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ABSTRACT

The dynamics of a warm lens created by a surface buoyancy flux and Ekman pumping in an initially ho-
mogeneous, unbounded fluid on a b plane is studied in a set of high-resolution numerical experiments. A simple
analytical model for the equilibrium structure of the lens is developed that assumes that the input of vorticity
and buoyancy from the Ekman layer is balanced through transfer by baroclinic eddies that carry the warm fluid
laterally away from the lens. The importance of eddy-induced diapycnal flux in the western intensification region
is emphasized by developing a boundary layer theory based entirely on the cross-frontal mass exchange due to
eddies. The theory is successfully tested against direct numerical eddy-resolving simulations. Possible ocean-
ographic implications of the study for understanding subtropical gyres and the Antarctic Circumpolar Current
are discussed.

1. Introduction

Homogeneous ocean circulation theory attempts to
explain the broad horizontal pattern of ocean gyres by
considering the absolute vorticity balance. The western
boundary layer plays a central role in this balance, act-
ing as a sink of the relative vorticity imparted to the
fluid in the interior by the wind field—see, for example,
the review by Stewart (1964). In thermocline theory,
which focuses on the vertical structure of ocean gyres,
the detailed physics of the western boundary layer has
received much less attention than its homogeneous
counterpart. Ideal thermocline theory ignores buoyancy
and vorticity sinks and implicitly assumes that there is
a passive nonadiabatic boundary layer that somehow
balances the volume and potential vorticity budgets.

Although modern thermocline theory articulates self-
consistent models that have brought much insight, one
can readily question some of the underlying assump-
tions. Probably the most serious criticism of the ideal
theories is related to our present lack of knowledge of
the extent to which the ideal equations themselves are
accurate in the description of the time-mean of an ocean
full of energetic eddies that may have important transfer
properties. Thus, the quantitative test of these thermo-
cline theories is a test of the adequacy of the governing
equations and, implicitly, the lack of importance of ed-
dies (Vallis 2000).
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In this study we consider an idealized abstraction of
a subtropical ocean gyre: the equilibration of a warm
pumped lens on a b plane. By construction, geostrophic
eddies play a central role in the volume budget of this
gyre: warm fluid pumped down from the surface is
fluxed away laterally by geostrophic eddies formed as
a result of the baroclinic instability of a large-scale cur-
rent. In a recent paper (briefly reviewed in section 2),
Marshall et al. (2002) described these processes in an
f -plane framework. Here we extend this work to the b
plane. A fundamental difference between the Marshall
et al. (2002) study and the present one is that now,
because of b, eddy shedding (as well as the intensity
of the mean flow) is not distributed uniformly around
the lens but is strongly enhanced on the western flank
of the lens.

We show in a series of numerical experiments, in
which the value of b is varied while keeping other pa-
rameters fixed, that, in the limit of strong b, eddy pro-
cesses are confined to a thin ‘‘boundary’’ layer at the
western edge of the lens. The resulting time-mean states
in the large b case prove to be very suggestive of the
structure and dynamics of ocean gyres. The equilibrated
lens can be described as a quasi-adiabatic Sverdrupian
gyre bounded on the west by a narrow eddying inten-
sification region. The nature of this western boundary
layer is studied and its role in closing the circulation is
explored. In the opposite limit when b is small, the
eddies dominate the whole solution and Sverdrup dy-
namics cease to be a constraint. In this case we find that
the dynamics of the lens become analogous to that of
a circumpolar jet (Karsten et al. 2002), in which the
tendency of mechanical and thermodynamic forcing to
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FIG. 1. Schematic representation of a pumped heated lens. An im-
portant question is whether the equilibration of the lens is accom-
plished by the lateral eddy flux or by the vertical mixing kV.y9h9

tilt isopycnals is balanced by eddies, which tend to flat-
ten them. The eddies are very effective in exchanging
fluid across the front and play a central role in setting
its stratification and vertical structure.

The numerical results are interpreted in terms of a
simple analytical model based on a parameterization of
eddy fluxes in which the intensity of the cross-layer
mass flux is assumed to be a function of the mean flow.
We are able to capture in one theoretical framework the
dynamics relevant to Sverdrupian gyres as well as cir-
cumpolar jets, depending on the relative values of b and
a parameter representing the intensity of eddy shedding.

2. Equilibration of warm, pumped lenses

Consider a subtropical ocean forced by anticyclonic
wind stress; Ekman layers pump the warm fluid down
into the interior, generating vertical stratification, as
sketched schematically in Fig. 1. In the steady state the
continuous flux of buoyancy into the main thermocline
must be balanced by an equivalent buoyancy sink. One
view [first expressed by Robinson and Stommel (1959)
and studied more recently by, e.g., Samelson and Vallis
(1997)] assumes that small-scale mixing, characterized
by ky , plays a central role in achieving such a balance.
An alternative possibility, explored by Marshall et al.
(2002), is that the warm fluid pumped down from the
surface is continuously fluxed away laterally by geo-
strophic eddies, as indicated in the schematic diagram,
Fig. 1. Here we explore the dynamical consequences of
this idea by abstracting the problem to that of a warm
pumped lens on a b plane.

a. f plane

It is useful to consider the limit case in which transfer
by geostrophic eddies—a process that is completely ab-
sent from ideal thermocline theory—is the controlling
factor in setting stratification. Marshall et al. (2002)
studied the temperature anomaly and depth of penetra-
tion of a warm lens created by a surface buoyancy flux
and Ekman pumping in an initially homogeneous, ro-
tating fluid on an f plane. In a set of laboratory and
numerical experiments, Marshall et al. demonstrated
that the deepening of the warm lens is arrested by eddies
that form as a result of a baroclinic instability of the
density front and sweep fluid laterally away from the
heated lens.

Analytical theory developed by Marshall et al. to de-
scribe this phenomenon was based on a simple param-
eterization of eddy transfer in which the transfer coef-
ficients depended on the strength of a density front. Of
course, such a theory implicitly assumes that the rate
of irreversible mixing (eventually accomplished by mo-
lecular effects acting on the microscale) is controlled
by geostrophic eddies. It is not yet clear to what extent
this is realized in the ocean. Nevertheless, this theory
yields a simple prediction for the depth scale of the lens
hdim, which was confirmed by laboratory and numerical
experiments:

1/2fdimh 5 c W L ; B 5 W g9, (1)dim h e e1 2B

where B is a scale of the surface buoyancy flux, We is
a scale of the Ekman pumping, g9 is the reduced gravity,
L is the lens diameter, and f dim is the Coriolis parameter.
The nondimensional constant ch characterizes the effi-
ciency of eddy buoyancy transfer (to be discussed be-
low). Now we extend this model to a more oceano-
graphically relevant problem—the warm, pumped lens
on a b plane.

b. b plane

An obvious limitation of the f -plane lens studied in
Marshall et al. (2002), which makes its relevance to
ocean gyres uncertain, is that there is no gradient in
planetary vorticity. One of the features that distinguish
the b-plane and f -plane models is that in the former
case it is possible to construct meaningful theories for
the thermocline depth that are based on purely adiabatic
considerations (e.g., Luyten et al. 1983). The depth scale
that appears in such models is given by

22LW fe dimh 5 , (2)dim ! g9b

as can be shown by applying the Sverdrup relation to
the upper active ocean layer (e.g., Pedlosky 1996).

