introduction

Here we study the wave rectification due to the nonlinear interaction of barotropic basin
normal modes. Aspects of this problem have been previously studied by Pedlosky (1965)
and Harrison and Robinson (1979). Here we show that the theory is relevant to the mean
flow generated by the barotropic far field of an eddy resolving baroclinic numerical ocean
model.

As a simple analytic description of the interior eddy field we use the “meander induced
forcing” (MIF) model of Harrison and Robinson (1979), in which waves are generated by
oscillating a boundary (the meandering Gulf Stream, for example). In the inviscid limit
the “eddy-like” solutions to the MIF problem resemble basin normal modes and so the
calculation of the rectified flow is similar to that of Pedlosky (1965) who, in a study of the
time-dependent circulation, excited normal mode solutions at resonant frequency.

We present this problem as a pedagogical example of wave-mean flow interaction which
forces us to think about and define Eulerian and Lagrangian mean flows and grapple with
the nature of eddies and their driving of mean flow. This subject was of great interest to
Melvin Stern throughout his career, beginning with his very first paper on the ‘moving flame
experiment’ (Stern, 1959), stemming from his graduate work at MIT. There, as reviewed
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by Whitehead (1975), a heater moving under a horizontal cylindrical annulus of liquid,
generates mean flow.

What is of interest in the example explored here is that Eulerian mean flow is driven
almost entirely by eddy potential vorticity (PV) fluxes which are directed parallel to mean
PV contours. The residual-mean flow all but vanishes, however, because the Eulerian mean is
balanced by the Stokes drift of particles circling in the wave field. We argue, and demonstrate
by appropriately transforming the prognostic equations for mean PV, that it is only eddy
PV fluxes directed across the mean PV contours — i.e. the ‘residual flux’ — that needs to
be parameterized. Our discussion is also relevant to recent developments and applications
of ‘residual mean’ theory to the ocean (e.g. Marshall and Radko, 2003; Plumb and Ferrari,
2005) and to the reformulation of ocean models in terms of residual-mean quantities (e.g.
Ferreira and Marshall, 2006; Zhao and Vallis, 2008) — and in attempts to understand and
parameterize ocean eddies in coarse resolutions models — see, for example, Holland and
Rhines (1980), Rhines and Young (1982), Marshall (1984), Holm and Nadiga (2003).

We begin in Section 2 by studying the mean flow observed in eddying wind-driven, quasi-
geostrophic gyres. In Section 3 we set out a theoretical framework in which we will attempt
to understand what is going on. In Section 4 we present solutions of the theoretical model
that describe, we believe, the eddying and mean flows observed in the numerical model.
Finally, in Section 5 we place our results in the wider context of residual mean theory and
draw out the lessons of our study for attempts to formulate and parameterize the eddy fluxes
in coarse-resolution ocean models.

2. Eulerian mean flow of eddying gyres: a numerical example

We describe numerical simulations from a 2−level single gyre configuration of the quasi-
geostrophic model described in Marshall et al. (1988). Driven by an idealized sinusoidal
wind-stress pattern (there is no thermal forcing), a gyral pattern is spun up in excess of the
Sverdrup prediction through inertial recirculation. The flow is baroclinically unstable and
eddies and waves extract energy from the mean flow and play a role in shaping its character.
In Figure 1(a) we show plots of instantaneous streamfunction ψ and quasi-geostrophic
potential vorticity q, in upper and lower levels of the model. Coexisting with the meandering,
nonlinear jet in the northwest corner of the gyre, we observe a strong interior eddy field which
has a marked barotropic component. Note how the q contours undulate in the interior of the
gyre as Rossby waves, excited by the meandering jet, propagate westwards. The Eulerian,
time-mean flow is shown in Figure 1(b). The upper level flow has the characteristic hallmark
of a wind-driven gyre with significant recirculation, as discussed in the barotropic context
by, for example, Veronis (1966). The mean flow in the lower level — and this is the focus
of attention of the present article — comprises a matrix of closed, counter-rotating gyres
which have a scale less than that of the ocean basin. These gyres are strong and persistent, a
striking feature of the Eulerian flow. We shall see below that they are entirely eddy driven.
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Figure 1. (a) Instantaneous streamfunction in the (left) upper layer and (right) lower layer, both
normalized by the Sverdrup transport. (bottom) Instantaneous qgpv in the (left) upper layer and
(right) lower layer, nondimensionalized wrt βL. (b) The time-mean (left) upper layer and (right)
lower layer streamfunction, normalized by the Sverdrup transport. The contour interval is indicated.

