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The vortex in cell (VIC) method has been found to be an attractive computational choice for solving a
number of fluid dynamical problems. The Lagrangian advection of particles leads to stability of the
method even for long time steps. Moreover, conservation of particle properties, such as potential vortic-
ity, can be enshrined at the heart of the numerical procedure. In this paper we describe a numerical
implementation of the VIC method for a reduced gravity, quasi-geostrophic model and make use of its
novel aspects to explore the interaction of waves and turbulence on the sphere. The Lagrangian advection
of particles is performed using a fourth order Runge–Kutta method and the stream-function is obtained
by the inversion of potential vorticity using an underlying Eulerian grid. The scheme is tested in the sim-
ulation of Rossby and Rossby–Haurwitz waves. Encouraging results are obtained for various radii of
deformations corresponding to both the atmosphere and ocean.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Here we experiment with algorithms for numerical solution of a
quasi-geostrophic system in which the fluid is represented by a
large number of discrete particles whose potential vorticities are
treated as the primary variable. Various numerical approaches
are available for solution of vorticity-stream function equations,
to which the quasi-geostrophic system belongs. These include fi-
nite difference, finite volume, finite element, Lagrangian/semi-
Lagrangian, spectral and vortex methods. Among these, spectral
and vortex methods are most commonly used for turbulence stud-
ies where a low level of numerical damping and oscillatory behav-
ior is crucial. In direct numerical simulations (DNS) Cottet et al.
(2002) showed that the ‘vortex in cell’ (VIC) method exhibits good
results at large and intermediate scales, whilst avoiding accumula-
tion of energy at the end of spectrum in under-resolved cases.
Spectral methods are not well suited to the study of domains in
the presence of boundaries where Legendre-type polynomials are
usually used which are very expensive. Vortex methods, on the
other hand, have proved useful in study of a wide range of turbu-
lent flows and domains: computational cost is only slightly in-
creased in the presence of boundaries (Cottet and Koumoutsakos,
2000; Cottet et al., 2002). Despite offering a natural way of model-
ing oceanic and atmospheric flows, however, vortex methods have
ll rights reserved.
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been rarely used in our field. Hence our interest in exploring them
here.

Many variants of vortex methods have been employed in the
wider computational literature. Their common feature is that the
vorticity is represented by ‘‘elements” (e.g. point vortices or using
a chosen basis function), which are tracked in the domain using
Lagrangian methods, an elegant and robust way to treat the non-
linear advection terms. The main idea in vortex methods is to com-
pute the trajectories of the particles, advect the point vortices, and
compute the flow field based on the new position of the vortices.
Inspired by the method of computing the flow field from point vor-
tices, two main groups of vortex methods may be identified. In the
first, sometimes called the ‘grid-free’ vortex method, the flow field
is directly obtained from the point vortices using the Biot–Savat
law (see, for example Lakkis and Ghoniem, 2009; Huang et al.,
2009). This approach becomes computationally prohibitive as the
number of particles becomes very large, since the velocity field act-
ing on each point vortex is induced by all other point vortices.
However, fast methods may reduce the cost of this step to
O(N logN) or O(N), where N is the number of elements. In the sec-
ond approach, known as the ‘vortex in cell’ (VIC) method and orig-
inally developed by Christiansen (1973), the flow field is obtained
by solving a Poisson equation using an underlying Eulerian grid (as
sketched in Fig. 1).

The VIC method has been widely used in the simulation of
complex fluid dynamical problems. Liu and Doorly (1999) used
it successfully for cavity flows driven by impulsively-started
and oscillating lids, including vortex/wall interactions. Ould-Salihi
et al. (2000) showed that the VIC method, with appropriate
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Fig. 1. The ‘vortex in cell’ method follows the trajectories, and computes the potential vorticity of discrete particles as they move over an underlying Eulerian grid. To
compute particle trajectories, the vorticity on particles is interpolated to the Eulerian grid. This gridded vorticity is then inverted for the stream-function, from which the
velocity is computed and interpolated back to the particle positions. This interpolated velocity is then used to compute new particle positions.
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interpolation schemes and exploiting domain decomposition, are
more effective than pure finite difference approaches for turbu-
lent flows. Liu (2001) employed VIC for three-dimensional model-
ing of boundary layers under the impact of a vortex ring. Kudela
and Regucki (2002) used VIC for simulation of leapfrogging phe-
nomenon for two rings with the same circulation. Cottet and Pon-
cet (2003) used the VIC method for simulation of wall-bounded
turbulent flows with a body-fitted grid. Uchiyama and Naruse
(2004) employed VIC to model free turbulent two-phase flows
and concluded that it was computationally less expensive than
the grid-free vortex method. Cocle et al. (2008) combined VIC
and parallel fast multipole methods for efficient domain decom-
position simulations of instability of vortex rings and space-
developing wakes at very high resolution. Further applications
of VIC can be found in the references of the above-mentioned
studies.

