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Eddy-forced coherent structures as a prototype of atmospheric blocking 
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SUMMARY 
The relevance of nonlinear free solutions of the equivalent barotropic vorticity equation known as ‘modons’ 

or ‘vortex pairs’ is reconsidered as a prototype of atmospheric blocking. It is argued that modons are highly 
appropriate reference solutions from which to consider the dynamics of blocks accounting for their local nature, 
their stability and longevity. 

Nonlinear resonance studies with an equivalent barotropic numerical model on a P-plane channel demon- 
strate the ease and vigour with which vortex pairs can be excited by a vorticity-forcing function of the 
appropriate form. Localized nonlinear structures which can be identified with modons exist on blocking 
timescales even in parameter ranges which allow stationary Rossby waves. The circumstances in which synoptic 
systems can provide an appropriate forcing function are investigated by studying the interaction between a 
modon and a train of travelling vortices. It is shown that the anomalous transfer of potential vorticity induced 
by the straining of synoptic systems propagating in a diffluent jet is in a sense to maintain the modon against 
dissipation. Time sequences of the potential vorticity field from the equivalent barotropic model bear a 
remarkable resemblance to isentropic potential vorticity maps observed during a blocking episode and suggest 
that much of the detail can be understood in terms of the passive deformation of baroclinically inactive weather 
systems. 

1. INTRODUCTION 

The phenomenon of blocking has long been recognized as being of major importance 
in determining regional climate. Despite having received considerable attention over the 
past decade it has proved difficult to understand the underlying mechanism of blocking- 
see Shutts (1983) for a review of blocking theories. It is useful to categorize an approach 
to the blocking mechanism as either ‘local’ or ‘global’ in character. The global approach 
considers blocking in terms of planetary Rossby wave resonance in response to 
orographic/thermal forcing: resonance occurs when almost free Rossby waves are station- 
ary with respect to the ground, the response in a localized region being determined by 
global-scale forcings. In local theories, on the other hand, emphasis is placed on the local 
character of blocking from the outset, and we seek to understand blocking as a local 
nonlinear resonant response to local forcing (see for example McWilliams 1980; Pierre- 
humbert and Malguzzi 1984, hereafter PM). Such an approach is perhaps more in accord 
with synoptic observations of blocking and is supported by, for example, the study of 
Dole and Gordon (19831, who show that blocking events do not appear to be spatially 
correlated around the globe. 

The present study adopts a local approach to blocking and considers the maintenance 
of local coherent structures against dissipation through their interaction with travelling 
synoptic-scale systems. It is inspired by the recent potential vorticity diagnostics of 
planetary-scale flow and blocking presented by Illari (1984), McIntyre and Palmer (1983), 
Shutts (1986), and for an exhaustive review, see Hoskins et al. (1985). 

The rapid advance in the quality of routinely produced analysed fields has meant 
that they can now reveal not only the broad features of the potential vorticity field but 
also much of the fine detail. For example, the high resolution maps of isentropic potential 
vorticity (IPV) presented by Shutts (1986) and Hoskins et al. (1985) using ECMWF 
analysed fields, confirm the role of eddies in sustaining blocked configurations. The 
interaction is revealed at its clearest and most fundamental level in the evolution of the 
potential vorticity field. The sharp gradient in IPV that marks the partition between high 
potential vorticity stratospheric air to the north and low potential vorticity tropospheric 
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air to the south, is seen to undulate north and south as synoptic-scale systems propagate 
eastwards. On encountering the blocking anomaly the IPV contours are strongly defor- 
med as the synoptic waves steepen and ‘break’, reversing the meridional potential 
vorticity gradient and helping to sustain the blocked configuration. These sequences show 
in a clear and unambiguous way the trajectories of fluid parcels and the irreversible 
deposition by decaying cyclones of low potential vorticity air on the western flank of the 
anticyclone. These diagnostic studies of blocking lend a measure of support to the notion 
that blocking is an essentially local phenomenon in which synoptic-scale systems play a 
central role in initiation, maintenance and decay. They have encouraged us to consider 
eddy-forced coherent structures as a prototype of atmospheric blocking. Our study 
attempts to draw together and extend the investigations of McWilliams (1980), Shutts 
(1983) and Pierrehumbert and Malguzzi (1984). 

McWilliams suggested that many of the observed features of blocking are consistent 
with nonlinear free mode solutions of the equivalent barotropic vorticity equation which 
have become known as ‘modons’ or ‘vortex pairs’, in which the potential vorticity is 
constant along streamlines of the flow. Some supporting evidence is provided by potential 
vorticity diagnostics (see for example Illari (1984) and Shutts (1986)) which indicate that 
there are often closed height and potential vorticity contours at upper levels. This suggests 
that modon solutions may be highly relevant in describing the gross features of blocks, 
accounting for their inherent stability in an otherwise turbulent flow (see also Baines 
(1983) who likened blocking events over Australia to modons). 

PM studied the nonlinear resonance of spatially isolated vortex pairs and, guided by 
the diagnostic studies of Green (1977) and Illari (1984), speculated that an appropriately 
signed potential vorticity forcing function could be provided by the eddy flux divergences 
produced by weather systems propagating around the nonlinear free mode. 

Shutts (1983) integrated an equivalent barotropic model to study in more detail the 
transfer properties of synoptic-scale systems undergoing deformation in a split jet. He 
showed that the eddy transfer is in a sense to sustain the split jet and, what is more, that 
it is an inevitable consequence of the eddy-straining mechanism whereby barotropic 
eddies undergo strong deformation in a diffluent flow and transfer energy up-scale into 
the straining field. 

As a ‘zero-order’ model of blocking the equivalent barotropic modon is adopted- 
its analytic construction and relevance to atmospheric blocking is considered in section 
2. Section 3 studies the behaviour of synoptic-scale eddies (generated by a wavemaker) 
impinging upon the modon from the west, simulating conditions at the end of the 
atmospheric storm tracks. The response of a fully nonlinear equivalent barotropic model 
to a dipole eddy forcing is then investigated, particular attention being paid to the 
resonant forcing of the modon considered in section 2. Finally, in section 4, the interaction 
between finite amplitude synoptic-scale systems and a vortex pair is studied by integrating 
the fully nonlinear model. Time sequences from this equivalent barotropic model are 
seen to exhibit a remarkable similarity to the evolution of IPV contours observed during 
blocking and suggest that much of the detail can be understood in terms of the passive 
deformation of baroclinically inactive eddies. 