To determine the relative merits of the models based
on (i) eddy-transfer and (ii) ideal theories in the de-
scription of an eddying gyre, we now create a warm
pumped lens on a b plane and study its evolution nu-
merically. The numerical setup represents a lens in an
‘‘unbounded’’ ocean, so that the eddies are able to prop-
agate over large distances away from the lens, effec-
tively acting as sinks of buoyancy and vorticity. Such
a model makes it possible to isolate the physical pro-
cesses of interest and to unambiguously interpret the
fundamental dynamics at play.

1) NUMERICAL SETUP

We solve the Boussinesq form of the incompressible
Navier–Stokes equations in a rotating frame using the
numerical model described in Marshall et al. (1997a,b).
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FIG. 2. Schematic representation of the numerical experiment. At
the upper surface, the fluid is forced by zonal winds, corresponding
to the Ekman pumping vanishing at the meridional boundaries. Fluid
is pumped down within a circular region V (shaded area) at tem-
perature T1 into initially resting fluid of (colder) temperature T0. An
asymmetric (due to b) warm lens forms directly below the heating
zone V.

Computations are made in a rectangular box on whose
walls normal flow is set to zero. There are 248 3 124
3 30 grid elements. The flow is set in motion by ap-
plying a zonal wind stress which corresponds to the
Ekman pumping velocity vanishing at the northern and
southern boundaries of the basin (2L/2 , y , L/2):

w 5 2W cos(py/L).e e (3)

Fluid is also thermally forced by locally warming the
surface layers within a (smaller) circular region (V), as
shown in a schematic in Fig. 2. As mentioned above,
to avoid consideration of the possibly complex inter-
action of our warm lens with rigid boundaries, the heat-
ing zone V is placed in the eastern part of the basin.
Technically, an input of buoyancy is accomplished by
relaxing the Ekman layer temperature in the region V
to a value T1 exceeding the nominal ambient temperature
of the fluid T0 by DT 5 108C.

The depth of the basin is chosen so as to result in a
flow with no significant near-bottom velocities below
the lens, and the vertical structure of the flow is resolved
using a nonuniform mesh with the grid spacing decreas-
ing upward. The horizontal grid spacing is sufficient to
resolve the first baroclinic radius of deformation (by at
least three grid points) in all the numerical experiments
described. In order to maintain a connection with the
corresponding f -plane experiments in Marshall et al.
(2002) and Karsten et al. (2002), their numerical setup
was modified only as little as possible (with varying
Coriolis parameter being the main change). The reader
interested in numerical details is referred to those papers
for a more complete description of the numerics.

2) EVOLUTION OF THE LENS

The model was initialized from rest with water of
uniform temperature, and, after a few rotation periods,

a quasi-steady mechanically driven barotropic circula-
tion was established. Figure 3 shows the subsequent
formation and evolution of a buoyant lens directly below
the heating zone V for the case of a moderate beta effect.
At first (see Fig. 3a), the lens uniformly deepens as the
light fluid is pumped down from the Ekman layer, and
starts to rotate anticyclonically in accord with thermal
wind balance. The next stage of the flow evolution (Fig.
3b) is characterized by further deepening and acceler-
ated rotation of the lens. At the same time the lens starts
to ‘‘feel’’ the b effect and shifts westward. This asym-
metry, already apparent in Fig. 3b, results in a thermal
wind shear that is much higher on the western side of
the lens than it is on the eastern side.

Because the deformation radius set up in the lens is
considerably smaller than its scale, the flow eventually
becomes baroclinically unstable, as discussed in Mar-
shall et al. (2002). However, in contrast to f -plane ex-
periments, this instability is not distributed uniformly
around the lens but is localized in the region of strong
thermal wind velocities. The instability manifests itself
in the formation of irregular eddies on the left (west-
ward) side of the lens in Fig. 3c. These eddies grow,
detach, and then move away from the lens. Figure 3d
shows the already mature, equilibrated lens which dis-
poses of the influx of buoyancy from the Ekman layer
by continuous eddy shedding.

Inspection of the velocity vectors, superimposed on
the horizontal temperature cross section in Fig. 4, re-
veals the extreme disorder and chaotic nature of the eddy
shedding. The flow field to the left of the lens includes
several pronounced coherent vortices that move west-
ward under the combined influence of the b effect and
advection by weak barotropic flow. These vortices are
surrounded by much more irregular and short-lived
structures. A different signature of baroclinic instability
appears on the eastern flank of the lens, where eddies
appear in the form of nonlinear wavelike perturbations
(see Fig. 4). The latter, however, generally do not evolve
into isolated vortices and remain attached to the lens,
apparently playing only a minor role in the volume bal-
ance of the lens.

3) TIME-MEAN FIELDS

Among the various characteristics of the geometrical
shape of the lens, it is its east–west symmetry that seems
to be affected most by inclusion of, and variations in,
b. Even a brief look at the perfectly symmetric f -plane
lenses in Marshall’s experiments and the present tilted
solutions gives an idea of how dramatic are the changes
caused by inclusion of the b effect. Asymmetry is clear-
ly visible even when the b effect is relatively weak (as
is the case for the flow in Fig. 5).

To analyze systematically how the equilibrium shape
of the lens changes as a function of b, we now perform
a set of experiments in which b is varied while other
parameters are kept constant. In Fig. 6 we superimpose
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FIG. 3. Evolution of the numerical lens: (left) a horizontal cross section of the temperature field just below the Ekman layer, after 10 000/
(2p), 20 000/(2p), 40 000/(2p), and 60 000/(2p) periods of rotation; (right) corresponding east–west vertical (x–z) temperature sections.

the zonal sections of the time-mean T2 5 0.5(T1 1 T0)
isotherms from each run. As is apparent from Fig. 6,
the lens responds to the increase in b by becoming more
and more asymmetric. For large values of b, the western
side of the lens (to the left of the depth maximum)

reduces to a thin boundary layer while the eastern part
is apparently governed by adiabatic Sverdrup dynamics.

