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S W R Y  

The role of eddies in the maintenance of idealized, antisymmetrically forced double gyres is studied using 
a barotropic ocean circulation model. A diagnosis in terms of q ,  the quasi-conserved absolute vorticity , enables 
an understanding of the effect of the eddies on the time-mean flow. The unstable model Gulf Stream, 
partitioning counter-rotating gyres, is the confluence region where q contours from widely differing latitudes 
become concentrated, interwoven and irreversibly deformed. Here there is a strong enstrophy cascade, large 
eddy fluxes and eddy flux divergences, and significant driving of mean flow by the eddies. This barotropic 
instability of the internal jet results in a lateral transfer of vorticity sufficient to balance the net forcing of the 
subtropical gyre by the wind-stress curl. The separation of the eddy flux into non-divergent ‘advection’ and 
divergent ‘conversion’ contributions, using the eddy enstrophy equation as a dynamical reference, makes 
transparent the sense of the local eddy q flux and its systematic effect on time-mean flow. 

1. INTRODUCTION 

The high resolution models designed to resolve the oceanic geostrophic eddy field 
have given new insights into its role and interaction with the large-scale gyres. Classical 
wind-driven circulation theory, for example Munk (1950), relegated eddy variability to 
a means of providing a pathway to small-scale dissipation confined to western boundary 
currents. In contrast, the eddy-resolving models emphasize the importance of the eddy 
field as a transferring agent redistributing properties within and between gyres, rather 
than as a mechanism of overall vorticity loss. Harrison (1981), for example, has high- 
lighted the possible role of the meandering Gulf Stream in the redistribution of vorticity 
offsctting the imbalance in the wind-stress curl vorticity source, cyclonic to the north of 
the stream and anticyclonic to the south. One is reminded of the poleward transfer of 
heat by the atmospheric geostrophic eddy field, the mid-latitude synoptic systems, to 
offset the net warming of equatorial regions and the net cooling of polar regions. The 
oceanic eddy field could thus play an analogous role in the large-scale ocean circulation 
to that of synoptic systems in the large-scale circulation of the atmosphere. 

Although these analogies are helpful in thinking about the eddy field in the context 
of the gyre-scale circulation, the intuition gained from meteorological experience can 
also be misleading. The ocean, unlike the atmosphere, is zonally blocked by coasts which 
can support a zonal pressure gradient, leading directly to a geostrophically balanced 
meridional velocity. The success of the interior Sverdrup balance (Sverdrup 1947) in 
explaining the position, sense of rotation and mass transport of the major ocean gyres 
(see, for example, Welander 1959) shows that the first-order circulation can be understood 
without the need to invoke eddy transfer. In the zonally periodic atmosphere, however, 
it is necessary to invoke eddy transfer from the outset to support the zonal mean surface 
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winds, which only then help drive the mean meridional circulation frictionally from the 
ground (Jeffreys 1926; Eady 1953; Green 1970). 

The prevalence of Sverdrup dynamics in the ocean implies that the interior meridional 
drift must return in intense western boundary currents. It is the instability of these 
boundary currents and their seaward extensions that supply eddies to populate the basin. 
Unlike the troposphere, which is dynamically unstable everywhere in the zonal time 
mean, conditions for instability in the ocean are most easily satisfied in jet regions. 
Although the atmospheric long-wave pattern organizes weather systems into storm tracks 
with beginnings and ends, zonal variations in the ocean due to coasts and boundary 
currents are more severe, regions of eddy generation more localized, and the regions 
of eddy decay more extensive. 

Much of the development of our understanding of the transfer properties and 
eddy-mean-flow interaction of atmospheric weather systems has had at its foundation 
insights gained from the instability analyses of zonal flows, which are simply not relevant 
to the strong curved oceanic flows. Holland and Rhines (1980) demonstrate the added 
complexity introduced by strong curved flows in the upper layer of a two-layer quasi- 
geostrophic ocean model, where the potential vorticity contours run significantly 
north-south. Our meteorological experience only holds good in the lower layer, where 
mean flow is sufficiently weak for the potential vorticity contours to run east-west. 

Here a numerical experiment with an eddy-resolving barotropic model is described, 
which we hope helps to unravel some of these complexities. Although the model is 
barotropic, it provides the most appropriate and useful reference for the layered 
quasi-geostrophic ocean models. It is particularly relevant to the upper layer of Holland's 
(1978) two-layer model. The work is an extension of the single, steady gyre barotropic 
calculations begun by Bryan (1963) and continued notably by Veronis (1966) and 
Blandford (1971), to include a dynamically active internal jet partitioning counter- 
rotating gyres. The barotropic instability of the jet transfers all the vorticity required to 
maintain the equilibrium of the model subtropical gyre. The model formulation and 
diagnostic approach is described in section 2. In section 3 the maintenance of the 
time-mean gyres by wind and eddy transfer is studied in detail. The spatial distribution 
of eddy fluxes and their relation to mean gradients is rationalized with reference to the 
eddy enstrophy equation, and suggests the parametric representation of eddy-mean-flow 
interaction discussed in section 4. 