2. MODONS AS A ’ZERO-ORDER’ MODEL OF BLOCKING 

Many blocking events consist of a vortex pair embedded in a westerly flow. 
Figure l(a) shows the 500mb height field and Fig. l(b) the fourth root of the potential 
vorticity on the 320K surface during an intense blocking event over N. Europe in 
February 1983. The synoptic situation is described in Shutts (1986). The thick line in Fig. 
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Figure 1. The 500mb height field, (a), contour interval Sdam; and the fourth root of the Ertel potential 
vorticity on the 320K surface, (b), contour interval 1 X10-3 in m.k.s. units; at 12GMT on 15 February 1983- 

from Shutts (1986). 

l(b) can be identified with the tropopause which overturns in the vicinity of the block: 
low potential vorticity air forms the northern portion of the blocking dipole and high 
potential vorticity air the southern portion. Furthermore, there are closed IPV contours 
indicating strongly nonlinear behaviour . Winds on the 320 K isentropic surface (not 
shown) are closely aligned with the IPV contours suggesting that the forcing and 
dissipation terms are weak and local time-rates of change are small compared with 
advective timescales. The 'equivalent barotropic modon', a localized solution of the fully 
nonlinear equivalent barotropic vorticity equation in which the potential vorticity is 
constant along streamlines of the flow, is plotted in Fig. 2. Evidently there are strong 
similarities between Figs. 1 and 2 suggesting that such nonlinear free modes may be very 
useful reference solutions from which to consider the dynamics of blocking configurations 
and their interaction with synoptic-scale systems. However, an important aspect of the 
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Figure 2. The modon solution Eq. (14) for the parameters Eq. (15). The radius of the modon is 2430km. 
The Rossby radius, L,, is 845km, dqm/dy = 1.2p and lJ= 134ms-' .  (a) Total streamfunction v; contour 
interval 1.0. Contours are plotted in units of p L i .  A non-dimensional v of unity represents dimensionally a 
height field perturbation of 9dam. (b) Potential vorticity q ,  contour interval 1.5. Contours are plotted in units 
of PL,. (c) The perturbation streamfunction (g = t) + Cry). Contours as in (a). 7 decays to zero at large 

distances. 

dynamics of blocking as revealed by IPV diagnostics, is the large contrast in IPV across 
the tropopause, which cannot be accommodated within the quasi-geostrophic framework. 
Without such a contrast it is difficult for advective processes to produce significant upper 
air IPV anomalies. Quasi-geostrophic theory is a weak anomaly theory and thus is least 
appropriate near the tropopause where the static stability changes rapidly. Nevertheless 
despite these reservations we adopt quasi-geostrophy as our dynamical framework since 
it allows the construction of modon solutions with local closed potential vorticity contours, 
which we believe to be an important aspect of the blocking mechanism. 

The most salient points in the construction of equivalent modon solutions are now 
reviewed. We begin by emphasizing the role of weak potential vorticity sources and sinks 
in removing the ambiguities inherent in the inviscid theory. 

( a )  Steady-state solutions of the potential vorticity equation 
We consider flows governed by the quasi-geostrophic vorticity equation on a /3 plane: 

d q / d t  + J ( V ,  q )  = 9 - 9 (1) 
where V is the streamfunction associated with the geostrophic component of the flow; q 
is the quasi-geostrophic potential vorticity 

f = f o  + /3y is the Coriolis parameter with f o  and P constant 



ATMOSPHERIC BLOCKING 685 

N2(z)  is a reference static stability 
J ( a ,  b) = (da/ax)ab/dy - (da /dy )db /ax  is the Jacobian of a and b 
x is east, y is north, z is up, t is time 
9 is a potential vorticity source and '9 a potential vorticity sink. 

Introducing eddy transfer by separating the flow into a time-mean and eddies, using 
overbar to represent a time-average long compared with a transient eddy lifetime: 
v = 5 + v ' ;  - 

q = q + q ' ;  substituting into Eq. (1) and averaging gives 

where s now contains an eddy flux divergence term - V . (v'g') due to eddy transfer 
processes which modify the mean flow. Equation (3) can be regarded as describing the 
evolution of the slowly varying (in time) component of the flow in response to adiabatic 
and eddy flux divergences associated with the rapidly varying synoptic-scale transients. 

We now consider the case of steady (d/dt = 0) almost free (3 - 9 small) solutions 
to Eq. (3). Following PM the fundamentally free nature of the circulation can be reflected 
by writing 

- $ - S = & E  

where ?? = O(lV$l. 1041) and E is a small dimensionless number. The small parameter 
E has a simple geometrical interpretation as the angle between contours of constant 
and contours of constant $. This angle is observed to be small at upper levels suggesting 
that it is useful to expand the fields q, 4 and ??, in terms of E .  As shown by PM, Eq. (3) 
becomes at zero order 

J ( l U 0 , q o )  = 0 

40 = q o ( v 0 )  (4) 

where qo and qo are the leading-order fields. The general solution can be written 

i.e. q, must be constant along qo contours. The difficulty with Eq. (4) is that it can allow 
an infinity of solutions: within any closed contour the functional relationship between y, 
and q, is quite arbitrary if there is no reference to sources and sinks. However, PM show 
that not all choices qo(q,,) can yield a balanced state at O(E)  and that a necessary 
constraint on the zero-order fields is that 

9 ,dxdy  = I 9 ,dxdy  I Wo P o  

i.e. potential vorticity sources must balance sinks when integrated over any closed yc, 
contours. This idea of invoking weak potential vorticity sources and sinks to resolve the 
ambiguities in the inviscid solution is a development of the Prandtl-Batchelor theorem 
(Batchelor 1956). It has been extensively used in ocean circulation theory-see for 
example Niiler (1966), Rhines and Young (1982) and Marshall and Nurser (1986). 

The integral balance equation ( 5 )  may be particularly important in the study of 
persistent circulation anomalies such as blocking anticyclones where y contours are often 
observed to close off, trapping fluid parcels over local regions. Within these closed q 
contour regions, fluid parcels may be exposed to localized forcing leading, through 
Eq. (9, to a qo(vo) relationship which may be different from that outside the blocking 
region. Indeed it is this change in the func2onal relationship qo(yo) that allows the 
localized modon solutions with closed q contours to be analytically constructed. 
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(b) Modon solutions 
The standard derivation of modon solutions involves looking for steadily propa- 

gating, isolated eddies in a fluid at rest on an infinite p plane; see for example Flier1 er 
al. (1980) or McWilliams (1980). In the derivation here however, stationary solutions are 
derived existing in a uniform zonal flow helping to clarify the relevance of modons to 
atmospheric blocking. 

A solution is sought existing in a zonal flow U ( z ) ,  which is stationary, i.e. of the 
form Eq. (4), qo = qo(Vo), and isolated. Writing 

where 
V o  = v m  + 

ly, = -U(z)y 

is the streamfunction associated with the zonal flow at great distance from the isolated 
structure and iJ is the deviation from zonal flow; then for isolation it is required that 
& = 0. Further we define 

is the q field remote from the eddy and 

is the deviation of the q contours from latitude circles associated with the isolated 
structure. 

It is now assumed that the perturbation streamfunction iJ has ‘equivalent barotropic’ 
structure and so can be written in the separable form 

$ = A(z)$(x ,y ) .  
Equation (8) then takes the form 

p v 2 q - p q  (9) 

and L, is an internal Rossby radius of deformation associated with the q anomaly. 
There are difficulties in the interpretation of the equivalent barotropic model in 

terms of a baroclinic atmosphere. In the present context it may be useful to regard 
Eq. (9) as a linearized representation of an upper-level potential vorticity anomaly 

(6  + f ) / h  = H-Yf + f - f o w m  
where h = H + 6h is the thickness of an isentropic layer and 6h are the perturbations 
about a mean thickness H ,  5; being the relative vorticity. From this perspective, positive 
values of in the blocking high (Fig. l(a)) are associated with a thickening of isentropic 
layers, with a raised tropopause and isentropes bowing downward in the troposphere. 
This is consistent with the observed anomalously low values of static stability just beneath 
the tropopause in a blocking high; see for example Hoskins et al. (1985). Conversely, 
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negative values of 5 in the low to the south correspond to a low tropopause, tropospheric 
isentropes bowing upwards and hence anomalously high values of static stabi1i:y. 