The objective of this study is to explore VIC as a method of solu-
tion of a reduced gravity, quasi-geostrophic model on the sphere
and evaluate its performance in simulating fundamental geophys-
ical phenomena such as Rossby waves and turbulence in the atmo-
sphere and ocean. A main feature of the model is that, in the
absence of dissipation, the potential vorticity of particles is con-
served (by construction) as in the continuous system. Moreover,
the Lagrangian transport of the particles eliminates difficulties in
the representation of advection such as nonlinear instabilities
and time step restrictions associated with Eulerian methods. Other
aspects of the VIC method includes the possibility of direct control
on generation and dissipation of vortices (for example in the repre-
sentation of baroclinic instabilities by eddies, see Sections 5 and 6)
straightforward modeling of a mean background flow as explained
below, and availability of trajectories at no extra cost (useful for
estimation of eddy diffusivity). As illustrated herein, the VIC meth-
od can be successfully employed in the modeling of QG systems
resulting in an efficient and accurate tool particularly in oceano-
graphic applications where boundaries play a central role.

This paper is organized as follows. In Section 2 the quasi-geo-
strophic equations that will be solved are presented. Section 3 pre-
sents the VIC method and describes computational details for
particle tracking and interpolation. In Section 4, Rossby and Ross-
by–Haurwitz test cases are studied and the results compared with
analytical solutions. In Section 5 we apply the model to the study
of the interaction of geostrophic turbulence and Rossby waves on
the sphere. Some concluding remarks complete the study.

2. Continuous equations for a QG shallow water layer

The quasi-geostrophic equations representing the evolution of a
shallow-water layer may be written in vorticity-stream function
form as

Q ¼ f þr2w� w

L2
d

ð1Þ

DQ
Dt
¼ �af ð2Þ

where f ¼ r2w is relative vorticity, Q is potential vorticity, f is the
Coriolis parameter, w is the stream-function, a is a dissipation coef-
ficient and Ld is the radius of deformation. The term w=L2

d in Eq. (1) is
a representation of vortex stretching. Eq. (2) states that in the ab-
sence of dissipation, potential vorticity remains constant following
a particle. As we shall see, this property is at the core of the vortex
in cell method.

The material derivative in (2) is defined as

D
Dt
¼ @

@t
þ ux @

@x
þ uy @

@y
ð3Þ

where ux and uy are, respectively, the zonal (eastward) and merid-
ional (northward) velocity components of the flow in the rotating
coordinate system. The velocity field u ¼ ðux;uyÞ can be expressed
in terms of particle positions and the stream-function thus:

ðux;uyÞ ¼ Dx
Dt

;
Dy
Dt

� �
¼ � @w

@y
;
@w
@x

� �
ð4Þ

Eqs. (1), (2) along with (4) constitute the heart of our model. That is,
given the initial potential vorticity of particles, the stream-function
is obtained by solving the elliptic equation (1), particle trajectories
are computed using (4) to displace particles to their new position,
and the particle potential vorticities are updated using Eq. (2).

In spherical coordinates, changes in latitude ðdhÞ and longitude
ðdkÞ are given by
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dh ¼ dy
R

ð5Þ

dk ¼ dx
R cosðhÞ ð6Þ

where R is the radius of the sphere and dx, dy are changes in dis-
tance along latitude and longitude circles, respectively. Hence the
angular velocity components (in rad/s) in k and h directions, respec-
tively, are given by

uk ¼ Dk
Dt
¼ ux

R cosðhÞ ¼
�1
R

@w
@h

ð7Þ

uh ¼ Dh
Dt
¼ uy

R
¼ 1

R cosðhÞ
@w
@k

ð8Þ

In spherical coordinates, the elliptic equation relating f and w
takes the following form:

f ¼ r2w ¼ 1
R2 cos2ðhÞ

@2w

@k2 þ
1

R2 cosðhÞ
@

@h
cosðhÞ @w

@h

� �
ð9Þ

Note that the numerical algorithm in spherical coordinates is ex-
actly the same as in Cartesian coordinates except for geometric fac-
tors in the calculation of trajectories and inversion of the vorticity
field. This greatly simplifies the numerical algorithm for integration
of the above system. Our algorithm is described in the next section.

3. Numerical procedure using VIC

As represented schematically in Fig. 1, the VIC method lays
down an Eulerian grid, seeds it with particles endowed with poten-
tial vorticity (pv) and advects those particles around. The pv on the
particles is interpolated to the grid, where it is inverted for the cur-
rents. The currents are then interpolated back from the grid to the
particles allowing their position to be stepped forward in time. The
details of the algorithm we have devised and implemented is now
described in detail.