2. BAROTROPIC OCEAN MODEL 

Our ocean model is a layer of homogeneous fluid confined to a rectangular, flat 
bottomed basin and governed by the barotropic vorticity equation. It is driven by an 
imposed wind-stress curl and frictionally retarded. The barotropic vorticity equation has 
been the basis of much of classical wind-driven ocean circulation theory and is derived 
in, for example, Bryan (1963) and Veronis (1966). Conveniently non-dimensionalized, 
it may be written 

R-'dq/at + J( v, 4) = F - D, (1) 
expressing the conservation of q but for forcing and dissipation, where 

J(  tp, q )  = ( d v / d x ) ( d q / d y )  - ( d v / d y ) ( d q / & )  is the Jacobian 
is the streamfunction 

q = Rg + y is the absolute vorticity 
= V2v is the relative vorticity 
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R = nt(pHp2L3) -' is a Rossby number for the vorticity 
equation measuring the magnitude of the relative vorticity 
gradient relative to the planetary vorticity gradient 

F = -a t /dy  is the wind-stress curl forcing 

where x is east, y is north, t = t ( y )  is the zonal wind-stress; p, the density; H, the layer 
depth; p, the planetary vorticity gradient; L, the width of the basin; and 

D = EC + A4V45 is the frictional dissipation 

where E and A4 are bottom and lateral (biharmonic) frictions respectively. 

scale, n t / p p H L ,  and the distance and time by L and (/?L)-' respectively. 
In Eq. (1) the velocity has been non-dimensionalized with the Sverdrup velocity 

( a )  Sub-grid-scale parametrizations and boundary conditions 
In order that the model can become dynamically unstable it must be weakly 

dissipative so that advection can dominate even in boundary currents. This allows 
physically resolved motions to transport q rather than this be represented by ad hoc 
parametrizations. Accordingly, a scale-selective lateral friction is introduced, A4V45, 
which remains small in the vorticity equation (1) at dynamically interesting scales. Unlike 
the lateral friction of Munk (1950), the term is not imagined to represent the lateral 
transfer of momentum to a coast, but rather to dissipate the enstrophy that inevitably 
builds up at small (grid) scales in highly turbulent flows. Along with this reinterpretation 
of the lateral friction it seems appropriate to make the boundaries slippery so as to 
minimize the influence of frictional boundary layers in the dynamics of the gyre. Rather 
than impose an arbitrary condition on the boundary vorticity it is preferred to integrate 
Eq. (1) at the boundary, allowing the boundary vorticity to evolve in time. 

The enstrophy-destroying fourth-order term requires two extra boundary conditions 
at each lateral wall, in addition to that of no normal flow, 

q = constant. ( 2 4  

(2b) 

The following conditions are applied on vorticity gradient: 

ag/an = a3c/an3 = 0, 

where n is the normal to the boundary. Condition (2b) ensures that the inclusion of the 
biharmonic friction does not itself result in any net dissipation of vorticity, because 

J V45 dr dy = $(a35/an3) dl = 0 .  

Again this should be contrasted with the function of the lateral friction in classical 
wind-driven ocean circulation theory with the no-slip boundary condition, such as Munk 
(1950). There the net input of vorticity over each wind-driven gyre is dissipated in the 
lateral frictional boundary layer at the western boundary within each gyre. 

The boundary integration of (1) and the boundary conditions (2) are unconventional, 
but are chosen because they minimize the importance of frictional boundary layers and 
maximize the role of eddy transfer in the maintenance of the time-mean gyres. The 
conventional 'free-slip' condition, f = 0, places a much more rigid constraint on the 
geometry of the q contours because, for all time, q = y at the east and west coast (see 
Marshall 1982). With the boundary integration, however, the q contours are not firmly 
attached to the coast at their reference latitude and so, in a sufficiently nonlinear 
boundary current, can be drawn almost parallel to the streamlines. 

over domain around boundary 
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(b)  Method of solution 
A finite difference approximation of Eq. (1) with boundary conditions Eqs. (2), is 

solved on a square grid in both single and double gyre configurations (see Fig. 1): 

(i) single anticyclonically forced subtropical gyre in domain 

O < X < l ]  

with J - l < y < O  

F = sin(ny) 

(ii) antisymetrically forced double gyre in domain 

O < x < l  1 
with 

-1 < y  < 1 

F = sin(ny) 

giving a northern cyclonically forced subpolar gyre, and a southern anticyclonically 
forced subtropical gyre. 

Equation (1) is leap-frogged forward in time from an initial state of rest at interior 
and boundary points. At each time step a finite difference version of the Poisson equation 

x=o x= 1 

u'= 1 

Y= 0 

Y= -1 

Figure 1. The geometry of the basin in relation to the wind-stress curl forcing, F. The dotted line is the 
northern boundary of the single gyre. 
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is inverted exactly to calculate q from q. The Jacobian is finite differenced using 
Arakawa's (1966) formulation. Corner points and walls of our closed basin must be 
treated separately, and with care, to ensure complete cancellation of the advection terms 
in the summation of the kinetic energy, enstrophy and vorticity integrals. The boundary 
conditions, Eqs. (2), permit the evaluation of the biharmonic term at the boundary and 
ensure that it cannot act as a net vorticity sink. 