In general Eq. (4) is satisfied if qo is constant along qo contours. In the construction 
of the modon, qo is a different function of q,, inside a circle of radius ro where streamlines 
are closed, than outside this circle where streamlines are open. For analytic convenience 
linear functional relationships are chosen for both the interior and exterior regions. Thus 
the equation for $becomes 

v2q-  E;q + (aq,/ay)y = a($- Uy) (10) 

where 

a = a, for r < r,. a = a2 for r > r,. 

In the far field as g, !?-+ 0 we require that 

which sets the functional relation q = a2v €or the region r > ro. In the near fiela, still on 
open contours, we have 

V2$ = (d9 , /dv l ,  + g:)?. 
For spatially isolated solutions, the exterior field must decay away exponentially (i.e. 
consist of K Bessel functions in circular-polar coordinates) and so 

dq,/dq, + ci > 0 or (l /U)dq,/dy < l/L: (12) 
This is preckely the condition that excludes stationary Rossby waves. For U > Urn, 

where Urn = (l/k:) dq;./ay, no stationary Rossby waves are permitted and only spatially 
isolated structures can be supported. This has important consequences concerting the 
response of the flow to a localized forcing. For flow speeds U > Urn, a localized potential 
vorticity source cannot excite a global response and perturbations will decay awty from 
the source without energy propagation. This is the physics behind the persistence of 
isolated solutions such as modons for they cannot radiate away energy by exciting 
stationary Rossby waves in their lee. 

It should be noted that in true equivalent barotropic flow for which 

Eq. (12) cannot be satisfied for a westerly airstream since it reduces to -P/U > 0. In 
order to satisfy Eq. (12) and so prevent Rossby wave radiation, it is necessary that the 
zonal flow U advecting the dipole be more barotropic than the dipole itself. 

We now turn to the interior solution. On closed streamlines-we can see from 
Eq. (10) that the form of the solution depends on the sign of al + k; .  To ensclre that 
the interior solution is finite at r = 0 it must have the form of J or I Bessel functions. If 
the velocity is required to be continuous at r = ro then the inteGor flow must be wave- 
like and consist of J Bessel functions, which implies that a1 + k;  < 0 or 

Having chosen a1 and a2, the boundary radius r, is determined by matching the 
velocity, a q / a r ,  on the last closed streamline. Thus finally our complete solution can be 
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written as 

where 

and 
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' = U""K,(kr,,) -WQ - r }  sine for r > r,, 

where K 2  = -(& + a1). J 
It should be noted that the relationship between w and q is not analytic over the 

whole plane; indeed the solution is localized because dq/dW changes discontinuously at 
r = r,, becoming more negative on closed q contours. The double-valued functional 
relationship q( 111) is chosen for analytic convenience allowing the construction of exact 
finite amplitude solutions. However, in section 2(a) it was shown that q ( W )  within closed 
contours may be set by source/sink balances according to Eq. ( 5 )  and so it is not 
unreasonable to expect rather rapid changes in q(W) on moving from open to closed q 
contours. In contrast, Malguzzi and Malanotte-Rizzoli (1984) construct weakly nonlinear 
dipole solutions that are trapped in a mean flow with a continuously varying relation 
q(3). The mean flow, however, is entirely zonal and the perturbations are weak so the 
changes in q(3) are not associated with the closing off of q contours. 

(c)  Mean flow parameters 
McWilliams (1980) has made a detailed comparison between a winter Atlantic 

blocking episode and analytic solutions of the form Eq. (14). He found that for the 
vertically and zonally averaged tropospheric state the existence condition, Eq. (12) ,  is 
not easily satisfied. However, this may not be surprising since isolated structures are not 
observed to persist at all longitudes and levels. McWilliams points out that if blocking 
were indeed a local phenomenon then the zonal, height- and time-averaged state may 
not be the most appropriate with which to test the analytic theory. A definitive obser- 
vational study has yet to be made. However, it should be noted that Eq. (12) is most 
easily satisfied in regions of strong flow and weak potential vorticity gradients (as might 
be found at upper levels at the end of the storm track) and large r, (shallow layers of 
low static stability); these are precisely the conditions pertaining during Atlantic blocking 
episodes. 

From the analysis given in section 2(b) there are four parameters which must be 
defined to construct an equivalent barotropic modon; 

two associated with the zonal flow: 

U - uniform zonal flow speed 
d q m / d y  - ambient potential vorticity gradient 

and two with the isolated structure: 
k ,  -2 = l / L $  where L,  is a deformation radius 

a1 = dq /dq  within the closed q contour region. 

The values given below define the analytical modon solution shown in Fig. 2, and 
were used to initialize our numerical experiments, except where otherwise stated. 
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U = 13.8ms-'; dqm/dy = 1.2/3; /3 = 1.6 x lo-'' m-' s-'; 

L ,  = 845km; ayl = -3-9 x m--2. 

These parameters, which just satisfy the condition Eq. (12), give a modon with a 
radius r,  = 2430 km and a maximum velocity at the edge of 28.9 m s-'. 

Illari and Marshall (1983) have plotted 4 (quasi-geostrophic) against $ on the 300 mb 
surface over a block and from their Fig. 7a we deduce a mean dq/@ of -4X 10-'2m-2. 
This value is close to a, chosen for the interior of the analytic modon defined above, 
although the measured value is more appropriate to open contour regions (see Illari and 
Marshall, Fig. 6a, which shows the corresponding 4 field). 

3. EDDY FORCING OF LOCALIZED STRUCTURES 

Numerical integrations of the equivalent barotropic vorticity equation in a /3-plane 
channel initialized with the analytic solution Eq. (14) attest to the remarkable stability 
of this structure: although it is a solution existing on an infinite /3 plane and d q / d r  is 
discontinuous at r = r,, it remains stable in the numerical model with very little boundary 
adjustment. But suppose now a weak dissipative process is introduced through a surface 
Ekman layer 9 = %VzV or a Newtonian damping term proportional to $, then in order 
that in an integral sense the localized structure be maintained against dissipative processes, 
a forcing term of the appropriate sign must be present to satisfy the condition Eq. ( 5 ) .  
Since the modon solution Eq. (14) has a north-south vorticity dipole, a north-south 
structure in the forcing % is required to offset the dissipation 9, with anticyclonic forcing 
to the north and cyclonic forcing to the south. There is now much theoretical and 
observational evidence that this dipole vorticity forcing can be provided by, and moreover 
is an inevitable consequence of, the anomalous transfer of vorticity by synoptic-scale 
systems propagating in a diffluent jet upstream of a blocking dipole. Shutts (1983) and 
Illari and Marshall (1983) have argued that the split jet acting as a deformation field on 
the synoptic systems, organizes them in such a way that the split can be sustained by 
them: the north/south dipole eddy vorticity forcing found in the diagnostic study of Illari 
(1984) is a natural consequence of the transfer properties of synoptic-scale systems which 
undergo a compression of their east/west scale as they move into a region of weak zonal 
flow. Shutts (1986) and Hoskins et al. (1985) discuss this interaction in terms of IPV and 
remind us how perceptive were the early synoptic studies presented by, for example, 
Berggren, Bolin and Rossby (1949). In this section the interaction of isolated modon 
solutions with synoptic-scale systems is investigated to gain further insight into the above 
mechanism. 