3.1. Algorithm

The algorithm used for numerical integration from t ¼ 0 to
t ¼ nDt, where Dt is the time-step size, is summarized here. A sche-
matic layout of the model is shown in Fig. 1. In the following, the
notation xn ¼ RK4ðxn�1;un;DtÞ indicates that xn is the new position
of the particles, initially at xn�1, computed using the flow field un over
a time interval Dt by a RK4 method.

1. Initialize model with m particles in each cell and initialize
their relative vorticity f0

p . The subscript p refers to particles.
In the results presented here we set m ¼ 9.

2. Given the initial position x0 and initial relative vorticity of
particles f0

p , for n = 1–N do:

2-1. Interpolate relative vorticity of particles fn�1

p to grid
points fn�1

c (the subscript c refers to grid points).
2-2. Invert relative vorticity, w� ¼ r�2fn�1

c .
2-3. Compute the flow field, u� ¼ r?w�.
2-4. Using the fourth order RK method, advect the particles

from the position xn�1 in the flow field u� for a half
time interval Dt� ¼ Dt

2 , to obtain the intermediate
position of particles x�, where x� ¼ RK4ðxn�1;u�;Dt�Þ:

2-5. Compute the intermediate potential vorticity Q � using
Q � ¼ Q n�1 � Dt�afn�1 ð10Þ
2-6. Compute the relative vorticity f� of the particles at the
new position f� ¼ Q � � f � w�

L2
d
, where f and w� are,

respectively, the Coriolis parameter and stream func-
tion at the intermediate position of particles x�.
2-7. Interpolate intermediate relative vorticity of particles
f�p to grid points f�c :

2-8. Invert relative vorticity w�� ¼ r�2f�c :
2-9. Compute the flow field u�� ¼ r?w��:
2-10. Using the fourth order RK method, advect the particles

from the position xn�1 in the flow field u�� for a full
time interval Dt , to obtain the new position of parti-
cles xn, where xn ¼ RK4ðxn�1;u��;DtÞ:

2-11. Compute the potential vorticity Qn as Qn ¼ Q n�1�
Dtaf�.

2-12. Compute the relative vorticity fn of the particles at the

new position fn ¼ Qn � f � wn

L2
d
, where f and wn are,

respectively, the Coriolis parameter and stream func-
tion at the new position of particles xn.
It should be mentioned that since we use a latitude–longitude
grid, our gird converges at high latitudes. However, time-step size
can remain large because the advection is performed using a
Lagrangian method. Indeed, our main constraint in choosing
time-step size is accuracy. Therefore, in order to benefit from the
stability of the scheme for large time-step sizes, we use a fourth or-
der scheme to calculate trajectories. Splitting methods can also be
used. However, note that RK4 is efficient because we do not invert
the vorticity field at each stage of RK4. Moreover, interpolation of
the velocity field is not computationally expensive because a first
order method is sufficient (see below).

3.2. Interpolation method

Interpolation is needed at various stages of the numerical meth-
od to transfer information from the Eulerian grid to particles and
vice versa. The following methods are employed.

3.2.1. Interpolation of velocity field from the Eulerian grid to particles
As explained above, a first order accurate scheme (Christiansen,

1973) was employed to interpolate the velocity field from the
Eulerian grid to particles. Consider the particle k at the position

ðxk
p; y

k
pÞ ¼ ðiþ dxÞDx; ðjþ dyÞDy

� �
ð11Þ

where Dx and Dy are the Eulerian grid sizes in x and y directions,
respectively. The velocity at the point ðxk

p; y
k
pÞ is computed as

uðxk
p; y

k
pÞ ¼ Ak

1 uði; jÞ þ Ak
2 uðiþ 1; jÞ þ Ak

3 uði; jþ 1Þ

þ Ak
4 uðiþ 1; jþ 1Þ ð12Þ

where

Ak
1 ¼ ð1� dxÞð1� dyÞ; Ak

2 ¼ dxð1� dyÞ ð13Þ
Ak

3 ¼ ð1� dxÞdy; Ak
4 ¼ dx dy ð14Þ
3.2.2. Interpolation of f or Q � f from particles to the Eulerian grid
Since the Coriolis parameter f can be exactly computed at the

position of particles, we do not interpolate the potential vorticity
Q from particles to the Eulerian grid. Instead we may interpolate
either Q � f or relative vorticity f. The interpolation of f is compu-
tationally more expensive because the quantity w

L2
d

is known on the
Eulerian grid and must be interpolated first to the position of par-
ticles to compute the relative vorticity of point vortices. However,
as shown in the following, for the oceanic regimes where f is typ-
ically much smaller than w

L2
d
, interpolation of Q � f leads to consid-

erable error in the vorticity field. It is thus necessary to interpolate
f rather than Q � f .