(c )  Diagnostics 
In order to examine the statistically steady state of the model, it is useful to separate 

mean and eddy processes by defining mean and eddy quantities 

q = $ +  q' (4) 
where overbar denotes a time average over many eddy life-times and prime, the deviation 
from the average. Eddy transfer is introduced by substituting (4) into (1) and time 
averaging to give 

R-'a&3t + J(  G, 4) + J ( W )  = F - 0. ( 5 )  
Equation (5) shows why there should be an interest in the geometry of the 4 

contours, for these are the reference along which, but for eddies, forcing and dissipation, 
the mean flow moves. It is for this reason that there has recently been such interest in 
the large-scale ocean circulation viewed from the perspective of potential vorticity and 
its close conservation (see Rhines and Young 1982). In the present barotropic model it 
is the absolutc vorticity which provides the constraint on mean flow and eddies. 

In our study of the eddy-mean-flow interaction in the model, frequent reference 
will be made to the eddy enstrophy equation, since it provides a helpful dynamical basis 
to interpret the spatial pattern of eddy fluxes and their relation to the 7 geometry. It 
may be derived by first forming the prognostic equation for the eddies d q ' / a t ,  Eqs. 
(1)-(5), multiplying by q' and time averaging to give, neglecting triple correlations: 

where v = k A V v  is the horizontal geostrophic velocity. The eddy enstrophy equation 
relates the cross-gradient eddy q flux to the advection of eddy enstrophy by the mean 
flow, and its dissipation by the enstrophy cascade. 

In the atmosphere, the zonal-averaged eddy q flux tends to be directed down 
gradient because the irreversible deformation of the q contours in turbulent flow promotes 
an enstrophy cascade: the zonal, long-time average of Eq. (6) takes the form - 

ulql*'(d~/dy) = -D'q fx f  < 0. (7) 
This is the rationale behind the adoption of a down-gradient parametrization of the 
zonal-average eddy q flux due to synoptic eddies in the atmosphere: the flux must be 
directed down gradient to offset the continual dissipation of enstrophy at the small 
scales. 

Rhines (1979) points out that the zonal asymmetry of the ocean circulation, intro- 
duced by meridional walls and western boundary currents, results in strong curved flows 
in which the advection of? is an important term in Eq. (6). In fact mean flow advection 
cannot be ignored in local enstrophy budgets in the atmosphere either (see Illari and 
Marshall 1983), particularly at the beginning and end of the atmospheric storm tracks. 
The ocean is even less zonally uniform than the atmosphere and so advection in Eq. 
(6) correspondingly more important. Holland and Rhines (1980), for example, in a 
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diagnosis of a two-layer uasi-geostrophic eddy-resolving model, contrast the relative 

circulatory gyres advect q'2 and, in response, the q fluxes are directed both up and down 
gradient. Only in the lower layer, where mean flow is weak and advection of small, 
does the eddy q flux point systematically down the 4 gradient. 

Marshall and Shutts (1981) use Eq. (6) as a dynamical basis from which to rationalize 
the sense of the eddy q flux, and are able to associate the flow advection term with 
rotational, non-diuergent fluxes. They show that if mean flow 3 does not deviate far 
from the 4 contours, i.e. there is a functional relationship 3 = ?(;), then Eq. (6) 
separates naturally into two parts: 

importance of the i .  Vfq' 9 in upper and lower layers. In the upper layer the strongly 

- -  
a($p)/at  + (v'q' - ( V ' q ' ) r o t ) .  vq = -D" ' (8b) 

- 
where (v 'q')rot - = f k A V { ( d ~ / d i ) p }  with k a unit vector pointing vertically upwards. 
Thus - the (v'q')rot, which may be called an 'advection' flux, responds to flow advection 
of q'* but cannot - -  drive time-mean flow, Eq. ( 5 ) ,  because it is non-divergent. The 
remaining flux, v 'q '  -( v'q')rot, which may be called a 'conversion' flux, contains all the 
divergent flux and, in common with the zonal average flux of Eq. (7), is directed down 
gradient if there is an enstrophy cascade. This rationalization of the eddy flux into 
dynamically distinct contributions has proved useful in diagnosing the effect of 
synoptic-scale systems on time-mean flow in atmospheric blocking (see Illari and Marshall 
1983; Shutts 1983). 

In section 3, diagnostics of the statistically steady state of the model will be presented 
in the following framework. We will be interested in: 

(i) The geometry of the 4 contours, the extent to which they are the reference for the 
mean gyres 3, and the relative importance of wind forcing F, dissipation D and eddy 
flux divergence J ( I ) ' ,  q ' ) ,  in driving 3 across the 4 contours, breaking the functional 

(ii) The rationalization of the sense of v'q' with respect to the advection of? and its 
dissipation by the enstrophy cascade, provided by Eq. (6) and its decomposition, Eqs. 