The action of large-scale eddies will be imagined to occur schematically in the 
following three stages. 

First, the genesis of eddy vortices (cyclonic and anticyclonic) by baroclinic processes; 
second, the quasi-barotropic redistribution of eddy activity (bowing of trough lines due 
to the /3 effect and differential advection due to the curvature of the wind); and third, 
the consequent feedback of the eddies on the mean flow. Of course this is somewhat of 
an idealization, but it is considered to be a useful one. 

In our model the first of these phases is parametrized by a wavemaker which can be 
interpreted as representing vortex stretching, f a  w/dz, associated with baroclinic 
processes. The second phase is modelled by explicit integration of the equivalent baro- 
tropic vorticity equation linearized about a free solution qo = qo(V,), in this case the 
modon of Eq.  (14): 
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where q’, ly’ are transient eddy components. Equation (16) is forced by a wavemaker 
9’ which successively introduces vorticity of opposite signs in a localized region upstream 
of the modon. This eddy activity is advected and dispersed downstream permitting a 
study of the passive deformation of synoptic-scale systems by the split jet. The correlations 
of v’ and q’ are computed and the eddy flux divergence term evaluated. 

The third phase, that is the effect of the eddies on the mean flow, is investigated by 
integration of the mean flow equation 

+ J(T,q) = - V . ( i q 7 )  - 3 
where 

to a steady state where rectification of the eddy fields computed in Eq. (16) now appears 
as a forcing term in Eq. (1 7). 

A P-plane second-order finite difference numerical model is used to integrate Eqs. 
(16) and (17). The Arakawa (1966) scheme is used to evaluate the Jacobian terms at 
interior and boundary points, and a leap-frog scheme employed to step forward in time. 
At each time-step a finite difference form of the elliptic equation is inverted exactly to 
solve for q from q. 

The form of 9’ is described in Shutts (1983) section 4(c), and ensures that B’ = 0 
for all time. Thus the wavemaker cannot itself directly drive mean flows (it does not 
appear in Eq. (17)). It is judiciously chosen so as to successively introduce vortices of 
alternating sign well upstream of the modon. A scale-selective grid-point diffusion term 
uV6w’ is adopted for 9’ which efficiently destroys enstrophy at the grid-scale of the 
model, The coefficient v is reduced to the minimum required to maintain a smooth 
potential vorticity field. In addition to the specification of the streamfunction at the 
channel walls (determined by invoking a zonal momentum constraint to give the pressure 
drop across the channel) the vV63’ term requires two additional boundary conditions: 
the 1st and 3rd derivatives of the vorticity normal to the wall are set to zero ensuring 
that this term cannot act as a net vorticity sink. 

Equation (16) is solved in a rectangular domain of repeat distance 44800km and 
width 10 500 km on a square finite difference grid at 350 km resolution. A large channel 
width is chosen so as to ensure that the walls do not interfere with the evolution of the 
modon, which we recall is a solution of the steady inviscid equations on an infinite /3 
plane. The channel is chosen to be sufficiently long to allow the modon to be isolated 
from the region of eddy production and to ensure that eddy energy does not recycle. 

--xY 

(u) Eddy  forcing pattern 
Consider first introducing eddy vortices into a linearized model with unifom zonal 

flow Uand ambient potential vorticity gradient dq,/dy. If account is taken of the variation 
infwith latitude then the axes of the eddy streamlines must become bow-shaped, because 
the induced motions outside the genesis region correspond to Rossby waves which 
travel rather rapidly to the west leading to a characteristic bowing of trough lines. On 
consideration of the attendant Reynolds stresses the vorticity transfer is easily deduced, 
being northwards at the latitude of the genesis region and southward to the north and 
south. This leads to cyclonic forcing to the north, anticyclonic forcing to the south, 
tending to accelerate the flow eastward at the jet axis and decelerate it elsewhere. But 
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what happens if the eddy vortices are advected into a region of diffluence such as a 
blocking anticyclone? To investigate, Eq. (16) is integrated forward from v’ and q’ = 0 
at time 0 by introducing vorticity from a wavemaker %‘ placed in the zonal flow far 
upstream of the modon given by Eqs. (14) and (15). An Ekman dissipation term 9’ = 
%V2t)’ was included with a spin-down timescale %-’ = 10 days. 

Figure 3 shows the eddy flux divergence pattern V.(v’q’). The important feature to 
note is the marked north/south, divergence/convergence dipole upstream of the modon 
in the split jet which is in the opposite sense to that deduced above. This pattern of eddy 
forcing is understandable in rather general terms (see, for example, Shutts (1983); Illari 
and Marshall (1983)). The split jet acts as a strong deformation field on the waves 
impinging on it. A study of a sequence of instantaneous fields shows that the eddies 
suffer an east/west compression and meridional extension as they are advected up toward 
the modon and are subsequently strongly deformed by the split jet. Associated with this 
strong deformation, there is a transfer of energy up-scale into the straining field (the qo 
flow) and a concomitant down-scale transfer of enstrophy, with potential vorticity fluxes 
directed systematically down-gradient, to be balanced by the dissipation of enstrophy at 
the grid-scale of the model. The divergence of this down-gradient southward flux gives 
the reverse dipole in the eddy forcing pattern centred on the split jet evident in Fig. 3. 

This general reverse dipole pattern of eddy forcing at the end of the storm track is 
insensitive to the detailed form chosen for qo provided it has a diffluent structure. This 
is borne out by the numerical experiments of Shutts (1983) and observational studies of 
Illari (1984) and Shutts (1986). Shutts chose a stationary Rossby wave with dipole 
meridional structure for qo and obtained a broadly similar eddy forcing pattern. Illari 
found a dipole eddy forcing at 300mb centred on the split jet in a diagnostic study of 
atmospheric blocking using analysed fields. Such a forcing pattern is also implicit in the 
‘E-vector’ diagnostics presented in Hoskins et al. (1983). 

Before going on to consider the induced flow we note that the eddy potential varticity 
forcing pattern at the end of the storm track in Fig. 3 has precisely the form required to 
satisfy Eq. ( 5 )  and hence maintain the anomalous potential vorticity field, against 
dissipation: anticyclonic to the north and cyclonic to the south. We now study the resonant 
forcing of dipole structures by using the forcing 9 obtained from the linearized model as 
a time-independent vorticity source in Eq. (17). In these experiments the eddy forcing 
pattern downstream of the vertical line in Fig. 3, associated with the interaction of eddies 

Figure 3. Eddy flux divergence V.(v’q’) computed by averaging a 25-day sequence of synoptic maps from the 
model, Eq. (16), linearized about the modon solution, Eqs. (14) and (15). The channel is 44800km long and 
10500 km wide. Regions of convergence are shaded: the pattern is antisymmetric about mid-channel. The 
convergence to the north of the storm track and divergence to the south coincide with the wavemaker. The 
reverse dipole (divergence to the north, convergence to the south) at the end of the storm track (downstream 
of the vertical line) is induced by the straining of eddies in the split jet upstream of the modon. This reverse 

dipole is in the correct sense to maintain the modon against dissipation. 
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with the modon, was used as a potential vorticity source in Eq. (17). This dipole forcing 
was positioned near the re-entrance region at the upstream end of the channel. 