Interpolation from particles to the Eulerian grid is typically
done using the so-called area method (Appendix A). However, we
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found that this can lead to inaccuracies in the phase speed of
Rossby waves. Instead we use an ‘inverse distance’ method to
interpolate from particles to the Eulerian grid, as follows. The main
idea is that the vorticity of each particle in our method is an
approximation of the vorticity of the fluid at that point and by
advection of particles we are indeed using a Lagrangian method.
The particles in our method are not Dirac Delta point vortices as
in grid-free vortex methods. The spatial distribution of vorticity
of the fluid can therefore be approximated using any averaging
method based on the known vorticity at the position of particles.
We chose to use the ‘inverse distance’ interpolation method be-
cause the gain in accuracy from using higher order methods was
justified compared to simply increasing the resolution of the grid.

We consider an Eulerian grid point at the position ðiDx; jDyÞ. Let
N be the number of particles for which (see Fig. 1)

ði� 1ÞDx < xk
p < ðiþ 1ÞDx; k ¼ 1; . . . ;N ð15Þ

ðj� 1ÞDj < yk
p < ðjþ 1ÞDy; k ¼ 1; . . . ;N ð16Þ

Then, fij, the relative vorticity at the Eulerian grid point ði; jÞ, is com-
puted as

fij ¼
PN

k¼1f
k=skPN

k¼11=sk
ð17Þ

where sk is the distance of the particle k from the Eulerian grid point
ði; jÞ

sk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xk
p � iDx

� �2
þ yk

p � jDy
� �2

r
ð18Þ
3.2.3. Interpolation of the stream function from the Eulerian grid to
particles

The velocity field on the Eulerian grid is obtained by a second
order central difference scheme as

ukði; jÞ ¼ �wði; jþ 1Þ � wði; j� 1Þ
2R2 cosðhjÞDh

ð19Þ

uhði; jÞ ¼ wðiþ 1; jÞ � wði� 1; jÞ
2R2 cosðhjÞDk

ð20Þ

A free slip boundary condition is employed at northern and south-
ern boundaries.

The velocity on the Eulerian grid is then interpolated to the parti-
cles as described in Section 3.2.1. The accuracy of interpolating w

L2
d

from the Eulerian grid to particles is found to be crucial for oceanic
parameters and thus a high order accurate interpolation scheme is
needed. Here, an efficient interpolation is employed in which the
two-dimensional interpolation is preformed using a sequence of
one-dimensional cubic interpolations. Precisely, first wððiþ dxÞ
Dx; kDyÞ, k ¼ j� 1; . . . ; jþ 2 is computed using a cubic Lagrange
interpolation of wði� 1; kÞ, wði; kÞ, wðiþ 1; kÞ and wðiþ 2; kÞ in the
zonal direction (see Appendix A). Finally, a meridional cubic interpo-
lation is performed on wððiþ dxÞDx; kDyÞ, k ¼ j� 1; . . . ; jþ 2 to
compute wððiþ dxÞDx; ðjþ dyÞDyÞ.

3.3. Inversion of elliptic operator on Eulerian grid

A centered second order five-point finite difference scheme is
used to discretize the elliptic equation (1) as

fði; jÞ ¼ wðiþ 1; jÞ � 2wði; jÞ þ wði� 1; jÞ
R2 cos2ðhjÞDk2

þ cosðhjþ1=2Þðwði; jþ 1Þ � wði; jÞÞ � cosðhj�1=2Þðwði; jÞ � wði; j� 1ÞÞ
R2 cosðhjÞDh2 ð21Þ

The resulting system may be solved using a variety of available di-
rect or iterative methods. Here, a preconditioned conjugate gradient
algorithm is used to solve the linear system (using ADI precondi-
tioning). For oceanic cases where Ld is small, the term w=L2

d is dom-
inant and thus the algorithm converges within a few iterations.

3.4. Boundary conditions

Free slip boundary conditions are assumed for the northern and
southern boundaries of the spherical domain, i.e. the meridional
velocity is set to zero at those boundaries. Thus, particles are not
allowed to leave the domain through the southern and northern
boundaries. The periodic boundary conditions in the zonal direc-
tion is implemented as follows. Each particle that leaves the left
or right boundary, reenters the domain from the other side. In or-
der to simplify the interpolation procedure, ghost cells are consid-
ered at the left and right boundaries and particles are copied in the
ghost cells from the corresponding cells in the other side. This
greatly simplifies the computations since a unique interpolation
procedure is employed for all Eulerian grid points.

4. Tests of the numerical method

In this section, several numerical experiments are presented to
evaluate the performance of the algorithm described in the previous
section. We simulate the propagation of Rossby waves on a b-plane
and on a sphere in barotropic (Ld ¼ 1) and baroclinic (finite Ld)
cases. We also describe how to prescribe mean flows and study their
influence on the evolution of the point vortices. Both a b-plane chan-
nel and spherical coordinate are implemented. The spherical model
uses a latitude–longitude grid, where latitude ranges from �80� to
80� and latitude from 0� to 360�.