(iii) The mechanism of overall vorticity equilibrium. 

, 

relationship q(4). - 

(8). 

3. MAINTENANCE OF TIME-MEAN GYRES 

In this section two numerical integrations are described. In the first, Eq. (1) is solved 
in the domain (3a), spinning up a single steady Veronis (1966) gyre. In the second, Eq. 
(1) is solved in the domain (3b) and the flow becomes time dependent reaching a 
statistically steady state in which counter-rotating gyres exchange properties. In both 
integrations the non-dimensional coefficients are the same: their fundamentally different 
character arises because the eastward flowing boundary current along the northern wall 
of the single gyre becomes an unstable internal jet in the double gyre. 

The following non-dimensional measure of the non-linearity is chosen: R = 
f n X  corresponding to an ocean in which, dimensionally, z = lo-' N m-*, p = 
103kgm-3, /3= 2X10-"m-'s-', H=5X102m, L = 106m. 

The equations are integrated with a time step of 0.1 on a 33x33 grid for the single 
gyre, and a 33x65 grid for the double gyre. The horizontal resolution is just sufficient 
to resolve the inertial boundary layer, of width R b2. 
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The coefficients A4 and E are chosen so as not to become locally important terms 
in Eq. (1) and, in particular, A4 is reduced to the minimum required to maintain a 
reasonably continuous vorticity field: they are (non-dimensionally) E = and A4 = 
3 ~ 1 0 - ~ .  

( a )  Steady single gyre 
Figure 2 shows the 9 and 4 of the single gyre integration after reaching a steady 

state. The flow is strongly nonlinear with a northern boundary current extending across 

a 

b 

I\- = 
I 

Figure 2. The single steady gyre. (a) 3: contour interval (C.I.) =_ 0.4; qmar = 2.6, showing that the gyre has 
spun up in excess of Sverdrup. (b) q: C.I. = 0.2. 

the entire length of the northern wall and returning to the interior from the east. The 
nonlinear boundary current thus penetrates the interior, destroying the linear Sverdrup 
balance in the northern half of the basin. 
- In the inertial recirculation, the important balance in Eq. (5) is J( 9, 4)  = 0 with 
ly- q(4) and the 4 contours drawn almost parallel to the 9 contours. The flow is 
sufficiently nonlinear to resemble a Fofonoff (1954) free basin mode. It is interesting 
that although the ‘parallel flow’ criterion for instability ( G / d y  changing sign) is satisfied, 
the flow is absolutely stable in the limit of the Fofonoff inviscid solution. 

The amplitude of the solution is limited by the magnitude of the bottom friction 
coefficient E. Integrating over the gyre, 

E c d x d y  = F d x d y .  I- I (9) 
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We recall that the biharmonic friction cannot act as a vorticity sink because of the choice 
of boundary condition (2b). 

The maximum streamfunction in the domain measures the transport of the gyre, 
quantifying the degree of spin-up. If the interior was in linear Sverdrup balance (4 = y ) ,  
the q,, would be unity: the &,ax of the nonlinear gyre in Fig. 2 is 2.6. Pedlosky (1979) 
describes this spin-up in excess of Sverdrup as the ‘singular perturbation’ involved in 
ignoring lateral frictional boundary layers. Their absence in the single gyre has led to 
a circulation in which interior velocities must exceed Sverdrup in order to accomplish 
the nxessary dissipation through bottom friction. In section 3(b)  it will be shown that 
the neglect of frictional boundary layers in time-dependent double gyres need not lead 
to a spin-up vastly exceeding Sverdrup, because the circulation becomes dynamically 
unstable, allowing lateral vorticity exchange between gyres. 

( b )  Time-dependent double gyres 
and q maps taken after the flow has 

reached a statistically steady state. The boundary current flowing along the northern 
Figure 3 shows a sequence of instantaneous 

-t 
@ 1 

Figure 3. A series of instantaneous y(C.1. = 0.5) and q(C.1. = 0.2) fields from the double gyre integration 
at 16 time unit intervals. Thin lines represent negative contours, thick lines positive contours, and the very 
thick line the zero contour. The boundary current along the northern wall of Fig. 2 has become an unstable 
internal jet. There is irreversible deformation of the q contours in the jet, visible evidence of a strong enstrophy 
cascade. Away from the jet, to the north and south, westward propagating basin modes reversibly deform the 

q contours. 
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wall of the single steady gyre, Fig. 2, has become a barotropically unstable internal jet 
meandering along the zero wind-stress curl line, and occasionally forming cut-off rings. 
The diameter of each eddy scales as (u//3)@ dimensionally, where u is a typical eddy 
speed. 