(b )  Induced mean pow 
We expect to see evidence of two distinctly different responses depending on whether 

fluid parcels can be trapped over the forcing region (i.e. whether locally there are open 
or closed q contours). 

If Eq. (12) is satisfied, disallowing global Rossby modes, then we expect a local 
response to local forcing. If the q contours close off over the forcing region, fluid parcels 
become trapped and resonance is possible with an appropriately signed vorticity source. 
As discussed in PM this can appropriately be called a nonlinear local resonance. It is 
closely related to, but distinctly different from the familiar linear resonance, in which 
stationary Rossby waves are the inviscid solutions. In this case the q contours are open 
and the response is global. Fluid parcels are not trapped but sample forcing/dissipation 
over the whole channel. In the conventional linearized model (about a zonal flow U in 
a P-plane channel for example) the resonant points form a discrete set determined by 
model geometry and the basic state flow field. In nonlinear systems the resonant points 
are not so dependent on model geometry such as the width and repeat length of the 
channel. 

It is not yet clear to what extent the atmosphere reflects these different responses 
but they can be conveniently demonstrated and studied in our numerical model. Thus 
Eq. (17) is integrated using the eddy flux divergence pattern V.(v'q') (over the modon 
region shown in Fig. 3) as a time-independent forcing. The magnitude of the forcing is 
scaled up from the linearized model to give a maximum forcing of 3.3 X 10-'os-2, consistent 
with the eddy q flux divergences found by Illari (1984) at 300mb in a blocking episode. 
Dissipative processes are represented through an Ekman layer, % V 2 q ,  again with a spin- 
down time of 8-l = 10 days. 

(i) 'Modon' response. The mean flow U and 8qm/8y  are chosen to satisfy condition 
Eq. (12) (see legend of Fig. 4 for details); there are no stationary Rossby modes allowed 
in the channel and so global resonances are not possible. Instead a local nonlinear free 
mode is resonantly excited in the region of the forcing. A structure resembling the 
analytic solution of Fig. 2 grows up with many closed q contours trapping fluid over the 
forcing-see Fig. 4. The intensity of the circulation is limited by bottom friction. However, 
the isolated dipole is not completely steady: an exact integral balance between forcing 
and dissipation is not wholly achieved, leading to some residual time evolution. The 

I 
Figure 4. The resonant streamfunction ( 2 j l )  response after 50 days, obtained by integrating the fully nonlinear 
model Eq. (17) forced by a dipole potential vorticity source. The eddy flux divergence pattern downstream of 
the vertical line in Fig. 3 is used as the forcing function. It has a maximum amplitude of 3.3 X 10-'os-2. An 
Ekman dissipation term is present with %-l = 10 days. The zonal velocity U = 134ms-' antpotential vorticity 
gradient aq-/ay = 1.12p are chosen to exclude stationary Rossby waves i.e. dqm/d2jla + k i  > 0. The vortex 
pair amplifies rapidly, spectacularly demonstrating a nonlinear resonance. Contours are plotted in units of 

BL; as in Fig. 2. 
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Figure 5 .  The q/* scatter diagram for the instantaneous field of Fig. 4 showing distinctive ‘modon’ charac- 
teristics. The points fall onto two distinct straight lines, the steeper corresponding to points on closed 
streamlines, the gentler corresponding to those on open streamlines. Between them lies the continuous line of 
slope -1:; evidently the modon existence condition, Eq. (121, is satisfied. q , q  are in units of pLi,PL,,, 

respectively. 

vortex pair drifts across the forcing region, its intensity fluctuating markedly depending 
on its position relative to the forcing. When it is seated squarely over the dipole forcing 
it amplifies rapidly, spectacularly demonstrating a local nonlinear resonance. 

The q/v scatter plot in Fig. 5 shows that there is a good functional relationship 
between q and I) indicating that forcing and dissipation are not O( 1) terms locally in the 
vorticity equation: the solution is still almost a free mode. The plot shows two different 
linear functions, one for points on closed q contours and one for points on open q 
contours. These slopes are consistent with those of the analytic modon, with dq /dv  being 
more negative on closed q contours than open ones. It is worth remarking on the linearity 
of the functional relationships particularly interior to the modon; presumably there are 
nonlinear functional relationships between q and I) which equally well satisfy the 
unforced, undamped equations, but the resonantly excited response chooses a linear 
q(I)) relation. The small scatter of points about the straight line indicates adjustment to 
source/sink terms as described in section 2. Also plotted in Fig. 5 is a line with slope 
-g: near which most of the exterior points congregate. It can be seen that the mean 
flow condition, Eq. (12), is just satisfied: & is large enough to exclude the possibility of 
exciting wavy solutions in the far-field. 

The dipole forcing has thus resonantly excited a response which can be identified 
with the free mode solution, Eq. (14). However, it is the integral balance between (weak) 
forcing and dissipation which helps to fix the amplitude and scale of the solution (in 
inviscid theory the amplitude and scale are arbitrary). This is now considered in more 
detail. 

Assuming a steady state, the integral bzance, Eq. (9, becomes, integrating over 
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the area enclosed by the outermost closed streamline of the modon, 

c = (1/%) J @ d x d y  (18) * .  
where C = $v . dl is the circulation and JS dx dy is the net vorticity forcing over, say, the 
northern anticyclonic vortex of the modon shown in Fig. 4. 

From Eq. (14) the circulation C can be evaluated analytically. It can be shown that 
for a wide spectrum of modon size and intensity, the circulation is given to a good 
approximation by 

C = yU,r, 
where U, is the maximum velocity at the edge of the modon (corresponding to 
8 = n/2), and y is a constant. Furthermore for modons of a size and intensity of 
meteorological interest, y is a constant close to n; Eq. (19) thus gives a relation between 
U, and r,. 

(19) 

From the exterior solution (differentiating Eq. (14)) 

uo = Ukr, K2(kro)/K* P r o )  (20) 
giving another relation between U, and r, since U and k are known. Thus Eqs. (19) and 
(20) can be solved for U, and r, given the circulation C in terms of forcing and dissipation 
balances, Eq. (18). Explicitly the dependence of the modon radius Y, on forcing and 
dissipation is given by 

2?K2 (X) /K ,  (X) = kC/yU where X = kr, (21) 
and C is set by Eq. (18). 

For the magnitude of the forcing and dissipation chosen in Fig. 4, 

(integrating over the northern half of the dipole) and the mean flow parameters given in 
the figure legend, solving Eq. (21) gives, for y = n, a radius Y, of 3050 km. This compares 
favourably with the radius of the outermost closed q contour observed in Fig. 4 of 
2600 km . 