What is the basic physics involved in the equilibration
of the lens in general and in the maintenance of the
internal boundary layer (Fig. 6) in particular? The flow
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FIG. 4. Snapshot of the flow field, horizontal cross section. Horizontal velocities (arrows) are superimposed
on the temperature field.

FIG. 5. Vertical (x–z) cross section of the numerical time-mean
temperature field for the run in Figs. 3 and 4. Means are averaged
over 50 data files recorded in the time interval 20 000 , t , 120
000. The decaying ‘‘tail’’ in the western part of the basin is a con-
tribution from the eddies continuously shed by the lens.

patterns shown in Figs. 3 and 4 provide some clues as
to the dynamics of equilibration. We observe that the
influx of warm water from the Ekman layer in a b-plane
lens is balanced by the volume loss due to eddy shedding

and that the eddy activity greatly increases in a region
of strong mean currents. Guided by these observations,
we now develop a simple theory that is based on flow-
dependent cross–isopycnal eddy transfer. This model
will be used to interpret the structure of the mean fields
and their dependence on b.

3. Theoretical model of equilibrated lenses

Our starting point is a 1½-layer shallow-water fluid
with a mass source representing Ekman pumping and a
mass sink due to eddy-shedding processes. We suppose
that the depth of the lens vanishes at its (circular) pe-
riphery. The flow is assumed to be in hydrostatic and
geostrophic balance, and the Coriolis parameter varies
linearly in y. The system of nondimensionalization is
based on the lateral scale of pumping L, the value of
the Coriolis parameter at the basin center f 0, and the
(positive) maximum amplitude of the Ekman pumping
We, used as a scale for the vertical velocity. The cor-
responding scales of the horizontal velocity U, vertical
scale H, and planetary vorticity gradient b are

g9W f W b Le 0 e dimU 5 ; H 5 L ; b 5 . (4)! !f g9 f0 0

Under these assumptions, the governing shallow-water
equations are, in the time mean,
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FIG. 6. Zonal cross sections of the time-mean T2 isotherms from
various experiments are superimposed to demonstrate formation of
a thin western boundary layer as b increases. Nondimensional units
are used in which b 5 (bdimL)/ f 0, where L is the lens diameter and
f 0 is the Coriolis parameter at the center of the lens.

(1 1 by)u 5 2]h /]y

(1 1 by)y 5 ]h /]x

] ]
(uh) 1 (yh) 1 w 1 w* 5 0, (5)e]x ]y

where h is the nondimensional thickness of the upper
layer and (u, y) is the horizontal velocity, we is the
Ekman velocity (negative for pumping), and the cross-
isopycnal volume flux is represented by w*, where

w* 5 = · (v9h9). (6)

We assume that this ‘‘bolus flux’’ is dominated by the
contribution from geostrophic eddies that move laterally
away from the lens and thereby continuously transport
light fluid across the isopycnals.

To simplify the system (5), just as in deriving the
Sverdrup relation, we multiply the geostrophic equa-
tions [(5)] by h and then add the y derivative of the first
(u) equation to the x derivative of the second (y) equa-
tion. We then eliminate the horizontal flux convergence
in the volume equation to arrive at (in nondimensional
units):

b ]h
h 5 f (w 1 w*), (7)ef ]x

where f 5 1 1 by, (2½ , y , ½), and the Ekman
pumping is we 5 2cos(py), as in the foregoing nu-
merical experiments.

It is intuitively clear that the local behavior of the
sought after solutions of (5) will be determined by the
value of w* relative to we. In the flow regions where
w* is small, the dynamics are expected to be essentially

Sverdrupian, whereas if w* is large the flow is controlled
the eddy-related processes. Below we will elaborate this
simple idea. First it is necessary to close the problem
(5) and to explicitly specify how (and whether) the mass
flux w* depends on the local properties of the large-
scale flow.

A number of ideas about how to parameterize the
isopycnal and diapycnal transports by eddies have been
suggested in the literature, as reviewed, for example, in
Visbeck et al. (1997). We will focus on one of the sim-
plest closures for (6) corresponding to thickness dif-
fusion 5 2Kdim¹2hdim, because it is generally con-w*dim

sistent with the qualitative properties of eddies observed
in our numerical experiments (see section 4). One can
question the specific form of the eddy closure assumed,
and so we describe and analyze an alternative param-
eterization in an appendix. Differences and similarities
between the two models can be used to separate the
relatively robust features of the resulting solutions from
the closure-dependent ones.

a. Thickness-diffusion closure: w* } ¹ 2h

The ‘‘thickness-diffusion’’ closure is a relatively
common parameterization, which appears, for example,
in the Gent and McWilliams (1990) model. In nondi-
mensional variables it reduces to

2w* 5 2C¹ h, (8)

where

KdimC 5 , (9)
LU

and the governing equation (7) becomes

b ]h
2h 5 2 f [cos(py) 1 C¹ h]. (10)

f ]x

Note that (10) is mathematically analogous to the ex-
pression that appears in the Stommel (1948) problem
but with nonlinearity retained in the dispersive term.
Apart from the diffusive term, (10) is similar to the
expression for the upper-layer equation of ventilated
thermocline models. However, it is important to em-
phasize that the physical mechanism of equilibration in
our model is completely different, as is the interpretation
of the diffusive term. The term represents the eddy bolus
transport, (6), as sketched in Fig. 1.

The ‘‘modified Sverdrup equation’’ [(10)] now has to
be solved subject to the boundary condition h 5 0 along
the lens boundary [r 5 5 0.5]. Be-2 2Ï(x 2 0.5) 1 y
fore presenting some explicit asymptotic solutions (sec-
tion 3b), we first consider the typical numerical results.
Integration of (5) (with added time derivatives) using a
simple finite-difference code yields the steady lens so-
lution presented in Fig. 7. Parameters chosen were b 5
0.5 and C 5 0.01, which roughly represent the situation
in ocean gyres.
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FIG. 7. Upper-layer depth for the steady state obtained by the nu-
merical integration of (5) for b 5 0.5 and C 5 0.01. Dashed line
represents the trajectory of a Lagrangian particle (h 5 const 5 0.4).

FIG. 8. Variation of the potential vorticity following the Lagrangian
particle moving clockwise along the trajectory shown in Fig. 7. Note
the rapid increase of PV as the particle passes through the boundary
layer.

The most prominent feature of the lens shown in Fig.
7 is a thin western intensification zone connected to a
‘‘Sverdrup’’ interior. The boundary layer in Fig. 7 is
entirely due to eddy buoyancy transfer and is unrelated
to lateral and/or bottom friction. The dynamics of equil-
ibration can be understood by considering the vorticity
and buoyancy budgets of the lens.