(i) Mean flow and the geometry of 4 contours. The $ and 4 calculated by averaging over 
many eddy life times, Fig. 4, shows two counter-rotating circulations corresponding to 
a northern subpolar and a southern subtropical gyre. Ideally the long-time mean should 
be antisymmetric about y = 0 but, due to the necessarily finite length of the averaging 
interval, this is not wholly achieved. It is the maintenance of these Eulerian mean gyres 
which is the main concern here. It is essential to consider the 3 in the context of the 
q contours. The $ and 4 are superimposed in Fig. 4(c). 
- 

a b 

Figure 4. The mean fields from the double gyre integration calculated by averagiEg a sequence of 400 
instantaneous fields at 4 time unit intervals. (a) 3: (c.1. = 0.3); (b) 4: (C.I. = 0.2); (c) wand ;5 su erimposed. 
In the regions ofdrup balance, S = y and the is driven across ;5 by the wind-stress curl, !. The eddy 

term, J( w' ,  q ' ) ,  allows the to recross the 4 in the unstable jet and return to the interior. 

In the region of linear Sverdrup balance, J (  $,4) = F with ;T = y ,  the mean flow 
is weak and the 4 contours run west-east along latitude circles. Here the 3 are driven 
across the 4 by the wind-stress curl. 

Mean flow from the Sverdrup interior turns northwards (in the subtropical gyxe) in 
a strong western boundary current advecting its 4 contours with it. In this inflow region 
J( 3,4) = 0 with 4 = RZ + y ,  as in the early inertial boundary current theory of, for 
example, Charney (1955). 
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In the north-west of the subtropical gyre, the G contours are attached to the western 
lateral wall, and so here the flow must cross the j contours from lower to higher values 
in order to rejoin the Sverdrup interior. It is the eddy flux divergence of q which allows 
the 3 to cross the G: the dominant balance is 

J(3, a + J (  v’ ,  q ‘ )  ‘-. 0 
with bottom and biharmonic friction an order of magnitude smaller than either term. 
This should be contrasted with classical, steady, wind-driven circulation theory (for 
example, Morgan 1956; Niiler 1966) in which an inertial/frictional boundary layer is 
postulated to allow the flow to return to the interior. In our time-dependent model, 
frictional dissipation of vorticity has been replaced by an internal redistribution by eddies. 

The importance of the J (  v ’ ,  4’) in the maintenance of the mean gyres can be seen 
from Fig. 5 ,  where 3 has been superimposed on the J (  v ’ ,  q ’ )  pattern. Regions are 
shaded (hatched for convergence, dotted for divergence) if IJ( v ’ ,  q ’ )  I exceeds unity, 
the maximum value of the wind-stress curl. Regions of significant eddy forcing are 

Figure 5. The ?of Fig. 4 (C.I. = 0.3) with the eddy flux divergence patternJ( ly‘, 4‘) superimposed. Regions 
have been hatched for convergence and dotted for divergence, if IJ( V‘, 4’) I >1, the maximum value of the 

wind-stress curl. 

- 
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confined to the vicinity of the meandering jet. The $ contours must pass through these 
large divergence/convergence regions before they can return to the interior. The eastward 
flowing jet is 'split' by the divergence/convergence, north/south dipole, as it flows into 
the interior after leaving the coast. There are tight recirculations on either flank, again 
driven by eddies. 

(ii) Eddy fluxes and the eddy enstrophy equation. The eddy q flux, v'q' is of interest 
because its divergence drives mean flow and also because - it is the subject of parame- 
trization schemes (see, for example, Marshall 1981). Thev 'q '  is plotted against 4 in Fig. 
6(a). The sense of the flux is not obviously constrained by the 4 geometry. There are 
regions where it is directed up, down, and along the 4 gradient. In Fig. 6(b) the flux is 

- 

a 

1' 

b 

. . . . . . . . . .  

. . . .  . .  

. . . . . . . . . 

Figure 6. The eddy 9 flux v'q' plotted against (a): 4 (C.I. = 0.1); (b): q 2  (C.I. = 0.05). The arrow in the 
margin is four units long. 

plotted against the q'2 contours, and shows the presence of a contribution swirling 
around the q" contours. Figure 6 strongly suggests that the rationalization of the eddy 
flux provided by Eqs. (8) into contributions associated with advection and conversion 
of eddy enstrophy, may be helpful. 
- The separation of the flux depends on there being a functional relationship between 
I/J and 4, yet in the region of interest this relation is broken by large eddy flux divergences. 
However, in the sense that 
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I 

Figure 7.  Scatter diagram of against 4 in the inertial recirculation region (0 < x < 1, -1 < y < 1) showing 
their functional relationship. 

there remains a sufficiently close functional relationship for a separation to be helpful. 
The degree of scatter on the plot of $ against 4, Fig. 7, attests to the existence of a 
relationship in the unstable jet region. The mean flow is so strong that even large eddy 
forcing causes only a ‘small’ deflection of $ across 4. Figure 4(c) also indicates that the 
q still retains a strong constraint on the 3. 