The major source of error committed in deriving Eq. (21) is the assumption of a 
steady state leading to Eq. (18). The modon shown in Fig. 4 is, in fact, evolving and so 
at any instant there is not an exact balance between forcing and dissipation, the residual 
resulting in time dependence dC/dt. 

Nonlinear resonances of the type described here have been studied in the context 
of the blocking mechanism by PM. They adopted an analytic expression for the forcing, 
to exactly balance an Ekman dissipative term. Here it has been explicitly demonstrated 
that a forcing of the appropriate form can be effected by anomalous eddy transfer by 
synoptic-scale systems and, further, that the nonlinear free mode that such a forcing 
excites is very close to the equivalent barotropic modon of McWilliams (1980). It is 
important to realize that Eq. (5 )  is an integral statement and so the form of the response 
is not sensitive to the details of the forcing: it is only necessary that it has an appropriate 
dipole form. 

(ii) Stationary Rossby waue response. When Eq. (12) is not satisfied, for example at 
slower flow speeds or stronger potential vorticity gradients, it is possible to excite global 
modes of the channel. Figure 6 shows a familiar damped Rossby wave response resonantly 
excited by the eddy forcing pattern, now in a model linearized about the same zonal flow 
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Figure 6 .  The steady state streamfunction field after 75 days of integration with the model Eq. (17) linearized 
about a zonal flow U = 13,8rns-’, dq,/dy = 1.81p. Stationary Rossby waves are allowed in the channel with 
dq,/dI$- + L: < 0. The forcing and dissipation are the same as in Fig. 4. An antisymmetric Rossby wave is 

excited in the lee of the vorticity forcing dipole. Contours are plotted in units of PL;. 

model is linearized about a zonal flow there is no possibility of trapping fluid parcels over 
the forcing region as in the nonlinear resonance of Fig. 4. Instead, on each circuit of the 
channel, fluid parcels receive an impulse of potential vorticity at the dipole source setting 
up a Rossby wave train which slowly decays away as the fluid parcels lose their vorticity 
through weak bottom friction. By the time the fluid parcels have completed a circuit of 
the channel they have dissipated the vorticity imparted to them. The zonal decay scale 
depends on the magnitude of the bottom friction coefficient. Essentially this is the 
mean flow response obtained by Shutts (1983) who resonantly excited an antisymmetric 
stationary Rossby wave with a dipole eddy forcing produced downstream of a 
wavemaker-see, for example, Fig. 6(a) of Shutts (1983). 

The response of this flow (Eq. (12) not satisfied) to the dipole forcing but with the 
nonlinear terms retained, exhibits characteristics of both Figs. 4 and 6, i.e. local and 
global responses. In the early stages of the integration (see Fig. 7(a)) there is a resonant 
response local to the forcing which has distinctive ‘modon’ characteristics. Fluid parcels 
are trapped over the forcing region allowing rapid amplification. Indeed, scatter diagrams 
plotted in this initial phase resemble that of Fig. 5 ,  which characterize a ‘modon’. 
However, unlike in Fig. 4, this isolated structure cannot persist because Eq. (12) is not 
satisfied. The vortex pair is seen to drift westward, away from the forcing region, exciting 
Rossby waves in its lee which remove energy from the closed q contour region. (It is 
worthy of note that this tendency to drift westward is often observed in blocking episodes.) 
The initial rapid amplification local to the forcing gives way to a lower amplitude global 
response shown in Fig. 7(b) which more closely resembles the linear damped stationary 
Rossby wave of Fig. 6. 

The two phases of this mixed response are conveniently summarized in Fig. 8 where 
the maximum amplitude of the eddy streamfunction is plotted against time. Curve A 
shows the pure modon response taken from Fig. 4, and curve B is the linear Rossby 
wave response of Fig. 6. Curve C (taken from Fig. 7) shows the mixed response 
with rapid growth in the first 15 days (closely following curve A) exhibiting modon 
characteristics (see Fig. 7(a)), followed by decay as stationary Rossby waves extract 
energy on a timescale of about 15 days. 
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Figure 7. ow 
parameters which allow stationary Rossby waves in the channel. The initial conditions, forcing and dissipation 
are as in Fig. 6. Despite being in a stationary Rossby wave regime the initial response after 12: days (Fig. 7(a)) 
is local to the forcing and closely resembles a modon (compare with Fig. 4). By day 50, however, (Fig. 7(b)) 
the local nonlinear response has weakened giving way to an antisymmetric Rossby wave which more closely 

resembles the linear response shown in Fig. 6. Contours are plotted in units of PL;. 

The flow response to the eddy forcing function in a fully nonlinear model Eq. (17) for mea 

Thus it can be seen that local coherent structures resembling blocks can persist for 
a significant time even in the presence of stationary Rossby waves if energy is removed 
from the closed q contour region at a rate which is slow compared with the recirculation 
time of trapped fluid parcels. This has important consequences for diagnostic studies of 
blocking, such as McWilliams (1980) which attempt to identify blocking with analytical 
modon theories. It may not be necessary for the mean flow to satisfy Eq. (12) which 
excludes stationary waves; if a localized forcing of the appropriate sign is present then 
nonlinear resonances can excite local free modes which can be identified with blockine. 
even though the mean flow does not satisfy Eq. (12). 

4. INTERACTION OF SYNOPTIC SYSTEMS WITH ISOLATED VORTEX PAIRS 

In sections 2 and 3 a case has been presented for considering modons to be useful 
constructs in describing blocked configurations. It has been demonstrated that synoptic- 
scale eddies may provide (at least in a linearized small amplitude sense) a dipole vorticity 
forcing consistent with maintaining an isolated structure. However, although the isolated 
vortex pair may capture the essence of blocked configurations, it must be deficient in at 
least one respect for it implies that the trajectories of fluid parcels are coincident with 
the streamlines of Fig. 2, i.e. it assumes a steady state. However, time-dependence is an 
essential ingredient of the blocking mechanism allowing the trajectories of fluid parcels 
to cross time-mean streamlines and so admitting the possibility of ventilation and hence 
maintenance of the structures considered in sections 2 and 3. Thus, in this section the 
interaction of a field of large amplitude synoptic eddies with an isolated vortex pair is 
studied in a fully nonlinear model. 

These integrations are inspired by the instructive sequences of high resolution IPV 
maps during a blocking episode recently prepared by Shutts (1986) and Hoskins et al. 
(1985) which clearly demonstrate the role of eddies in sustaining the blocked configur- 
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Figure 8. The maximum value of the eddy streamfunction plotted against time. Curve A is the pure modon 
response of Fig. 4. Curve B is the linear Rossby wave response of Fig. 6 and curve C, corresponding to Fig. 
7,  is the mixed modon/Rossby wave response. Initially the curve rises rapidly as in A, showing a resonant 
response local to the forcing. However, it peaks and begins to decay as stationary Rossby waves are excited 

in the lee, extracting energy on a timescale of -15 days. 

ation: synoptic systems approaching from the west sweep low q air north into the 
anticyclone and then high q air south into the cyclone. The IPV map of 15 February 
shown in Fig. l(b) is a particularly spectacular example. A narrow band of low potential 
vorticity air can be seen being swept northwards (30"W) on the eastern flank of the 
depression upstream of the vortex pair, filling the anticyclone. Further to the west a 
tongue of high q air sweeps southwards and will join to the high q air associated with the 
cyclone to the south. 

