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[1] Velocities derived from AVISO sea-surface height observations, adjusted to be
nondivergent, are used to simulate the evolution of passive tracers at the ocean surface.
Eddy mixing rates are derived from the tracer fields in two ways. First, the method of
Nakamura is applied to a sector in the East Pacific. Second, the Osborn-Cox diffusivity is
calculated globally to yield estimates of diffusivity in two dimensions. The results from the
East Pacific show weak meridional mixing at the surface in the Southern Ocean
(<1000m2 s�1, consistent with previous results) but higher mixing rates
(~3000–5000m2 s�1) in the tropical ocean. The Osborn-Cox diagnostic provides a global
picture of mixing rates and agrees reasonably well with the results from the East Pacific. It
also shows extremely high mixing rates (~104m2 s�1) in western boundary current regions.
The Osborn-Cox diffusivity is sensitive to the tracer initialization, which we attribute to the
presence of anisotropic mixing processes. The mixing rates are strongly influenced by the
presence of a mean flow nearly everywhere, as shown by comparison with an eddy-only
calculation, with the mean flow absent. Finally, results are compared with other recent
estimates of mixing rates using Lagrangian and inverse methods.
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1. Introduction

[2] A large amount of the ocean’s kinetic energy resides at
the mesoscale in the form of geostrophic eddies, produced by
the ubiquitous baroclinic instability of the large-scale density
field [Gill et al., 1974; Wunsch and Ferrari, 2004]. These
mesoscale eddies stir, mix, and transport tracers such as heat,
salt, and potential vorticity, with significant consequences for
the large-scale circulation and the climate system. The goal
of this paper is to quantify and map eddy mixing rates glob-
ally. We accomplish this by simulating the evolution of pas-
sive tracers driven using satellite-derived surface geostrophic
velocities and quantifying the mixing that ensues.
[3] The use of altimetric observations to infer mesoscale

mixing rates is a problem with a substantial history [e.g.
Holloway, 1986; Keffer and Holloway, 1988; Stammer,
1998]. The passive-tracer-based approach has recently been
applied very successfully in a Southern Ocean context
[Marshall et al., 2006; Ferrari and Nikurashin, 2010;
Shuckburgh et al., 2009a, 2009b; Abernathey et al., 2010;
Klocker et al., 2012b, 2012a]. These studies, like ours,
simulated the advection of a passive tracer and then used the
resulting tracer distributions to calculate “effective diffusivity”

[Nakamura, 1996;Winters and D’Asaro, 1996]. Effective dif-
fusivity directly measures the enhancement of mixing due to
the stretching of tracer contours by eddies. An advantage of
this method is that, in the limit of large Péclet number, and if
the model resolution is sufficient to resolve the fine structure
of tracer filaments (a.k.a. the Batchelor scale, which is set by
an explicit small-scale diffusivity), the resulting diffusivities
are independent of any unknown tuning parameters, including
the small-scale diffusivity itself [Shuckburgh and Haynes,
2003; Marshall et al., 2006]. A disadvantage of the effective
diffusivity method is that it produces only contour-averaged
diffusivities, rather than two-dimensional maps.
[4] The effective diffusivity method has thus far only been

applied to the Southern Ocean, for two apparent reasons:
(1) eddy fluxes are known to be important there [Johnson and
Bryden, 1989; de Szoeke and Levine, 1981], and (2), the
geometry of the flow is well suited to the method. The diffu-
sivity produced by the Nakamura method characterizes
cross-gradient mixing as a function of tracer concentration.
This information is most useful when the tracer in question
has a clear monotonic gradient in the direction of interest.
The strong fronts in the Southern Ocean have clearly defined
consistent meridional gradients in density, temperature, and
salinity [Orsi et al., 1995]. The mean flow of the ACC is
aligned with these fronts, making the meridional tracer
gradient easy to maintain for any weakly forced tracer. Thus,
the mixing rates inferred from the effective diffusivity
technique are readily interpreted as meridional diffusivities
as a function of latitude [Marshall et al., 2006; Abernathey
et al., 2010; Ferrari and Nikurashin, 2010].
[5] Our aim in this study is to use satellite-derived

velocities and tracer-based methods to estimate mixing rates
globally, not just in the Southern Ocean. As the first step
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towards this end, we first examine a simplified version of the
East Pacific, in which the mean flow is modified to be com-
pletely zonal and the domain is made zonally periodic, as in
a channel. This allows us to compute effective diffusivity as
a function of latitude using the same methods as Marshall
et al. [2006], providing a useful starting point and connec-
tion to previous studies. We show that the mean flow has a
strong role in shaping the mixing rates at all latitudes, not
just in the Southern Ocean.
[6] To characterize mixing rates of the full flow, we turn to

a different diagnostic: the Osborn and Cox [1972] diffusivity
[see also Nakamura, 2001, 2008; Lu and Speer, 2010]. This
diagnostic provides information about the local rate of irre-
versible mixing based on the tracer variance budget. Unlike
effective diffusivity, which is based on a Lagrangian coordi-
nate system, the Osborn-Cox diffusivity is Eulerian and can
be applied in two dimensions. The Osborn-Cox diffusivity
shows regions of strong mixing in the equatorial and western
boundary current regions, with magnitudes exceeding
104m2 s�1. Much weaker mixing of O(500m2 s�1) is found
in the subpolar gyre regions. By performing the experiments
with the mean flow removed, we also show that the mean
flow does indeed play an important role in setting mixing
rates in many regions of the global ocean.
[7] The paper is organized as follows. Section 2 describes

the satellite data and tracer-transport model used in our study.
In section 3, we present the effective diffusivity results from
the East Pacific experiment. Section 4 introduces the Osborn-
Cox diffusivity and describes the global experiments. In
section 5, we conclude with a discussion of the results and
a comparison with Lagrangian methods. Several appendices
contain details of the methods and background theory.