4.1. Rossby waves on the b-plane

We first consider barotropic Rossby waves on a b-plane in a
periodic domain of size L� L, and thus set w=Ld ¼ 0. The equation
of potential vorticity (2) in this case is reduced to

@f
@t
þ Jðw; fÞ ¼ �bv ð22Þ

A solution of (22) is the Rossby wave given by

w ¼ a sinðkx�xtÞ sin ly ð23Þ

with the frequency

x ¼ �bk

k2 þ l2 ð24Þ

The vorticity in this case takes the following form

f ¼ �ðk2 þ l2Þw ð25Þ

and so u � rf ¼ 0. Thus, Eq. (23) is a solution of the full nonlinear sys-
tem. Here, we initialize the system using (23) with k ¼ l ¼ 4p=L and
amplitude a ¼ 5:1� 105 m2=s. An Eulerian mesh with 400 grid point
in each direction is employed. The initial condition and the numerical
result (presented as a Hovmöller diagram) is shown in Fig. 2. As can be
seen the model can readily simulate the movement of the Rossby
wave with an accurate phase speed. Comparisons of analytical and
numerical solutions for the Rossby wave at t ¼ 2p=x with
100� 100 , 200� 200 grid and 400� 400 grids are shown in Fig. 3.
As can be seen, the numerical error in phase speed at the coarse grid
(100� 100) becomes vanishingly small as the grid is refined.

It should be mentioned that we have experimented with the
number of particles required to seed the cells and found that at least
one particle should be in each cell at all times. Should a cell become
devoid of particles, new ones can be introduced at the center of that
cell. The vorticity of the new particles is obtained using a cubic



Fig. 2. Left: Initial Rossby waves at t ¼ 0. Colors show stream-function in 105 m2=s. Horizontal and vertical axes represent distance in 106 m . Right: Hovmöller diagram at
y ¼ 5� 106 m. Horizontal axis is distance in 106 m and vertical axes is time in days. The bold dashed line represents analytical slope.
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Fig. 3. Comparison of analytical and numerical solutions for the Rossby wave at t ¼ 2p=x. Horizontal axes represent distance in 106 m. Squares show the numerical result
and continuous curves show analytical solution. Top left: Stream-function in 105 m2=s with a 100� 100 grid; top right: stream-function in 105 m2=s with a 200� 200 grid;
bottom left: stream-function in 105 m2=s with a 400� 400 grid; bottom right: relative vorticity (in 10�8 s�1) with the 400� 400 grid.
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interpolation from the Eulerian grid. Note that this is consistent with
our interpretation of particles and our interpolation method used to
calculate vorticity at the Eulerian grid from particles. In the calcula-
tions shown here, we began with nine particles in each cell.
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4.2. Rossby waves on the sphere

The second numerical experiment deals with Rossby waves on
the sphere. The Coriolis parameter in this case is given by

f ¼ 2X cos h ð26Þ

where X ¼ 2p day�1 is the angular velocity of Earth’s rotation. The
Rossby wave solution now has the following form

w ¼ �a sin h cosm h cosðmk�xtÞ ð27Þ
with a frequency given by

x ¼ �2mX
ð1þmÞð2þmÞ ð28Þ

Again we note that u � rf ¼ 0 and so the above solution also
satisfies the nonlinear equations. First, we set w=Ld ¼ 0 and choose
Rossby wave number m ¼ 4, as suggested by Williamson et al.
(1992). An Eulerian mesh with, respectively, 304 and 128 grid
points in the zonal and meridional directions is employed. Numer-
ical results are shown in Fig. 4a demonstrating that the model can
successfully simulate the propagation of Rossby waves on the
sphere.

4.2.1. Effects of a finite deformation radius
4.2.1.1. Atmosphere. We now repeat the last test but this time turn
on the w=Ld term to represent the effect of vortex stretching. We
leave it to the reader to verify that the Rossby–Haurwitz solution
is still valid but now with a phase speed given by

x ¼ �2mXþ bmR2X
ð1þmÞð2þmÞ ð29Þ

with

b ¼ 2
L2

dð1þmÞð2þmÞ þ R2 ð30Þ

That is, the Rossby–Haurwitz wave is slowed down in the presence of
a finite deformation radius. This furnishes us with a good nonlinear
Fig. 4. (a) Relative vorticity (in 10�8 s�1) for the case w=Ld ¼ 0 at t ¼ 2p=x (i.e. after one
t ¼ 2p=x. (c) Relative vorticity (in 10�8 s�1) with linear interpolation of f� w=L2

d for
interpolation of f for the case Ld ¼ 100 km at t ¼ 2p=x.
test solution (since Jðw; fÞ ¼ 0) for validation of our numerical tech-
nique when the radius of deformation Ld is not zero. We choose
Ld ¼ 1000 km as a typical atmospheric case and set a ¼ 4:1� 107

m2=s. Numerical results at time t ¼ 2p=x are presented in Fig. 4b.
No visible noise or damping is observed which confirms the accuracy
of the model for atmospheric parameters.