There are many dynamical and thermodynamical processes at work in Fig. 1 which 
cannot be represented in an equivalent barotropic model. The synoptic systems interacting 
with the blocking high may be baroclinically active; energy release in moist processes 
particularly ahead of the cold front on the tongue of low q air extending northwards is 
undoubtedly important in the energetics of the quasi-stationary blocked configuration. 
However, it is of interest to study to what extent the morphology of the IPV maps can 
be understood in terms of the passive quasi-barotropic deformation of synoptic systems 
by the large-scale flow. 

Thus the fully nonlinear equivalent barotropic model is initialized with a vortex pair 
in a zonal flow and finite amplitude eddy vortices of alternating sign are introduced 
upstream by means of a wavemaker. In  order to study the interaction of the eddy field 
with the vortex pair all processes which are inimicable to the existence of the latter are 
excluded in the model. Thus in the numerical calculations the ambient dq,/dy and zonal 
flow U are chosen so as to disallow stationary Rossby waves in the channel. The values 
chosen are close to those of the analytic solution Eq. (15) with U = 13.8m sS1 and 
qm = 1.35Py. A stronger q gradient was chosen so that the modon has a small westward 



698 K. HAINES and J .  MARSHALL 

t 

7 
i 

ii 

iii 

iv 

v 

vi 

Figure 9. Time sequence of the instantaneous q ,  contour interval 1.5/3LP (a); and q, contour interval 
1,OPL; ($ = + Uy)  (b); fields at 24 day intervals, showing the interaction between a train of eddies (generated 
by a wavemaker) and a modon placed in the zonal flow. Dissipation is through grid-point friction; there is no 
Ekman friction. The thick black lines in (a) are the zero contours and can be tentatively associated with the 
discontinuity in potential vorticity which marks the tropopause in Fig. l(b). H and L label centres of high and 
low pressures. The channel was initialized with the modon solution of Eq. (15), with U = 13.8ms-' and 

dq&y = 1.358 in the far field. 
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drift velocity giving stronger eddy/mean flow interactions. A grid-scale diffusion v V 6 q  
removes the enstrophy at the grid-scale allowing irreversible breaking of the q contours. 
The e-folding time associated with the scale-selective diffusion is 250 days on the scale 
of the modon: no bottom friction is included. 

A sequence of model synoptic maps at 23 days intervals is shown in Fig. 9(a) 
(potential vorticity) and Fig. 9(b) (eddy streamfunction) allowing the interaction of the 
eddies with the vortex pair to be studied. 

In order to draw comparison with the IPV maps the zero contour in Fig. 9(a) can 
be tentatively associated with the sharp gradient of IPV in Fig. l(b) marking the transition 
at the tropopause between high q stratospheric air to the north and low q tropospheric 
air to the south. With this interpretation then, the thick black line in Fig. 9(a) is the 
tropopause undulating north and south under the action of the wavemaker. 

As they leave the wavemaker region the cyclones (marked L in Fig. 9(b)) are seen 
to align along a latitude somewhat to the north of the mid-channel and the anticyclones 
(marked H) somewhat to the south (an effect which is absent in the linear model of 
section 3 ) .  Rossby (1948) interprets this in terms of the tendency of vortices to migrate 
meridionally to their reference latitudes. The jet is accelerated at mid-channel by this 
process as the orientation of the trough lines, sloping NW to the north and SW to the 
south, is in a sense to feed westerly momentum into the jet (see Fig. 9(a)). 

The eddy vortices are intense enough to cause troughs and ridges to cut off from 
the main current occasionally forming cyclonic vortices to the south and anticylonic 
vortices to the north. This process is particularly evident in the q fields in which blobs of 
q cut off in a manner which is reminiscent of Gulf Stream rings. This meridional exchange 
of potential vorticity is dramatically enhanced just upstream of the vortex pair where the 
east-west scale of the approaching vortices undergoes a compression, meridional vel- 
ocities increase and fluid parcels thus experience large north-south excursions. Ahead 
of an approaching cyclonic vortex (L) air parcels are swept northwards from southerly 
latitudes (Figs. 9(a), (i), (ii) and (iii)) carrying with them their low q values. To the rear 
of this low pressure system a narrow tongue of high q air can be seen being advected 
south (Fig. 9(a) (iii)) by strong northerly winds. This process can be seen clearly in the 
q maps which allow the trajectories of fluid parcels to be inferred. In contrast, the height 
field, Fig. 9(b), which might be thought of as the corresponding surface pressure map, 
is not a materially conserved quantity and gives a blurred image of the same process. 

The presence of a small scale-selective lateral friction ensures that these meridionally 
orientated tongues of q do not continue to extend and narrow indefinitely, but allows 
them to break; the deformation of the q contours is irreversible. This ‘wave breaking’ is 
well illustrated by following the time development of the zero contour in Fig. 9(a). In 
the region of the wavemaker the zero contour (tropopause) undulates north and south 
reversibly with no appreciable eddy/mean flow interaction. Upstream of the q anomaly, 
however, the zero contour undergoes marked contortions as the waves propagating along 
the sharp potential vorticity gradient at the tropopause ‘break’ on encountering the split 
jet. This folding over of the q contours is indicative of irreversible processes (visible 
evidence of the enstrophy cascade) and meridional transfer of potential vorticity . The 
meridional potential vorticity gradient is overturned with low q air transferred north, 
high q air south implying strong southward eddy potential vorticity fluxes. This acts as a 
westward force in the zonal momentum equation decelerating the flow and splitting the 
jet. 

This sequence of generation of wave activity by baroclinic processes (represented 
by the wavemaker), propagation and deposition as the waves break on encountering the 
split jet can be elegantly presented in terms of the ‘E-vector’ diagnostics developed by 
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Hoskins et al. (1983). The vector E = ( u ’ ~  - u ’ ~ ,  -u ’u’ )  has useful properties since it 
nearly points in the direction of the group velocity relative to the mean flow for Rossby 
waves. Furthermore, its divergence is a measure of the time-mean forcing of westerly 
momentum exerted by the eddy field on the mean flow. 

The E vector derived from eddy statistics computed over a 20-day sequence of model 
fields is shown in&. 10. The storm track is clearly evident with the E vectors pointing 
eastwards, > U” > JuIv)(, typical of the eddy statistics appropriate to the high-pass 
filtered synoptic-scale systems which are elongated in the meridional direction. In the 
wavemaker region eddy activity is generated and there is a divergence of the E vector. 
Mid-way along the track the vectors show a tendency to fan out as the wave flux begins 
to propagate meridionally and trough lines become bowed. In these regions of E-vector 
divergence the mean flow jet is accelerated eastwards. However, in the region of the 
split jet there is strong E-vector convergence implying a deceleration of the westerlies. 
The E vectors tend to divide following the two branches of the split jet. However, they 
also show a tendency to point toward the region of weak zonal flow, a feature of E 
vectors during a blocking episode noted by Hoskins et al. This is consistent with the 
changing orientation of the synoptic-scale systems as they move in the split jet, becoming 
meridionally extended and overturned. In this region of strong deformation there is a 
sink of wave activity (eddy enstrophy) with E-vector convergence. This is evident from 
the sequence of q maps in Fig. 9(a): once the deformation of the q contours becomes 
irreversible, then the existence of an enstrophy sink is inevitable and all that goes with 
it-down-gradient q fluxes and systematic effects of eddies on mean flow. Thus we see 
that the interaction between the train of travelling vortices and the stationary vortex pair 
is in a sense to sustain the vortex pair which then grows in intensity. 