Fluid pumped down from the Ekman layer is uni-
formly light (r [ r1) relative to the abyssal water (r
5 r2 . r1). Thus, there is a constant flux of buoyancy
into the lens, and a steady state can only be achieved
through the detrainment of warm water by eddies (w*).
This can be confirmed by integrating the third equation
in (5) over the area of the lens, which yields, in the
steady state,

w dS 5 2 w* dS. (11)EE e EE
In the eastern part of the lens (see Fig. 7), the nondi-
mensional scale for the cross-layer flow [see (10)] yields
w* ; C K 1 if b 5 O(1): w* over the interior only
makes a minor contribution to the integral in (11). On
the other hand, the spatial gradients in the western in-
tensification zone are large, as are the values of w*, thus
making it possible to satisfy the global flux integral (11).

Processes in the western boundary layer are also es-
sential for closing the vorticity budget. Derivation of
the shallow-water potential vorticity equation for our
system (5) yields

D w 1 w*ePV 5 PV , (12)1 2Dt h

where potential vorticity PV 5 f /h. Because every
streamline is closed, it follows from (12) that, as the

upper-layer column makes a full circle around the basin,
the decrease of PV due to Ekman pumping (negative
we) is exactly compensated by the volume release by
eddies (positive w*). Figure 8 shows the variation in
time of the potential vorticity for a Lagrangian column
as it moves along the trajectory marked in Fig. 7 (mov-
ing clockwise from the most northern point on the
streamline). This figure gives an indication of the spatial
distribution of the sources and sinks of PV. The net loss
of PV during the time the particle spends in the gyre
interior [0 , t , 0.68, where t is a nondimensional time
based on U and L; (4)] is rapidly compensated by the
PV gain as it passes through the boundary layer (0.68
, t , 0.8), where the local spatial scales are small and
therefore w* ; ¹2h is large.

Inspection of the flow pattern in Fig. 7 helps us to
identify distinct dynamical regimes in (C, b) parameter
space. In the quasi-Sverdrupian interior the lhs of (10)
is balanced by Ekman pumping, the first term on the
rhs. Thus, with ]/]x, f ; 1,

21/2h ; b . (13)

The corresponding interior nondimensional cross-layer
flux [(8)] is

C
w* ; Ch ; 5 e, (14)

Ïb

where

C K fdim 0e 5 5 . (15)!LU b LÏb dim

We now go on to show that e controls several important
characteristics of the solution. Noting that Kdim ;
(w*L2)/hdim and using (4) for the scale of hdim, we can
write (15) as



892 VOLUME 33J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

w* L f w*dim 0 dime ; ; , (16)!2 b L Wdim e2 f W L g9W0 e e! !g9b fdim 0

where We is a scale for the dimensional Ekman pumping
and is the dimensional diapycnal volume flux duew*dim

to eddies. Thus e can be thought of as a measure of
importance of the diapycnal eddy transfer relative to the
vertical advection in the interior of the lens. In particular,
the interior is quasi-adiabatic as long as e K 1.

b. Analytical formulation

To illuminate the underlying physics further, we now
present some explicit analytical solutions by exploring
the important asymptotic limit e K 1. As argued above,
this limit corresponds to a regime in which the eddy
processes are weak relative to the b effect over most of
the lens area, a situation which we expect to be realized
in the ocean. First, we rewrite the equations of motion
(10) in polar coordinates:

b ]h 1 ]h
h cos(u) 2 sin(u) 1 cos(py)

2 [ ]f ]r r ]u

2 2] h 1 ]h 1 ] h
1 C 1 1 5 0, (17)

2 2 21 2]r r ]r r ]u

where r 5 , sin(u) 5 y/r, cos(u) 52 2Ï(x 2 0.5) 1 y
(x 2 0.5)/r, and the boundary condition is h 5 0 at r
5 1/2. As in Stommel’s theory modified for a circular
basin by Pedlosky and Greenspan (1967), we separately
consider the ideal interior region and a thin western
boundary at (1 2 r) , e, cos(u) , 0. The interior
solution is obtained by setting C 5 0 in (17) and in-
tegrating the result zonally:

22 f 1
2 2h 5 2x 1 2 y cos(py). (18)I 1 2!b 4

The boundary layer equation is obtained by stretching
the radial coordinate near the lens boundary as (½ 2
r) 5 ej and taking the e → 0 limit. The result can be
written in terms of j as

2]h ] hB B22Ïbh cosu 1 f 5 0. (19)B 2]j ]j

The expression in (19) depends on u parametrically and
therefore can be directly integrated in j. Integrating it
once in j results in

2 2h 2 h ]hI0 B B2Ïb cosu 1 f 5 0, (20)
2 ]j

where

h (u) 5 h (r, u) at r 5 1/2, cosu , 0 (21)I0 I

is the interior solution (18) immediately outside of the

boundary layer. Note that in (20) we have already used
the matching condition limj→` hB 5 hI0. A second in-
tegration in j yields

j cos(u)ÏbhI0
h 5 h tanh 2 , (22)B I0 2[ ]2 f

where we have taken advantage of the boundary con-
dition hB 5 0 at j 5 0.

The dependence of a characteristic boundary layer
width d on the governing parameters can be deduced
by considering a fixed phase of the expression in (22):

jÏbh cosuI0
2 5 const 5 O(1). (23)

22 f

When this expression is evaluated along the zonal sec-
tion across the lens center (y 5 0) where f 5 1, u 5
2p, we obtain, returning to the original nondimensional
units of length d 5 ej,

d } C/Ïb 5 e, (24)

where hI0 is eliminated using (18).
To be specific, let us define d as the width of the

northward return flow estimated from the deepest point
at the zonal section across the lens center. For the nu-
merical solution in Fig. 7, d 5 0.07 and e 5 0.014.
Thus the numerical factor in (24) is 5 and

d 5 5e. (25)

Equation (25) indicates how the structure of the bound-
ary layer depends on the governing parameters of the
problem. As anticipated earlier, the scale for its width
is set by e. The boundary layer narrows when b is
increased (for a fixed C) or C is decreased (for a fixed
b).

The explicit solution given by (18) confirms that in
the e → 0 limit the total volume of the upper layer fluid,
as well as the depth of the thermocline, can be under-
stood without invoking eddies. On the other hand, the
eddy buoyancy transfer is fundamental in the vicinity
of the western boundary current, where the intense eddy
shedding balances the total influx of buoyancy from the
Ekman layer and determines the structure of the inten-
sification region. Of course, the situation is very dif-
ferent in the opposite limit when e is large ( f -plane
approximation). From the structure of the governing
equation (17) it is clear that for b 5 0 the flow pattern
has to be zonally symmetric and the eddy shedding sig-
nificant throughout the lens area. This was the limit
studied in Marshall et al. (2002).