In the remainder of this article we attempt to explain, in terms of eddy-mean flow inter-
action theory, how these gyres are set up by the eddy field. We shall find that they are a
consequence of the rectification of Rossby basin modes which are resonantly excited by
the meandering of the jet along the northern boundary of the model. However, we will
also discover that these Eulerian-mean gyres, although real, give one a completely wrong
impression about the trajectory of fluid parcels and Lagrangian-mean circulation. In fact,
the Eulerian mean flow in the interior of the basin is almost entirely canceled out by an
equal and opposite circulation associated with Stokes drift, so that the Lagrangian mean
(or residual) flow is very close to zero. This, we will argue, has important lessons as we
reformulate ocean models in terms of residual-mean quantities.
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Figure 2. In the ‘meander induced forcing’ model, the spatial and temporal variation of the stream-
function is specified on the northern boundary of a basin of width a and meridional extent b.

3. Theoretical model of eddy-mean flow interaction

The ocean model is a barotropic fluid on a β-plane contained in a rectangular basin of
dimension a by b, as sketched in Figure 2. We suppose that there are rigid walls to the east,
west and south on which the streamfunction is constant. The basin is open to the north,
however, where we specify the streamfunction as a function of x and t . Dissipation is by
bottom friction.

The vorticity equation is (nondimensionalized)

∂

∂t
∇2ψ + RJ(ψ, ∇2ψ) + ∂ψ

∂x
= −ε∇2ψ (1)

where R = US/βL2 (where US is a Sverdrup velocity scale, β the beta effect and L the
scale of the basin) is a Rossby number for the vorticity equation and ε is the bottom friction
coefficient. In the solution shown in Figure 1, R = 2×10−5 — see the appendix of Marshall
et al. (1988) for a discussion of the nondimensionalization and typical parameters.

Supposing, then, that R is small we expand the streamfunction in powers of R thus:

ψ = ψ(0) + Rψ(1) + . . . . . .

The zeroth order problem is then linear and given by

∂

∂t
∇2ψ(0) + ∂ψ(0)

∂x
= −ε∇2ψ(0). (2)

The first-order correction (the rectified flow) is given by

∂

∂t
∇2ψ(1) + ∂ψ(1)

∂x
= −ε∇2ψ(1) − J (ψ(0), ∇2ψ(0)). (3)
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We will solve Eq. (2) for the eddies using the MIF model of Harrison and Robinson
(1979), compute the eddy vorticity flux divergence forcing term in Eq. (3), and then solve
Eq. (3) for the rectified flow. First, though, we discuss general properties of the ψ(1) flow
which do not depend on particular solutions to (2).

Although ψ(0) = 0 (where 〈−〉 at a point represents a time-average long compared to an
eddy period), nonlinear interactions can generate a nonzero steady flow, ψ(1) �= 0. Taking
the time-average of (3) it becomes

∂

∂x
ψ(1) = −ε∇2ψ(1) − J (ψ(0), ∇2ψ(0)). (4)

Provided that the eddy forcing term is of large scale, and the frictional coefficient sufficiently
small, we can expect an interior Sverdrup balance, but here forced by eddy fluxes associated
with the zeroth order flow.

The enstrophy equation for the zeroth order flow is:

ε(∇2ψ(0))2 + v(0)∇2ψ(0) = 0, (5)

which says that in the absence of dissipation the meridional flux of potential vorticity is
everywhere zero. Although the streamfunction at the open northern boundary is varying
with time, even here there can be no time-averaged transport of vorticity in the absence of
dissipation. A consideration of the energetics shows that there is also no work done at the
boundary if ε = 0.

In the inviscid limit Eq. (4) can be integrated to yield a particularly simple form:

ψ(1) = −u(0)∇2ψ(0), (6)

where ψ(1) on the eastern boundary has been set to zero. Interestingly the solution (6)
satisfies the boundary conditions at both meridional walls where there can be no normal
vorticity flux. The mean flow is thus entirely driven by a component of the potential vorticity
flux which is parallel to the planetary vorticity contours!

So, unlike the classical Sverdrup balance, our eddy-driven inviscid Sverdrup solution
can satisfy both eastern and western boundary conditions without the need for frictional
boundary layers. This is possible because the eddy forcing term in (4) does not generate
vorticity (or enstrophy) unless it is being dissipated. In the presence of dissipation, Eq. (5)
implies a southwards component of the potential vorticity flux to offset local dissipation of
eddy enstrophy. Solutions to (4) in this case will have a boundary layer character. Let us
now consider in more detail the nature of the solutions.

4. Solutions for the eddy and rectified flow

a. The eddy field

The work of Harrison and Robinson (1979) suggests that linear theory, as represented
by Eq. (2), is relevant to interior mesoscale model eddies and that certain boundary forced
solutions may be useful as a description of the ocean mesoscale variability. In their MIF
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model, solutions of (4) are driven by imposing an oscillatory northern boundary condition,
a crude parameterization of the nonlinear processes occurring in the transient northern
boundary current.