4.2.1.2. Ocean. In the previous test cases, the quantity f� w=L2
d was

interpolated from particles to the Eulerian grid using a linear
scheme and yielded satisfactory results. In the oceanic case, how-
ever, we find that such a simple approach is not sufficiently accu-
rate. We consider a typical oceanic case with Ld ¼ 100 km and
a ¼ 106 m2=s. Note the phase speed in this cases is �100 times
slower than the atmospheric test. Thus, numerical modeling of
the oceanic case is much more demanding since small numerical
errors can accumulate during such slow dynamics. Results using
linear interpolation of f� w=L2

d are shown in Fig. 4.c and reveals
unacceptable numerical noise. This is because the relative vorticity
f is now much smaller than w=L2

d and errors in the interpolation of
w=L2

d lead to spurious values of f. To overcome this problem, we
choose to interpolate the relative vorticity from particles to the
Eulerian grid and then add in the vortex stretching term after
interpolation.

This leads to a considerable improvement even with a linear
interpolation (not shown). We found that a cubic interpolation of
w=L2

d from the Eulerian grid to particles worked well—see Fig. 4d.
Note that due to the structured form of the Eulerian grid, a high or-
der accurate interpolation from the Eulerian grid to particles is less
expensive than the high order accurate interpolation from particles
to the Eulerian grid. Comparisons of analytical and numerical solu-
tions for the Rossby–Haurwitz wave with cubic interpolation of f
for the case Ld ¼ 100 km at t ¼ 2p=x are presented in Fig. 5 which
shows that the model can well simulate the wave. Finally, note that
noise in the vorticity field is filtered in the inversion of potential
vorticity and smooth results are obtained for stream function and
potential vorticity (not shown).
Rossby wave cycle). (b) Relative vorticity (in 10�8 s�1) for the case Ld ¼ 1000 km at
the case Ld ¼ 100 km at t ¼ 2p=x. (d) Relative vorticity (in 10�8 s�1) with cubic
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Fig. 6. (a) Meridional sections of the mean flow, �u, (the thick curve) and
instantaneous zonal velocity, �uþ u0 , (thin dashed curve, along a chosen longitude).
The scale in m=s is along the lower horizontal axis. Note that �u is zero everywhere
except in two bands where it is equal to �bL2

d . The meridional distribution of mean
potential vorticity Q (thick curve) and instantaneous total potential vorticity,
Q þ Q 0(thin curve, along the same longitude as chosen to plot the instantaneous u)
is also plotted. The scale is on the upper horizontal axis in 10�6 s�1. (b) Rossby wave
phase speed (dashed thick curve) and urms (thin curve). The vertical axis is latitude
and the horizontal axis is velocity in m=s.
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5. VIC in the presence of mean flows

We now describe how to represent the evolution of point vorti-
ces in the presence of a background mean flow and associated
modifications to the large-scale potential vorticity gradients. For
simplicity, here the mean flow is assumed to be zonal and only
vary in the meridional direction:

u ¼ ð�uðyÞ;0Þ ð31Þ

The zonal flow is associated with a mean potential vorticity
gradient

@Q
@y
¼ b� @

2�u
@y2 þ

�u

L2
d

ð32Þ

The evolution of the potential vorticity following the particles is
then governed by the equation (written out here in the absence of
forcing and dissipation):

DQ 0

Dt
¼ �v 0 @Q

@y
ð33Þ

where Q 0 is the pv of the particle measured relative to the back-
ground and

D
Dt
¼ @

@t
þ ðuþ u0Þ � r

is the rate of change following the particle, taking into account the
presence of the mean flow. Note that now meridional flow across
large-scale gradients in Q, rather than just b, leads to rates of change
of Q 0.

The above is implemented in the context of VIC as follows. The
advection of particles is done as before using a fourth order RK
method but this time using the velocity ðuþ u0Þ. The term �v 0 @Q

@y

is treated as a source term and added to the potential vorticity of
particles at both steps of the second order RK time marching
scheme.

The dispersion relation of Rossby waves propagating on the
mean flow is given by

x ¼ k �u� Q y

k2 þ l2 þ 1
L2

d

0
@

1
A ð34Þ

Note that on (large) scales much greater than Ld, Eq. (34) reduces to
(neglecting curvature effects in Qy)



A. Mohammadian, J. Marshall / Ocean Modelling 32 (2010) 132–142 139
x ¼ �kbL2
d ð35Þ

i.e., curiously, and as is well known, long Rossby waves are oblivious
to mean flow (�u) effects.