4. Comparison of the theory and numerical eddy-
resolving simulations

We now present additional diagnostics of the nu-
merical solution that support the foregoing theoretical
model. Because the theory is based on the parameter-
ization of the cross-layer fluxes, it becomes crucial to
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FIG. 9. Spatial structure of the time mean isotherm T 5 T0 1 78 for
b 5 1.12. Note the pronounced meridional asymmetry of the lens.

FIG. 10. Diagnostics of the numerical experiment for the strong b
regime: (a) strength of the mean flow as measured by ¹2h, where h
is the depth of the isopycnal shown in Fig. 9; (b) intensity of the
cross-isopycnal eddy transfer (w*). Note the apparent spatial corre-
lation between the two.

demonstrate that they are correlated with the strength
of the mean current. Consider the experiment in Fig. 6
corresponding to the largest value of b employed (b 5
1.12). Figure 9 shows one of the mean isopycnals (T 5
T0 1 78) that outcrop within the area of heat input (V)
in that experiment. Although comparison of the contin-
uously stratified and reduced-gravity models is not ex-
act, as a first step it is sensible to use the depth of one
of the isotherms (e.g., Fig. 9) in the stratified model as
a counterpart of the active layer thickness in our theory.
Likewise, the upper-layer volume loss term (w*) in the
theory directly corresponds to the diapycnal buoyancy
transfer in the stratified model:

] ]
w* 5 w 2 u z(T ) 1 y z(T ) , (26)[ ]]x ]y

where z( ) is the depth of an isopycnal surface. WhenT
the slope of isopycnals is expressed in terms of the
buoyancy gradients as

T] T ] yxz(T ) 5 2 and z(T ) 5 2 , (27)
]x T ]y Tz z

(26) reduces to

uT 1 y T 1 wT 5 w*T .x y z z (28)

The divergence of the time-mean buoyancy fluxes on
the lhs of (28) is equal, in the steady state, to the sum
of the eddy transfer term 2=( ) and effects of small-v9T9
scale diffusion. We can therefore readily isolate the
eddy-driven component of w*:

= · (v9T9)
w* 5 2 . (29)eddy

]T /]z

We now diagnose (29) directly from eddy fluxes diag-
nosed from the numerical simulations—plotted in Fig.
10a—and compare it with (8) using the depth of the
isotherm in Fig. 9 for h. The spatial patterns of w*eddy

(Fig. 10a) and ¹2h (Fig. 10b) turn out to be remarkably
similar, with strong intensification near the western edge
of the lens. Such a strong correlation between w* and
¹2h is significant for a number of reasons. In addition
to lending support to the closure, (8), it allows us to
estimate the constant C directly. Ratio of the rms am-
plitudes of w* and ¹2h in Fig. 10 implies the eddy
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transfer constant is about C 5 0.04, close to that found
in, for example, Jones and Marshall (1997), in a dif-
ferent context.

Direct diagnostics of the eddy-induced cross-isopyc-
nal flux also makes it possible to quantify the relative
significance of the eddy transfer and numerical diffusion
in equilibrating the lens. Pumping of the incompressible
fluid from the Ekman layer into the volume bounded by
the outcropping isopycnal (e.g., Fig. 9) has to be bal-
anced, in a steady state, by the flux across this isopycnal.
Because the total diapycnal volume flux includes both
the eddy transfer ( ) and a contribution from thew*eddy

numerical diffusion, a meaningful measure for the role
of eddies is given by a parameter

w* dx dyEE eddy

a 5 , (30)

w dx dyEE e

where the integration of we is carried out over the area
bounded by the outcrop curve, and the w* in the nu-
merator of (30) is evaluated at the corresponding iso-
pycnal surface. The expression in (30) has been com-
puted for the isotherm in Fig. 9, resulting in the eddy
contribution parameter a 5 0.81. This value implies
that explicit diffusion in our experiment accounts for
only a fraction (;19% at most) of the cross-isopycnal
volume flux. Analogous diagnostics (not shown) have
also been made for the potential vorticity, and the results
confirmed that the global PV budget is, at the leading
order, represented by a balance between the effects of
Ekman pumping and eddy buoyancy transfer as implied
in (12).

It should be mentioned that the values of vertical
diffusivity in our numerical experiments are realistic.
The nondimensional vertical diffusivity employed is
1/Pe 5 k y /(We H ) 5 0.1. On oceanic scales (L ; 2 3
10 6 m, f dim ; 10 24 s 21 , We ; 10 26 m s 21 , g9 ; 0.01),
our diffusivity is equivalent to k y ; 2 3 10 25 m 2 s 21 ,
which is comparable to the values suggested by the
microstructure and tracer release measurements (e.g.,
Ledwell et al. 1993). As shown above, the diapycnal
buoyancy transfer in this parameter regime is domi-
nated by the contribution from eddies.

To determine whether our analytical (e K 1) theory
is adequate in the description of the numerical lens, we
estimated the boundary layer width for the largest b run
from the isotherm in Fig. 6. For consistency, the nu-
merical width was computed as the nondimensional dis-
tance between the lens western edge and the point where
the depth of this isotherm is maximal, resulting in

d 5 0.20.num (31)

The analytical expression (25) yields, for C 5 0.04 and
b 5 1.12,

C
d 5 5 5 0.19. (32)theor Ïb

Close agreement between the theoretical (32) and nu-
merical (31) results once again confirms our interpre-
tation of the boundary layer effects observed in the
numerical simulations (Fig. 6).

5. Application to ocean gyres and circumpolar jets

Before addressing the geophysical applications of the
foregoing model, it is important to realize that, because
of its conceptual simplicity, this theory does not contain
any ingredients that pertain specifically to the unbound-
ed lens configuration. Thus, for example, the previously
developed theory could be interpreted as pertaining to
localized heating in a large basin in the presence of
Ekman pumping or as a simple model of warmed,
pumped flow confined by a circular vertical wall (but
with upper-layer depth vanishing at the boundary). Be-
cause we demonstrated (section 4) that our shallow-
water theory can account for the behavior of our nu-
merical lens on an f plane and a b plane, we apply it
to the more oceanographically relevant problems such
as ocean gyres and circumpolar jets.

a. Gyres

Consider flow in a closed rectangular basin. The form
of the wind stress is given, as before, by

w 5 2cos(py/L ),e y (33)

where Ly is the nondimensional meridional extent of the
basin (20.5Ly , y , 0.5Ly). Because here a purely
geostrophic flow is considered, the condition of no flow
across the boundary implies that the depth of the upper
layer H0 is constant along the perimeter of our domain.
In trying to represent the ocean by one active layer, the
choice of a suitable H0 is always arbitrary. As a starting
point, we consider the case of H0 5 0, which enables
us to retain a clear connection with the foregoing lens
model. However, the theory can be trivially extended
to a more general case with finite upper-layer thickness
at the boundary.