The rotational, non-divergent flux, (v’qr)rot, Eq. (8), with the d $ / @  approximated 
by the straight line in Fig. 7, is plotted in Fig. 8(a). It is mainly directed up the 4 gradient, 
responding to flow advection of q’2 from its generation region near the separation point 
into the interior, i .  V h p  <O. Comparison with Fig. 6 shows that the (v’4))rot accounts 
for some of the major features of the spatial pattern of total flux. In particular, the 
along-gradient flux in - the regions of ;f gradient reversal, and the interior up-gradient 
fluxes are due to the (v’q’)rot contribution. 

The remainingv’q’ -(v’q’)rot contribution is plotted in Fig. 8(b). Much of the swirl 
of Fig. 6 has been removed and, to a remarkable degree, this ‘conversion’ flux is directed 
not only down the gradient, but parallel to -Vq. The divergence of this down-gradient 
flux gives the eddy forcing pattern of Fig. 5 .  So, as suggested by Marshall and Shutts 
(1981), the eddy flux can be illuminatingly considered to be comprised of two contri- 
- butions: a rotational non-divergent ‘advection’ flux responding to flow advection of 
q’*, Eq. (8a); and a divergent ‘conversion’ flux responding to, and directed down the 
q gradient because of the dissipation of q’2 in the enstrophy cascade, Eq. (8b). In our 
model it is the biharmonic term which is the enstrophy-destroying friction and it makes 
an 0(1) contribution in the eddy enstrophy budget, Eq. (6) with 

Eddy enstrophy is destroyed most vigorously in the region of irreversible deformation 
of the q contours in the unstable internal jet-see Fig. 3. The large-scale gyres advect 
their q contours through the boundary currents, concentrating them in the jet and 
creating regions of q gradient reversal. The flow becomes unstable and the contours are 
extended, becoming more and more convoluted, with finer and finer structure. This is 
the visible evidence of the cascade of q to smaller scales discussed by, for example, 

- 

- -  

- 

= q”. 
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a b 

- -  
Figure 8. The separation of v’9’ into contributions responding to (a): advection of 9’*. ( ~ ‘ 9 ‘ ) ~ ~ ~ .  Eq. (8a). 
This flux is non-divergent and points predominantly up-gradient, balancing the advection of q 7  from the jet 
into the interior. (b): dissipation of p by the enstrophy cascade, v’9‘ -(~‘9’),, ,~, Eq. (8b). This flux is 
divergent and directed down the 4 gradient to offset the dissipation of p. The fluxes are plotted against 4 

(C.I. = 0.1) and are scaled as in Fig. 6. 

- -  

Bretherton and Haidvogel (1976) and Rhines (1979). The biharmonic friction then acts 
at the smallest resolvable scales to dissipate the q.  It is in this cascading region that the 
eddy conversion fluxes are large, Eq. (8b), pointing systematically down the gradient 
and driving mean flow. 

The interiors to the north and south of the internal jet are regions where the q 
contours are reversibly deformed by the westward-propagating Rossby basin modes. 
There is negligible cascade, no significant eddy-mean-flow interaction and, in the time 
mean, a linear Sverdrup balance. 

Our description of the geography of eddy fluxes and their interpretation is particularly 
relevant to the eddy q fluxes in the uppermost layers of quasi-geostrophic ocean models 
(for example, Holland and Rhines 1980). There is also some dynamical resemblance 
with the atmospheric storm-track event, where one often observes down-gradient fluxes 
at the beginning, but up-gradient fluxes at the end of the track-see Illari and Marshall 
(1983). As Eq. (8) makes clear, though, it should not necessarily be concluded that 
up-gradient fluxes are signatures of a reverse enstrophy cascade, with unravelling q 
contours, parcels falling back to their reference latitudes and sharpening 4 gradients. 

Here we have concentrated on the systematic driving of mean flow by eddies: 
transient effects have been averaged out. In transient problems (a/& # 0 in Eq. (6)) 
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up-gradient fluxes can be expected wherever wave amplitudes are decaying. However, 
persistent changes in 4 are much more likely to be associated with irreversible deformation 
of the q contours and thus enstrophy sinks. 

In conclusion of this section on eddy fluxes, it is worth emphasizing that our 
separation of the eddy flux into dynamically distinct contributions is not the usual 
separation of Lau and Wallace (1979). Lau and Wallace defined 

- 
v’q’ = kAvx + VY (10) 

where x and Y are the streamfunction and potential for, respectively, non-divergent 
rotational, and divergent irrotational contributions. Taking, in turn, k . VA and V . of 
(10) gives 

Vzx = k . VA(v’q‘) 
VZY = v . (v’q‘). -- I 

On the sphere, one solves Eqs. (11) for x and Y and then computes Eq. (10)’ but in the 
closed domain of an ocean basin a unique separation is not possible, because unknown 
lateral boundary conditions on x and Y! are required to solve Eqs. (11). More important 
than these technical details, Eqs. (8) go beyond the purely mathematical device of Eq. 
(10) and separate on dynamical grounds, only identifying that non-divergent flux associ- 
ated with flow advection of eddy enstrophy. 