The solution of (2) satisfying ψ
(0)
E = ψ

(0)
W = ψ

(0)
S = 0 and

ψ
(0)
N = Re{e−iσtF (x)} with F(0) = F(a) = 0

is

ψ(0) = Re

{
e−i(σt+kx)

∞∑
m=1

cm sin(mπx) sin λy

}
(7)

where k = 1

2(σ + iε)
; λ2 = k2 − m2π2

and cm = 2

1∫
0

sin(mπx)F (x)e−ikx sin

(
λb

a

)
dx.

Properties of the solution (7) for small ε are discussed at some length in HR. Solutions are
classified as “trapped” or “eddy-like” depending on whether there are closed streamlines
or not. The existence of the “eddy-like” solutions does not depend on the particular form
of the forcing function F(x). It is only required that the solution be sinusoidal in y with at
least one interior node: i.e.

λ2 >
a2π2

b2
. (8)

HR go on to compare their MIF solutions with eddy streamfunctions derived from various
general circulation models and find in each case that single inviscid “eddy-like” term of (7)

ψ(0) = cm cos
(
σt + x

2σ

)
sin(mπx) sin λy (9)

satisfactorily describes the scale and pattern of evolution of the far field barotropic stream
function if σ is chosen as the dominant eddy frequency of the model. ψ(0) is a basin mode
(see Pedlosky, 1987), a wave travelling towards the west modulated by sines, as sketched
in Figure 3.

b. The rectified flow

The time independent vorticity forcing, due to the nonzero correlations between ẑ×∇ψ(0)

and ∇2ψ(0) in a single mode of the above form, can now be calculated, and then (6) gives
the rectified flow.

The vorticity forcing is

v(0)∇2ψ(0) = 0; u(0)∇2ψ(0) ∼ sin2(mπx) sin(2λy)
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Figure 3. Sketch of the ψ(0) solution from the MIF model showing high (H) and low (L) circulation
patterns. In the inviscid limit ψ(0) has the form of a Rossby basin mode. The trajectories of particles
released in to the basin mode solution are indicated by the curly arrows.

Figure 4. Sketch of the rectified flow, ψ(1), Eq. (10), and the driving eddy fluxes u′q ′, for the gravest
ψ(0) solution, Eq. (9) (with m = 1, λ = π). Regions of eddy flux divergence and convergence are
indicated.

and so

ψ(1) = −u(0)∇2ψ(0) ∼ − sin2(mπx) sin(2λy). (10)

The rectified flow and the driving eddy fluxes for the gravest mode are shown in Figure 4.
There is a mean anticyclonic gyre to the north with westward pointing vorticity fluxes,

and a cyclonic gyre to the south with eastward pointing fluxes. The mean flow is driven
across the f contours by the eddy flux divergence.
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The form of the rectified flow, Eq. (10), has been derived before. Pedlosky (1965) con-
sidered a barotropic model driven by a fluctuating wind-stress curl. At resonant forcing (the
amplitude was limited by friction) the form of the linear response is that of a normal mode,
and hence the rectified flow is given by (10).

There is a straightforward physical interpretation of the pattern of eddy fluxes shown
above. If particles are released in the ψ(0) field given by Eq. (9), then they are seen to rotate
anticyclonically and drift eastward to the north of the latitude of maximum wave amplitude
and cyclonically and drift westward to the south, as sketched in Figure 3. It takes a particle
one wave period to complete the circuit. A parcel rotating anticyclonically carries more
relative vorticity from east to west than it returns from west to east (it conserves ζ + f and
f varies with y). There is thus a net transfer of vorticity from east to west. Vorticity is not
transferred meridionally — a parcel carries as much relative vorticity north as it brings back
south. On the southern flank of the wave train particles released in to the wave rotate in the
opposite direction, and so the sign of the vorticity transfer is reversed.

The amount of vorticity transferred will be greater the greater the meridional extent of
the excursion. This depends on the local amplitude of the disturbance: the modulation in
space of the travelling wave. Thus the east-west flux will be a divergent flux if the wave
amplitudes vary zonally, as for a wave of the form Eq. (9). It is this divergence which drives
the Eulerian mean flow ψ(1). In the example given here it is the envelope of the basin mode
required to satisfy the boundary conditions on the meridional walls which modulate the
wave train rather than dissipation.