The geostrophic shallow-water equations in which the
eddies are parameterized using the scheme (8) were
solved numerically subject to the boundary conditions
of h 5 0 at x 5 0, 1 and y 5 2Ly/2, Ly/2. Parameters
chosen for this calculation are representative of the sub-
tropical gyres; the meridional extent of the basin is Ly

5 0.5, roughly in accord with the aspect ratio of the
North Atlantic subtropical gyre, and the nondimensional
b 5 2, so that the Coriolis parameter varies by 100%
across the basin. The resulting steady state is shown in
Fig. 11. It conforms well to our view of the subtropical
gyre with a Sverdrup interior bounded on the west by
a thin boundary layer controlled by our ‘‘eddy-shed-
ding’’ mechanism.
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FIG. 11. Upper-layer depth for the steady state obtained by the
numerical integration of (10) for b 5 2, Ly 5 0.5, and C 5 0.02.
Depth ranges from 0 to 0.9 nondimensional units.

To proceed analytically, we consider the governing
equation [(10)] in the following two limits: e k 1 (the
f -plane limit) and e K 1, where e is given in (15).

1) OCEAN GYRES: e K 1

When eddy processes are weak in the interior and the
b effect is strong (e K 1), a situation that we expect to
be realized in ocean gyres, our solutions exhibit a
boundary layer. The method of solving this asymptotic
problem is very similar to that used above for the cir-
cular geometry (section 3), and will only be briefly out-
lined here. Following Stommel (1948) we separately
consider the interior region e K x , 1 and a thin western
boundary layer 0 , x , e. The interior solution is
obtained by setting C to zero in (10):

22 f w (1 2 x)eh 5 , (34)I ! b

and the boundary layer equations are obtained by
stretching the zonal coordinate x 5 ex0 near x 5 0 and
subsequently taking the e → 0 limit:

2]h ]B 2Ïbh 1 f h 5 0. (35)B B2]x ]x0 0

Integrating (35) twice in x0 and applying the boundary
conditions hB 5 0 at x0 5 0 and hB 5 hI(0, y) at x0 →
`, we find

x h (0, y)0 Ih 5 h (0, y) tanh Ïb , (36)B I 2[ ]2 f

where hI(0, y) is given by (34).
When e is small, the total volume of the upper-layer

fluid, as well as the maximum depth of the thermocline,

22LW fe dimh ; , (37)dim ! g9b

can be understood without invoking eddy processes.
Thus, in contrast to the e k 1 limit, eddy dynamics is
fundamental only in the vicinity of a western boundary
current, where the intense eddy-shedding balances the
total influx of buoyancy from the Ekman layer and de-
termines the structure of the intensification region.

2) THE f -PLANE LIMIT: e k 1

In the f -plane limit, the governing equation (10) uni-
formly converges for, say, Ly 5 1 to

2cos(py) 1 C¹ h 5 0. (38)

Equation (38) has a simple analytical solution

cos(py) p 1
21h 5 1 2 cosh cosh p x 2 . (39)

2 5 1 2 1 2 6[ ]Cp 2 2

The maximum depth of the thermocline in this case
occurs exactly at the center of the domain with value

1 p 0.061
21h 5 1 2 cosh ø . (40)max 2 1 2[ ]Cp 2 C

In dimensional units, this corresponds to Marshall et al.
(2002) scaling (1) for the depth of the heated and
pumped f -plane lens with ch 5 0.061/C. For C 5 0.04,
this numerical factor is ch 5 1.5, which is of the same
order as the Marshall et al. (2002) experimental estimate
of 0.9; the discrepancy is most likely a consequence of
the differing geometry and wind stress patterns em-
ployed. The volume of the upper-layer fluid and the
whole structure of the lens is controlled entirely by eddy
processes, just as in Marshall’s laboratory experiments.
It is interesting to note that the same depth scale appears
in simple models of the Antarctic Circumpolar Current
(ACC, e.g., Karsten et al. 2002) and in the theory con-
sidered below in section 5b.

b. Circumpolar jets

Having established that our simple model can give a
consistent, although highly idealized, description of the
zonally blocked flows, we now apply it to a geometry
roughly corresponding to that of the southern ocean and
its circumpolar flow. We assume a circularly symmetric
mean flow and pump warm fluid down over the area
bounded by the two concentric circles: r1 , r , r2,
where r 5 . Here we place the origin of the2 2Ïx 1 y
coordinate system at the pole and use the exterior radius
of the flow as a unit of length, thereby setting r2 5 1.
In terms of our reduced-gravity model this geometric
configuration translates to the requirement that the warm
layer outcrops on the circle r 5 r1 (see Fig. 12). For
simplicity, we set f 5 1 and we 5 1 and assume that
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FIG. 12. Solution of the shallow-water equations for the ACC con-
figuration in cylindrical coordinates (see the text). The shaded region
represents the warm fluid in the active layer.

]h/]r 5 0 at r 5 r1, the equatorward extremity of our
model.

For constant f the Sverdrup equation [(10)] degen-
erates into a statement of balance between the Ekman
pumping and the cross-layer volume flux w* (the e k
1 limit):

21 1 C¹ h 5 0, r , r , r .1 2 (41)

This is to be solved subject to the boundary conditions

h 5 0 r 5 r1

]h
5 0 r 5 1. (42)

]r

Taking advantage of the circular symmetry of the flow
field reduces (41) to an ordinary differential equation,

2] h 1 ]h 1
1 5 2 , (43)

2]r r ]r C

whose general solution is given by

1
2h 5 A 1 B log(r) 2 r . (44)

4C

The coefficients A and B are determined from the bound-
ary conditions (42)—they are A 5 2(2 logr1 2 )/4C2r1

and B 5 1/(2C). The resulting solution is plotted in Fig.
12 for r1 5 0.5. Despite its highly idealized nature, it
captures the basic structure and the zero-order dynamics
of the prototype ACC solutions discussed in Karsten et
al. (2002). Particularly suggestive is the similarity of
the radial distribution of buoyancy in Fig. 12 and in the
corresponding Fig. 6a in Karsten et al. (2002).