In order to study the interaction of mean flow and particles in
the context of our VIC model, we set up a mean flow on the sphere
which is zero everywhere except in two narrow bands in the
southern hemisphere. Inside these bands, the mean flow is set to

�u ¼ �bL2
d ð36Þ

so that the potential vorticity gradients vanish within the bands
thus:
Fig. 7. Instantaneous total potentia

Fig. 8. (a) Rossby wave phase speed, cRossby , inferred from the propagation of altimetric si
details). (b) cRossby and urms from the VIC model.
Qy ¼ bþ
�u

L2
d

¼ 0: ð37Þ

The �u and Q of the initial state is shown by the thick black lines in
Fig. 4.

To represent the growth and decay of baroclinic turbulence on
this mean flow we make direct use of the particles and randomly
initialize their vorticity thus:

f� w=L2
d ¼ rf�

where f� ¼ 10�5 s�1, r is a random number between �0.5 and 0.5.
The decay of the turbulence thus generated is represented by
l vorticity, Q þ Q 0 , in 10�6 s�1.

gnals and urms inferred from surface drifter observations (see Tulloch et al. for more
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damping the f� w=L2
d on particles toward zero with an e-folding

timescale set to 1 year. When the modulus (normalized by its initial
value) becomes smaller than a threshold (chosen to be a factor 1=e
of the initial value in the corresponding latitude), f� w=L2

d is reset
according to the above rule with random signed vorticity. The lati-
tude ranges from �65� to 65� hereafter.

The (gridded) total instantaneous potential vorticity ðQ þ Q 0Þ
resulting from the deployment of 1.3 million point vortices is
shown in Fig. 7 after a period of 20 years in the case Ld ¼ 80 km.
As is clearly observed, in the southern hemisphere the potential
vorticity is well mixed inside the bands and a strong gradient is ob-
served between the two bands. A highly nonlinear regime is also
observed in the northern hemisphere. Note that here the circula-
tion spontaneously organises itself in to eastward and westward
jets: the eastward flowing jets tend to enhance pv gradients and
the westward flowing jets tend to weaken, and indeed often
slightly reverse them.

Fig. 6b shows urms, the rms particle speed relative to the mean
flow, as a function of latitude, along with the Rossby wave phase
speed, cRossby, given by Eq. (35). We see that at all latitudes, save for
the region of the bands, the nonlinearity parameter urms=cRossby > 1.
This, of course, is consistent with our observation in Fig. 7 that the
Q field is strongly distorted by the presence of intense vortices,
particularly at high latitudes.

6. Interaction of waves and turbulence on the sphere

In our final illustration of the VIC method, we apply it to the inter-
action of waves and turbulence in the ocean, a problem which can ni-
cely exploit the dual (vortex, grid) aspects of the numerical
approach. The ability to impose rules on the time rate of change of
vorticity on discrete particles is again used to simulate the growth
(by baroclinic instability) of geostrophic turbulence on the smallest
Fig. 9. Stream function plotted in units of 104 m2=s. To reveal the nature of the flow
scales resolvable in the model and their subsequent decay. Particle
trajectories are readily plotted, as are the stream function and vortic-
ity of their associated flow field on the Eulerian grid.

Recently Tulloch et al. (2009) have argued that the nature of the
interaction between geostrophic turbulence and Rossby waves in
the ocean depends on whether there is a matching between turbu-
lent and Rossby wave timescales. The interaction between turbu-
lence and waves was explored in the barotropic context by
Rhines (1975) (the so-called Rhines effect) and Vallis and Maltrud
(1993), and in a (first-mode) baroclinic context applied to the gas
planets by Theiss (2004, 2006) and Smith (2004). The central idea
is that, as eddies grow in scale in the inverse cascade, their time-
scale slows, and when this timescale matches the frequency of
Rossby waves with the same spatial scale, turbulent energy may
be converted into waves. Tulloch et al. (2009) argue that just such
a phenomenon controls the interplay of turbulence and waves in
the ocean. As shown by the observations plotted in Fig. 8a, at
low latitudes the phase speed of first baroclinic mode Rossby
waves (cRossby) far exceeds turbulent velocity scales (urms), whereas
the reverse is true at high latitudes. Thus, one might expect turbu-
lence to generate waves at low latitudes, but not at high latitudes
where there is no matching of time scales.

To represent the marked increase in long Rossby wave phase
speed as the equator is approached, we specify a meridional varia-
tion in Ld in Eq. (1) (small at high latitudes becoming large at low
latitudes) to yield a plausible variation in bL2

d . Note that in contrast
to Fig. 5, cRossby becomes very large (capped at 50 cm/s) as the equa-
tor is approached.