The modulating envelope causes the particles gyrating in the ψ(0) field to systematically
drift in one direction. Particles displaced northwards (say) at one longitude return south-
wards at another where the wave amplitude is different, and so they are not returned to
their original latitude. This causes particles to migrate. The direction of migration depends
on the sense of rotation of the parcels (see Fig. 3), and on whether the wave amplitude is
increasing or decreasing. The rate at which the particles drift — the Stoke’s drift veloc-
ity — is exactly balanced by the 1st order Eulerian mean flow. Thus the Lagrangian mean
flow (mean velocity of a parcel over a wave period) is zero, as it must be because there is
no dissipation and the mean potential vorticity contours intersect boundaries:

vL = Rv(1)︸ ︷︷ ︸
v

+ η0 • ∇v(0)︸ ︷︷ ︸
v∗

= 0 (11)

where η0 is the displacement of the fluid parcel from a release point.
The relevance of the above picture the mean flow of our eddying gyre can be seen in

Figure 5 where v′q ′ and ψ are plotted for the numerical experiment shown in Figure 1.
In the northern quarter of the domain we see a strong anticyclonic gyre associated with
the jet flowing along, and recirculating to the south of, the northern boundary. Here the
eddy fluxes have a significant component directed down the large-scale mean q gradient.
However, in the remainder of the domain to the south, we observe eddy fluxes which have
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Figure 5. The time-mean lower layer streamfunction. (right) The eddy qgpv fluxes, u′q ′. This(
m = 2, λ = π

2

)
pattern should be compared to the (m = 1, λ = π) solution sketched in Figure 4.

The contour interval is indicated.

a predominantly zonal component directed parallel to q. We observe a 2 × 3 matrix of
Eulerian-mean gyres, ψ, driven by these fluxes.

5. Interpretation in terms of residual-mean theory

The equation governing the evolution of the mean potential vorticity q can be written:

∂q

∂t
+ v · ∇q + ∇ · v′q ′ = F − D. (12)

Guided by residual-mean theory — see Andrews and McIntyre (1976) and Andrews
et al. (1987) — we separate the eddy q flux in to a ‘skew’ component which is parallel to
the q contours and a ‘residual’ component which has a component across the q contours.
Specifically we choose to write:

v′q ′
skew = (u′q ′, u′q ′sq) (13)

where sq = − qx

qy
is the slope of the q contours and the remaining, residual component is:

v′q ′
res = (0, v′q ′ − u′q ′sq). (14)

Note that in the limit of the q contours being coinicident with latitude circles (sq = 0), then

v′q ′
skew = (u′q ′, 0)

v′q ′
res = (0, v′q ′).
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The divergence of the skew flux is associated entirely with an advective process because
of the identity:

∇ · (
v′q ′

skew

) = v∗ · ∇q = Jx,y(ψ
∗, q)

where

ψ∗ = u′q ′

qy

. (15)

We call v∗ the ‘eddy-induced’ velocity and ψ∗ the eddy-induced streamfunction.
In the rectified basin mode problem worked out in Section 4, ψ∗ exactly cancels out ψ,

Eq. (10): it induces a circulation of an equal and opposite sign to the Eulerian-mean gyres
seen in Figure 5, resulting in a vanishingly small residual-mean flow.

In terms of residual-mean quantities, Eq. (12) can be written:

∂q

∂t
+ vres · ∇q = Fres + F − D (16)

where

vres = v + v∗ = ẑ × ∇(ψ + ψ∗) (17)

corresponds to Eq. (11) of our analytical model and

Fres = − ∂

∂y
v′q ′

res . (18)

Thus we see that in an eddying ocean it is vres and not v that advects q and it is v′q ′
res , not

v′q ′, that must be parameterized.
In the eddying model that has been the focus of our attention here, Fres , F , D −→ 0 and

so vres · ∇q ≈ 0 i.e. ψres = ψ + ψ∗ −→ 0. The matrix of Eulerian-mean gyres evident in
Figure 5 does not imply material transport of properties and need not be parameterized.

6. Conclusions

We have explored the rectification of Rossby basin modes in which an Eulerian-mean flow,
ψ, is driven by an eddy pv flux directed entirely alongq contours. The Stokes drift of particles
released in the wave field exactly cancels the Eulerian mean and the resulting residual-
mean flow vanishes. The problem is highly idealized and yet is successful in explaining
the Eulerian-mean circulations observed in the interior of eddying, wind-driven gyres. It
also provides an excellent pedagogical illustration of the differences between Eulerian and
Lagrangian-mean flow, Stokes drift, residual flow and residual fluxes.
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Important lessons of the study are:

1. the simplification and clarification of eddy-mean flow processes that result from a
reformulation of the equations in terms of residual-mean velocities and residual eddy
pv fluxes

2. the central role of the residual pv flux in driving residual-mean circulation
3. the focus of eddy parameterizations should be the component of the flux directed

across time-mean potential vorticity contours.
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