The integration shown in Fig. 9 was continued for two months; the dipole continued 
to intensify throughout as it entrained vorticity of appropriate sign, expanding in scale 
and eventually moving off downstream. That this can occur in our two-dimensional model 
suggests that much of the structure to be seen in the IPV sequence can be understood 
largely in terms of the passive deformation of synoptic-scale vortices by the larger-scale 
flow: thus baroclinic processes may not be playing a dominant role here at the end of 
the storm track. 

Many integrations with various initial conditions and wavemaker intensities were 
carried out in addition to that presented in Fig. 9. Often the vortex pair would be 
overturned on interaction with a particularly intense eddy, with the q anomaly being re- 
absorbed into the appropriate reservoir, high q to the north and low q to the south. 

-- 
Figure 10. The E vector, = (u” - u “ ,  -u ’u ’ ) ,  in units of 250m2s-’, (indicated by the arrow in the margin, 
bottom right) calculated from a 20-day model sequence including the period shown in Fig. 9. The E vectors 
point eastward indicating downqtream propagation of energy relative to the mean flow. In the storm-track/ 
wavemaker region where there is genesis of eddhenergy the E vectors diverge. In the blocking region at the 
end of the storm track where eddy energy is transferred up-scale into the straining field, the E vectors converge. 
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However, occasionally, subsequent to the break-up of the modon configuration, it 
was replaced by another blocking dipole which formed spontaneously after meridional 
vorticity transfer by the transient systems. 

Finally we contrast the flow response described in this section with that of a flow in 
which stationary Rossby waves can be excited, such as in the model of Shutts (1983). If 
in the fully nonlinear model a wavemaker is used to introduce eddy vortices into a 
zonal flow which can support stationary Rossby waves, the flow spontaneously splits 
downstream of the wavemaker and an antisymmetric stationary Rossby wave is excited. 
The splitting of the jet is directly associated with the presence of the wavemaker and so, 
by implication, with baroclinic processes. Although this is a perfectly plausible mechanism 
by which one can sustain a split jet (and is the one advocated by Shutts) it is not at work 
in the sequence shown in Fig. 9. 

5.  DISCUSSION 

In this study attention has been focused on two important aspects of atmospheric 
blocking, namely its localized nature and its maintenance through interaction with 
travelling synoptic-scale systems. It has been argued that the close coincidence of I) and 
q contours suggests that the atmosphere is in an almost free configuration: of particular 
relevance to the dynamics of blocking is the observation that the q contours at upper 
levels are closed off suggesting that local nonlinear free modes might be a useful starting 
point from which to consider the dynamics of blocking. Accordingly the equivalent 
barotropic modon of McWilliams (1980) has been reconsidered as a prototype of 
atmospheric blocking since it bears such a striking resemblance to Atlantic blocking 
configurations. 

It has been demonstrated that the anomalous transfer of potential vorticity induced 
by the straining of eddies in a diffluent flow is in the sense to sustain the modon. This 
result was anticipated by Shutts (1983) and supporting evidence from observational data 
discussed in Illari and Marshall (1983) and Illari (1984). 

Perhaps the most striking aspect of our study, however, is the ease and vigour with 
which nonlinear free modes can be excited by a localized forcing of the appropriate form. 
Indeed so rapid is the growth, even in response to moderate forcing, that nonlinear 
structures resembling vortex pairs can exist for significant periods even in the presence 
of stationary Rossby waves. Although the response is almost free, it is the presence of 
weak forcing and dissipation which picks out a unique solution. 

Our experiments have some similarity to those carried out by PM who looked for 
localized multiple equilibria in a barotropic model. The modon could be considered a 
high amplitude state of the atmosphere, the stationary Rossby wave a low amplitude 
state. Our experiments indicate that the high amplitude state can exist on blocking 
timescales depending on whether it is being resonantly forced and on how efficiently the 
growing isolated structure loses energy by exciting Rossby waves in its lee. Further 
modelling work is required to investigate more closely these competing effects, but 
perhaps the most pressing need is for a reassessment of the observational evidence for 
localized modon-like structures during blocking events. It has been demonstrated that 
non-compliance with the analytical existence condition Eq. (12) does not rule out the 
presence of modons on blocking timescales although it may be important in determining 
the lifetime and stability of blocking structures, The study of McWilliams (1980) was 
inconclusive as to whether Eq. (12) is satisfied by the zonal, time-mean winds; he 
suggested that the atmosphere is near to the existence threshold for equivalent modons, 
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supporting the speculation that the comparative rareness of blocking is due to the 
infrequency with which Eq. (12) is satisfied. 

Nonlinear resonance studies, such as the one described here, call for diagnostic 
studies which are directed towards identifying the signature of nonlinear localized free 
modes during blocking episodes. Instead of testing for the condition Eq. (12), one 
possible way to identify local free modes in atmospheric data is to use scatter diagrams 
similar to the one presented in Fig. 5 for our model data. Fortunately high quality, high 
resolutim IPV maps are now available from ECMWF anakysed fields, which are ideally 
suited for this purpose. Work is underway to interpret these data in terms of nonlinear 
free mode structures, the prototype of which is the equivalent barotropic modon studied 
here. 

Should it turn out that the equivalent modon is, in detail, an inappropriate description 
of blocking, then other local structures such as the spatially isolated weakly nonlinear 
Rossby waves, studied by Malguzzi and Malanotte-Rizzoli (1984), could equally well be 
adopted as a zero-order field. It could then be anticipated that the interaction of these 
weakly nonlinear structures with travelling synoptic-scale systems, and their resonant 
forcing by them, would be much as described here. It should be noted though, that the 
observations suggest, Fig. 1, that blocking at upper levels is a strongly rather than a 
weakly nonlinear phenomenon. 

The present modelling study could be extended in several ways. An investigation 
into the stability of isolated vortex pairs in a barotropic model with full spherical geometry 
would be of interest: meridional propagation of energy could then proceed unimpeded 
by the presence of channel walls and so the maintenance of localized structures on tbe 
sphere may be more problematical. Further studies using baroclinic models are needed 
in which the flow instability is explicit rather than represented by a wavemaker. However, 
we should like to conclude by suggesting that perhaps generally more attention should 
be given to the relevance of nonlinear free modes and nonlinear resonance to the 
atmosphere, both locally and on global scales. Here attention has been focused on one 
particularly simple nonlinear free mode existing in a uniform zonal flow, but presumably 
other solitary waves and modons existing in more general non-uniform mean flows can 
be constructed or resonantly excited. The observed close coincidence of the 3 and q 
contours in the upper troposphere indicates that the atmosphere may adjust through a 
succession of nonlinear free mode states and suggests that we ought to have an intense 
interest in solutions of the form q = q(v) and their resonant forcing. 
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