(iii) Lateral uorficity transfer between gyres. The central role of eddies in the equilibrium 
of the time-mean gyres can be appreciated by integrating Eq. (5) over the area bounded 
by the 3 = 0 contour of the subtropical gyre. Of the 0.648 units of anticyclonic wind- 
stress forcing over the subtropical gyre, 0.563 is balanced by eddy vorticity flux divergence, 
0.016 by bottom friction, 0.034 by biharmonic friction, and 0.029 by mean flow advection. 
The mean flow advection does not integrate to zero because the integrals are carried out 
on a grid and the 3 = 0 contour, partitioning the gyres, passes between grid points: the 
0.029 could be taken as the error in the discrete evaluation of the integral. 

The eddies, then, transfer as much anticyclonic vorticity out of the subtropical gyre 
as the wind-stress curl puts in: the integral balance Eq. (9) of the single gyre has been 
replaced by 

jo’q’dr = I F d x d y  = (j;. dl 
along partition around periphery of 
between gyres (12) gyre, V = 0 

expressing the line-integral of the wind-stress forcing around the periphery of the gyre. 
This must be balanced either by bottom friction or by ‘rubbing’ against the neighbouring 
gyre through lateral Reynold stresses. If, as here, the bottom friction is small enough, 
the gyres transfer vorticity via barotropic instability. 

Unlike the single steady gyre, the unstable double gyres reach a (statistically) steady 
state in which there are extensive Sverdrup interiors (see Fig. 4), without recourse to 
lateral frictional boundary layers. The qmm of the double gyre is only 1.5, thus showing 
that the ‘singular perturbation’ involved in the neglect of frictional boundary layers in 
the single gyre does not occur in the double gyre because of the flow instability. The 
internal jet must become unstable in order to achieve a balance between the cyclonic 
forcing over the subpolar gyre, and anticyclonic forcing over the subtropical gyre. In this 
way the vorticity is redistributed by the instability to offset the imbalance in the imposed 
forcing. It is interesting to contrast global versus local aspects of the equilibrium mech- 
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anism: local instability dynamics achieves the global flux of relative vorticity between 
the gyres. A mixed instability of a baroclinic free jet may behave differently, for with 
baroclinicity the relative vorticity flux can be both up and down the mean absolute 
vorticity gradient. 

4. A PARAMETRIC REPRESENTATION OF THE GEOSTROPHIC EDDY FIELD 

In section 3 the convergence/divergence pattern due to physically resolved eddies 
was computed and shown to bear a close relation to the 4 geometry: the divergence of 
the down-gradient eddy flux, Fig. 8(b), gives the pattern of eddy forcing, Fig. 5. Hence, 
even in this strong, curved flow in which 7. V cannot be neglected and where the 4 
contours run significantly north-south, the driving of time-mean flow by eddies can be 
understood in terms of the divergence of a contribution to the eddy q flux directed down 
the local time-mean 4 gradient. In other words, a ‘parametrization’ of the local time- 
mean divergent eddy q flux of the form - 

( v ‘ q ’ ) d i o  = -mi, (13) 
where K is a positive scalar (but a function of space), still retains some validity. 

prognostic equations for the time mean 4 has been integrated in place of Eq. (1): 
As a practical demonstration of the applicability of the closure (13), the following 

R-’a&t + J (  3, S) = F - b + v . (KV?). (14) 
The V . (KV;?) serves two purposes. Firstly, it prevents the flow from becoming 

dynamically unstable and, secondly, it parametrizes the important transfer properties of 
the eddy field. The boundary conditions (2) ensure that the term integrates to zero over 
the basin and thus cannot generate net vorticity. 

To complete the closure the magnitude and spatial variation of K ( x ,  y )  need to be 
specified. The form of the K should reflect the horizontal scale over which the cascade 
(and hence the parametrization) is active. The region of irreversible deformation appears 
to be R’/3 (the scale on which aq/dy = 0). The inclusion of such scales may be of help 
heuristically in choosing the form of the K. However, integration of Eq. (14) has shown 
that the details are not important so long as the scale over which K varies is less than 
the 9 length scale. What is important is that the K should be large near the jet separation 
point where the enstrophy cascade enables parcels to disperse, and small in interior 
regions where there is no cascade, with fluid parcels remaining tied to their reference 
latitude. The q’z of Fig. 6(b) has the appropriate form and is chosen here for illustrative 
purposes: 

K a q ’ 2 .  (15) 
The constant of proportionality is adjusted to give realistic intensity of eddy forcing. 