The depth scale of our solution is still given by (1).
To be specific, let us estimate the maximum depth for
the solution in Fig. 12. The largest value of depth hmax

5 0.16/C in Fig. 12 implies that, for C 5 0.04, the
maximum dimensional depth is

f W0 eh 5 4 L. (45)dim ! g9

For the typical parameter values for the ACC (used by
Karsten et al. 2002), namely, We 5 8 3 1027 m s21,
L 5 2000 km, g9 5 5 3 1023 m s22, f 0 5 1.2 3 1024

s21, the depth scale from (45) is about hdim 5 1.1 km,
in broad accord with the observations discussed in Kar-
sten and Marshall (2002).

6. Discussion and conclusions

We have discussed the evolution of a buoyant lens,
heated and pumped from the surface on a b plane. An
important qualitative question is whether the structure
and dynamics of such a flow are controlled by laminar
adiabatic processes, as assumed in ideal thermocline
theories, or by turbulent transfer by baroclinic eddies
that are fundamental to the equilibration of the f -plane
lens studied in Marshall et al. (2002).

Numerical eddy-resolving simulations show that
equilibration of the b-plane lens has aspects in common
with that on the f plane (Marshall et al. 2002). In both
cases the volume of warm water gained at the surface
from the Ekman pumping is balanced by the volume
loss due to eddy shedding. However, the b-plane lens
is not circularly symmetric but is tilted to the west (Fig.
6), and the eddy activity is mostly limited to the western
part, in response to the westward intensification of a
mean flow. When b is systematically increased, the cir-
culation becomes increasingly asymmetric, and, for the
largest values of b employed, the lens transforms into
a structure that can be described as a quasi-laminar Sver-
drupian gyre bounded on the west by a thin boundary
layer. The ‘‘leaky’’ boundary layer is markedly different
from more conventional models of western intensifi-
cation. It provides the means by which the lens (adia-
batic over most of its area) can balance the influx of
warm water from the Ekman layer. Formation and de-
tachment of eddies tend to increase the mean PV by
squeezing vortex columns, a process that makes possible
to close the circulation problem even in the absence of
any momentum diffusion.

Diagnostics of our numerical lenses show that

1) the flux of warm water from the Ekman layer is, to
leading order, balanced by the cross-isopycnal eddy
transfer as implied in (11);

2) the intensity of the eddy transfer is greatly enhanced
in the vicinity of the swift and energetic currents;
and

3) the structure and dynamics of the equilibrated lens
reflect a balance between the effects of Ekman pump-
ing and squeezing of the Taylor columns by the vol-
ume release by eddies [see (12)].
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In section 3, we constructed a simple theoretical mod-
el of the phenomenon using a heuristic parameterization
of eddies, and we demonstrated (section 4) that the key
properties of the numerical solutions are consistent with
the analytical results. If b is sufficiently large (the e K
1 limit), laminar Sverdrup dynamics determines such
important characteristics as the maximum depth of the
lens, but the eddy shedding is shown to be essential for
balancing the vorticity and volume budgets and must
be included in a complete description of the oceanic
thermocline. In the limit e k 1, however, eddy shedding
controls the depth and volume of the lens and leads us
to a model that captures, we believe, the essential dy-
namics of circumpolar jets, albeit in an abstract manner.
Thus, the single idealized framework explored here is
able to represent gyre dynamics (small e) and circum-
polar jets (large e). Solutions obtained using the thick-
ness-diffusion parameterization (section 3) and a lateral-
flux closure (appendix) are qualitatively similar, sug-
gesting that our theoretical results are not sensitive to
a specific eddy closure. In section 5, we applied our
ideas, initially developed for the lens problem, to con-
struct a simple model of subtropical gyres and circum-
polar jets.

Analysis of our idealized solutions suggests that eddy
transfer may be a central mechanism in the maintenance
of the large-scale stratification of the thermocline. Note,
however, that the only way in which the lens can reach
a steady state is by eddy flux, at least when the vertical
mixing is small. How, then, might these results pertain
to the real ocean?

Possible application to the North Atlantic subtropical
gyre

The importance of eddies for ACC dynamics seems
to be generally accepted (e.g., McWilliams et al. 1978;
Marshall 1981; Johnson and Bryden 1989; Karsten et
al. 2002), but the role of eddies in the gyre dynamics
is much less clear. Could a volume balance between
Ekman pumping and eddy shedding be at work, say, in
the North Atlantic subtropical gyre?

The abundance of eddies in the North Atlantic and
their ability to transport fluid over thousands of kilo-
meters is well established (Olson 1991). The largest and
most energetic eddies in the North Atlantic are Gulf
Stream rings, reaching up to 140 km in diameter and
extending to depths of about 750 m. A warm-core ring
of this size effectively transports, according to the es-
timate of a ‘‘trapped zone’’ (e.g., Flierl 1981; Angel et
al. 1983) in excess of 3 3 1013 m3 of fluid away from
the subtropical gyre. The exact value for the net eddy
transport of subtropical thermocline water is uncertain,
because some of the rings, weakened and partially dis-
persed, are subsequently reabsorbed by the Gulf Stream.
However, it is plausible that the observed shedding of
five–eight eddies per year results in a volume flux com-
parable to the net input of a warm water from the Ekman

layer over the area of subtropical gyre (about 8 Sv ø
24 3 1013 m3 yr21). In addition to such dramatic events
as the shedding of the Gulf Stream rings, the observed
smaller and less-coherent mesoscale and submesoscale
eddies may also contribute to this balance.1

Thus, order-of-magnitude estimates are not in conflict
with the key assumptions of our theory for gyres. Al-
though closing the real oceanic circulation undoubtedly
involves a number of competing diabatic processes, the
eddy-shedding mechanism explored here may be a key
player. Further progress is anticipated from the analysis
of eddy-shedding effects in a more general framework,
such as more realistic geometry and forcing as well as
inclusion of other processes known to influence the dy-
namics of the western boundary layers. Such calcula-
tions are in progress and will be reported later.
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APPENDIX

Lateral-Flux Closure

Although the solutions obtained using the thickness-
diffusion closure (section 3) are internally consistent, it
is desirable to examine to what extent the results depend
on the choice of a particular eddy parameterization
scheme. The closure scheme for eddies that will be con-
sidered in this appendix is based on a physical picture
(qualitatively supported by the numerical experiments
described in section 2) in which eddies move laterally
away from the lens, transporting the trapped fluid across
the density front. We express this process thus:

w* 5 U | =h | ,dim eddy dim (A1)

where Ueddy is the eddy-induced horizontal warm-water
flux velocity (see the schematic in Fig. 1). If we assume
that this flux depends on the local large-scale velocity—
Ueddy 5 C1 | y | —then the resulting nonlinear closure
scheme is, nondimensionally,

C1 2w* 5 |=h| , (A2)
f

where the constant C1 is a measure of the efficiency of
eddy shedding. It plays a role analogous to that C played
in the thickness-diffusion closure.