As before, to represent the growth and decay of baroclinic
turbulence, the vorticity on particles are randomly initialized
but according to a slightly different recipe. Since Ld is small at
high latitudes, the term f� w=L2

d is dominated by w=L2
d . Hence

if a spatially uniform random amplitude for f� w=L2
d is specified,
outside the tropical belt, an insert is drawn using a different contour interval.
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w becomes increasingly small at high latitudes (as Ld decreases)
leading to a low level of eddy kinetic energy at high latitudes.
This is contrary to observations. Instead we randomly initialize
f� w=L2

d thus:
f� w=L2
d ¼ raf�
where f� ¼ 10�5 s�1, r is a random number between �0:5 and 0:5,
and a ¼ L�d=Ld is a tuning factor which is larger than unity if Ld is
less than L�d, a reference deformation radius. This enables us to
control the meridional distribution of eddy kinetic energy, bring-
ing it in to broad accord with the observations. A reference L�d set
equal to 150 km was found to work well.

Figs. 8b and 9 show results in which, as before, 1.3 million
particles were employed on the sphere. For the parameters de-
scribed above, at latitudes outside a tropical band of �20�, urms

drops below cRossby. In the tropical band the turbulence generates
waves: the flow becomes organized in to large-scale Rossby
waves that propagate westward at the long Rossby wave phase
speed. Outside the tropical band, by contrast, no such organiza-
tion is observed and the flow is dominated by the turbulent
wandering of vortices—see insert in Fig. 9. This is very clear on
inspection of the trajectory of individual particles in the tropical
and high latitude bands shown in Fig. 10.
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Fig. 10. Particle trajectories (a) in the equatorial band and (b) in high latitudes.
7. Conclusions

A vortex in cell model for quasi-geostrophic, shallow water
dynamics on the sphere has been presented. It was shown that
special attention must be paid to the interpolation of data from
particles to the Eulerian grid and vice versa, particularly for mod-
eling of slow oceanic dynamics. Numerical experiments were per-
formed to evaluate the performance of the model in simulation of
Rossby waves on the sphere and encouraging results were ob-
tained for both oceanic and atmospheric problems. Stability, accu-
rate Lagrangian modeling of the advection of vorticity and
conservation of potential vorticity, leads to an accurate and effi-
cient tool for the study of the interaction of waves, vortices and
mean flows in the presence of boundaries.

To illustrate the potential applications of this new tool which
exploit the particle/grid duality of the numerical method, we de-
scribed two experiments in which baroclinic instability was rep-
resented by introducing a vorticity charge–discharge cycle to
parameterize the growth and decay of pv anomalies associated
with the instability. In the first application we prescribed mean
flows and mean pv gradients and observed the evolution of vor-
tices on this background flow. In the second application we stud-
ied the interaction of waves and turbulence on the sphere in the
case where, as is observed, the deformation radius becomes large
and hence first baroclinic Rossby waves propagate very fast, as
200 300

200

Horizontal and vertical axes represent longitude and latitude, respectively.



142 A. Mohammadian, J. Marshall / Ocean Modelling 32 (2010) 132–142
the equator is approached. We found that turbulence generates
waves in the tropical band where cRossby > urms, but not at higher
latitudes where the reverse is true.

Finally, it should be said that extension to more than one layer
and introduction of geometrical constraints (coasts and islands) in
the context of VIC is no more complicated than in standard quasi-
geostrophic models.
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Appendix A. The area and cubic Lagrange interpolation methods

In the area method, a vorticity of magnitude unity is credited to
the four surrounding grid points by (see, e.g. Christiansen, 1973;
Liu and Doorly, 1999)

fði; jÞ ¼ A1; fðiþ 1; jÞ ¼ A2 ð38Þ
fði; jþ 1Þ ¼ A3; fðiþ 1; jþ 1Þ ¼ A4 ð39Þ

and is superimposed for all particles. The coefficients A1 to A4 are
given in (13), (14). A weighting factor should be also applied based
on the initial number of particles in each cell.

In the cubic Lagrange interpolation method, given f ðx1Þ; f ðx2Þ;
f ðx3Þ and f ðx4Þ, the function f ðxÞ is approximated as

f ðxÞ ¼ c1f ðx1Þ þ c2f ðx2Þ þ c3f ðx3Þ þ c4f ðx4Þ ð40Þ

where

c1 ¼
ðx� x2Þðx� x3Þðx� x4Þ
ðx1 � x2Þðx1 � x3Þðx1 � x4Þ

ð41Þ

c2 ¼
ðx� x1Þðx� x3Þðx� x4Þ
ðx2 � x1Þðx2 � x3Þðx2 � x4Þ

ð42Þ

c3 ¼
ðx� x1Þðx� x2Þðx� x4Þ
ðx3 � x1Þðx3 � x2Þðx3 � x4Þ

ð43Þ

c4 ¼
ðx� x1Þðx� x2Þðx� x3Þ
ðx4 � x1Þðx4 � x2Þðx4 � x3Þ

ð44Þ
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