Equation (14), with the K given by Eq. (15) and boundary conditions (2), is 
integrated from a state of rest in the double gyre geometry. Biharmonic and bottom 
frictions are retained and the non-dimensional parameters are those of section 3. Figure 
9 shows the steady state solution. A close similarity with the 3 and 4 geometry computed 
from the eddy-resolving model, Fig. 4, is evident. Perhaps even more impressively, 
because it is a differentiated quantity, the spatial pattern of eddy flux convergence and 
divergence is also well reproduced parametrically: compare Fig. 9(c) with Fig. 5. Detailed 
comparison is not important here (if the K was computed from the eddy-resolving model 
using Eq. (13) as a definition, the 3 and 4 could be reproduced exactly) but rather the 
reasoning that lies behind the closure, Eq. (13). It is the association of the flow advection 
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0 b C 

Figure 9. The steady state solution of Eq. (14) incorporating a paramesepresentation of the eddy field, 
Eq. (13). (a): with the termJ( v ’ ,  4’) superimposed. Regions have (C.I. = 0.3); (b): 4 (C.I. = 0.2); (c): 

been hatched for convergence and dotted for divergence, as in Fig. 5.  

term in the eddy variance equation with rotational non-divergent fluxes, demonstrated 
by the success of the separation, Eqs. (8), which lends strong support to a local application 
of a down-gradient flux parametrization for the quasi-conserved q.  

Finally, we end this section with two comments on the closure. Firstly, although 
formally identical to that of Munk (1950) (if K is held constant) it has a completely 
different physical interpretation. Here it represents the redistribution of vorticity in the 
horizontal by a geostrophic eddy field, whereas classically it represents the transfer of 
momentum between the fluid and the coast in some ill-defined process confined to a 
lateral frictional boundary layer. Secondly, a closure for the eddy flux of the form Eq. 
(13) erodes the 4 gradients which, in the absence of external forcing to restore them, 
leads to an end-state in which 4 is uniform. In fact, this conclusion can be reached 
independently of any closure hypothesis by integrating Eq. (6) over a closed mean 
streamline and invoking the cascade (see Rhines and Young 1982). 

5 .  CONCLUDING REMARKS 

The understanding of those processes which enable the ocean to circulate in gyres, 
despite the tendency of q contours to be latitude circles beginning and ending at the 
coasts, is the central objective of large-scale ocean circulation theory. Any satisfactory 
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explanation must recognize that the ocean is a turbulent fluid full of geostrophic eddies 
which have important transfer properties. 

Rhines and Young (1982) describe how geostrophic eddies may erode the interior 
planetary vorticity gradient. At depths sufficiently remote from surface forcing, the 
expulsion of the 4 contours to the north and south by the eddy field can create extensive 
regions of almost uniform 4, allowing north-south motion and circulating gyres. In the 
present homogeneous model, there is a ‘competition’ between the advection of 4 contours 
by the gyres concentrating them into the internal jet, and the tendency of the eddy field 
to destroy 4 gradients pushing the 4 contours apart. Extensive plateau regions are not 
present because the layer is forced. The wind-stress drives flow across the 4 contours in 
the linear interior, but eddy flux divergences rather than dissipation allow the $to cross 
the 4 near the jet separation and in the inertial recirculation. In Lagrangian terms, 
parcels of water circulate through the western boundary current only exchanging planetary 
vorticity for relative vorticity, whilst conserving their q. Entering the unstable jet, they 
are taken on a meandering path allowing time for exposure to regions of opposite sign 
wind-stress curl forcing, and time for weak dissipation to act. Parcels recirculate, perhaps 
passing through the western boundary current several times before enough relative 
vorticity has been eroded enabling a return to the linear Sverdrup interior. Thus even 
the most simple barotropic ocean model is capable of providing a physically consistent 
picture of a possible circulation in which, relieved of frictional boundary layers, eddies 
can play a central and plausible role in the gyre-scale dynamics. 

Recent observational studies point to the usefulness of q as a diagnostic tool in the 
study of the large-scale dynamics of the atmosphere and ocean. McDowell er al. (1982) 
map the potential vorticity of the North Atlantic and discuss the implications of the 4 
geometry for the dynamics providing paths along which flow can freely move. Extensive 
regions of uniform potential vorticity are evident allowing the circulation to overcome 
the constraints of the planetary vorticity gradient. It appears, Illari and Marshall (1983), 
Illari (1984), that the split jet in tropospheric blocking episodes is a strong deformation 
field on synoptic eddies driving a cascade of q to small scales and making the block a 
region of almost uniform 4. McIntyre and Palmer (1983) describe a potential vorticity 
mixing event in the region of the main stratospheric vortex eroding the potential vorticity 
gradient. 

In addition to the foregoing examples, our idealized model gyres provide a par- 
ticularly simple further illustration of the different effects of wavelike and turbulent 
behaviour on the 4 distribution. The conceptual simplification provided by the focus on 
q and its close conservation, aids the understanding of the effect of the eddies on 
time-mean flow, even in the presence of the strong, curved flow of an ocean gyre. The 
separation of the eddy q flux into non-divergent ‘advection’ and divergent ‘conversion’ 
contributions, Eqs. (8), using the eddy enstrophy equation as a dynamical reference, 
makes transparent the sense of the local eddy q flux and its systematic effect on time- 
mean flow. Our analysis supports the local application of a down-gradient representation 
of the eddy q flux, because it has been demonstrated that the extra advection term in 
the time-mean eddy enstrophy equation, which vanishes in the zonal mean, is associated 
with non-divergent fluxes incapable of driving mean flow. 
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