As before (section 3), we integrate (5) numerically
but now with w* given by (A2). A finite-difference code
was used in which a small Laplacian friction (of order

1 It should be mentioned that other mechanisms have been sug-
gested to explain the volume balance in the subtropics. These include,
for example, the baroclinic cross-gyre exchange flows as in Chen and
Dewar (1993).
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FIG. A1. Comparison of the analytical solution for the depth at the
center of the domain with the result of numerical integration. The-
oretical expression is presented by solid line; dashed line is the it-
erative solution.

;1023) was added to (5) to control numerical stability.
This integration yielded a steady solution (not shown)
very similar to the one in Fig. 7 as the steady state again
consisted of a Sverdrup-type interior connected to a thin
western boundary layer.

An appealing feature of the ‘‘lateral-flux’’ closure
(A2) is that it offers considerable analytical advantages,
making it possible to obtain explicit solutions that are
valid regardless of the value of C1. The following anal-
ysis is based on the observation that our solutions (see
Figs. 7, 11) are approximately symmetric about the cen-
tral latitude (y 5 0), even for substantial values of b.
Such a symmetry is a consequence of the absence of
inertial terms in the momentum equations [(5)] and the
symmetry of the Ekman pumping field (we), which ren-
der the governing equations [(5)] symmetric. For a sym-
metric h field,

]h
5 0, (A3))]y y50

and then (7) at y 5 0 reduces to an ordinary differential
equation,

b ]h ]h
h 5 f 21 1 C y . (A4)11 2f ]x ]x

When h is rescaled using ĥ(x) 5 h(x, ½), the equa-Ïb
tion for the thermocline depth along the central latitude
reduces to

2
]ĥ ]ĥ

ĥ 5 21 1 s . (A5)1 2]x ]x

Note that here the governing parameter is s 5 C1/b,
different from that used previously (section 3).

The first-order differential equation (A5) must be
solved subject to the two boundary conditions: ĥ(0) 5
0 and ĥ(1) 5 0. This, generally, overdetermines the
problem, indicating that discontinuities in ]ĥ/]x may
occur. It is well known that such discontinuities arise
as a consequence of using simplified equations in which
(small) terms involving higher-order derivatives are ne-
glected. We invoke the principle of minimizing the num-
ber of discontinuities and look for a solution of (A5),
which has no more than one discontinuity of the slope.

Solving (A5) for ]ĥ/]x as a function of h yields two
branches:

]ĥ 2
5 2 and (A6)

2]x Ïĥ 1 ĥ 1 4s

]ĥ 1
2Ï5 ĥ 1 ĥ 1 4s . (A7)1 2

]x 2s

Because the solution of (A6) is a decreasing function
of x, and (A7) gives an increasing ĥ(x), there is only
one physically meaningful solution that has (at most)
one slope discontinuity. Such a solution can be con-
structed by integrating (A7) from x 5 0 to the point of

maximum depth d (to be determined below), and using
(A6) for the interval d , x , 1.

Equations (A6) and (A7) were reduced to the known
integrals (Abramovitz and Stegun 1964) and solved ex-
actly. The resulting solution, which satisfies the bound-
ary conditions at x 5 0 and x 5 1, is

2 2ĥ ĥ ĥ
x 5 1 s 21 2!2 2 4

2ĥ ĥ
1 s ln 1 1 1 ,1 2[ ]!2Ïs 2Ïs

0 , x , d, and (A8)

2 2ĥ ĥ ĥ
1 2 x 5 1 s 11 2!2 2 4

2ĥ ĥ
1 s ln 1 1 1 ,1 2[ ]!2Ïs 2Ïs

d , x , 1. (A9)

The cross-over point d is determined by matching ĥ from
the eastern part of the basin (A9) with that from the
western solution (A8).

Figure A1 is a comparison of our analytical solution
(A8) and (A9) for s 5 0.055 with the corresponding
numerical iterative solution of (5). Agreement between
the analytical and numerical results is remarkable, es-
pecially in view of the fact that a (weak) interfacial drag
was added to (5) for numerical integration. These fric-
tional terms increase the order of equations and make
our boundary value problem well-posed, whereas the
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choice of a suitable analytical solution did involve some
heuristic arguments.

Although the expressions in (A8) and (A9) are valid
for all values of s, it is illuminating to consider the two
asymptotic limits in detail: s → ` and s → 0. In the
s → 0 limit, the eastern part of the solution (A9) uni-
formly converges to the Sverdrup form

ĥ 5 Ï2(1 2 x). (A10)

whereas the western solution (A8) has a steep (singular)
slope at x 5 0 [(]ĥ/]x) | x50 5 1/ ] indicating that theÏs
western part reduces to a thin boundary layer. Details
of the asymptotic structure of the boundary layer could
be easily deduced by examining (A8) and matching the
depth with that from (A10). Thus, for (say) boundary
layer width, we obtain

s 1
d ; ln . (A11)1 22 s

The maximum depth of the thermocline occurs at x 5
d and its dimensional scaling for s → 0 is

22LW fe dimh ; , (A12)dim ! g9b

a well-known expression that can be derived directly
from the Sverdrup relationship for the ideal one-and-
one-half-layer fluid (Pedlosky 1996).

Now consider the opposite limit s → `. This is a
situation realized, for example, in the Marshall et al.
(2002) laboratory f -plane experiments. In this case (A8)
and (A9) reduce to

1 1
ĥ 5 x, 0 , x , , (A13)

2Ïs

1 1
ĥ 5 (1 2 x), , x , 1, (A14)

2Ïs

and d → ½. The maximum depth of the thermocline is
then ĥ 5 1/(2 ). In dimensional units this reduces toÏs
(1), which is Marshall et al.’s scale for the depth of the
heated and pumped f -plane lens.

Thus, just as obtained with the closure equation in
(8), for sufficiently large b, the solution consists of a
quasi-adiabatic interior, whose depth scale can be de-
termined from ideal thermocline theory, and a narrow
western boundary layer where eddy transfer is essential.
When b is small, eddy shedding is distributed uniformly
throughout the lens area, and the depth scale is set by
eddies. Regardless of which parameterization of eddy
transfer is adopted, the expression for the maximum
depth is consistent with (1). However, some details of
the solution are closure dependent. For example, we
observed that the scaling of the boundary layer width
in the large-b case is close to O(1/b) for the lateral-flux
closure considered in this appendix, whereas the thick-

ness-diffusion parameterization implies d } 1/ . It isÏb
yet to be determined which scaling provides a superior
description of the eddying b-plane lens.
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