2. Data and Numerical Advection Model

2.1. AVISO Geostrophic Velocity Data

[8] The satellite data used in this study are from the
AVISO archive. Specifically, we use the geostrophic
velocities derived from the gridded, delayed-time, reference,
merged sea-level anomaly fields (known as dt_ref_global_-
merged_msla_uv in AVISO nomenclature.) We choose to
use the precomputed geostrophic velocities, rather than
computing our own from the sea-level anomaly for two
reasons: (1) to facilitate easy replication of our results and
(2) to take advantage of the sophisticated treatment
employed by AVISO in computing velocities near the
equator. The velocity fields are available on a 1/3� Mercator
grid every 7 days. We use 17 years worth of observations,
beginning with January 6, 1993.
[9] This data product resolves mesoscale eddies with radii

of roughly 50 km and greater, which is below the dominant
eddy length scale everywhere in the ocean [Chelton et al.,
2011]. Nevertheless, there are certainly eddies smaller than
50 km present in the ocean, particularly at the submesos-
cales. How do these missing scales affect our calculations?
As first noted by Richardson [1926], eddy diffusion in
geophysical flows is itself a function of the length scale in
question. Below the scale of the largest eddies, the diffusiv-
ity is determined either by local (in wavenumber space) or
nonlocal dynamics, depending on the slope of the eddy
kinetic energy spectrum Bennet [1984]. It is an active matter
of research and debate whether particle dispersion and eddy

diffusion at the mesoscales and submesoscales are local or
nonlocal [LaCasce and Ohlmann, 2003; Koszalka et al.,
2009; Lumpkin and Elipot, 2010]. But above the scale of
the largest eddies, mixing becomes scale independent and
is determined by the large-eddy dynamics. Our tracer-based
diagnostics equilibrate on timescales of order of several
months to a year, roughly corresponding to Lagrangian
particle separations distances of greater than 200 km. At
these large space and time scales, it is the well-resolved large
eddies that determine the mixing rates. The smaller-scale
mixing processes present at the submesoscales are in-effect
parameterized by the grid-scale numerical diffusion included
in our model. Therefore, our diagnosed diffusivities should
be interpreted as corresponding to the large scales
(>200 km) and not applicable to smaller-scale phenomena.
[10] The altimeter measures the anomaly of sea-surface

height (SSH), which we will call h0, from its mean height,
and thus captures mesoscale variability. The geostrophic
velocities associated with the SSH anomalies are

u0
AV; v0

AV ¼ g

f
� @h

0

@y
;
@h

0

@x

� �
(1)

where g = 9.8m2 s–1 and f is the local Coriolis parameter (we
use Cartesian coordinates here for notational simplicity, but
in practice, all derivatives are computed appropriately for
spherical geometry.) Geostrophic balance does not hold at
the equator, but the altimetry data can still be used to infer
velocities there, albeit with less confidence. The AVISO
data set implements the method of Lagerloef et al. [1999]
between �5�. The basic balance underlying this method is
the y-derivative of the meridional geostrophic balance at the
equator: bu0 =� gh0yy [Picaut et al., 1989]. The Lagerloef
et al. [1999] method is essentially a way of matching this
regime with the geostrophic regime away from the equator.
The method has been validated with drifter data and has been
demonstrated to capture the major features and variability of
the equatorial circulation. Regardless, we must maintain
some skepticism of our results near the equator.
[11] To conserve tracer under two-dimensional advection,

the advecting velocity fields must be nondivergent and
must have no flow normal to the boundary. The AVISO
velocity fields must be modified to satisfy these conditions
[Marshall et al., 2006]. The details of the numerical grid
and the correction step are described in section A. The
modification is generally very small relative to the flow
itself. The corrected velocity fields are simply referred to
as v0 = (u0,v0) henceforth.

2.2. Mean Flow

[12] The presence of mean flows can fundamentally alter
mixing rates, and quantifying this effect on a global scale
is a central goal of our study. Satellite altimetry most
accurately measures only sea-level anomaly, not absolute
sea-level, and therefore does not provide information about
the mean flow. The best possible estimates of long-term
mean flows are produced by ocean state estimation, in which
all available observations, including those from the satellites
in the AVISO archive, are assimilated in a physically
consistent manner via an ocean model [Wunsch and
Heimbach, 2009]. We use the time-averaged flow at 10m
depth from the ECCO-GODAE v3.73 state estimate, on a
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1� grid, to define our mean flow. The flow is already
approximately nondivergent, to order Rossby number. To
make it fully nondivergent, it was interpolated and corrected
in the manner described above for the AVISO data.
Experiments are performed both with and without the mean
flow. We use an overbar to denote the mean flow, such that
the full velocity is given by v x; y; tð Þ ¼ �v x; yð Þ þ v0 x; y; tð Þ.
[13] The AVISO archive also provides an “absolute

dynamic topography” product that includes a mean flow at
the surface. This mean flow product is referred to as
CNES-CLS09_v1. We performed experiments using this
mean flow and found minimal differences in results. The
AVISO mean flow, on a 1/3� grid, contains narrower jets
and other finer-scale features but does not differ greatly from
the ECCO mean flow. Since the AVISO mean flow is also
derived using data assimilation techniques, rather than
“directly” observed, we prefer to use the ECCO product,
which is calculated in such a way that it is guaranteed to
be an optimal fit to the observations.

2.3. Advection/Diffusion Model

[14] To perform the tracer advection, we make use of the
MITgcm framework [Marshall et al., 1997a, 1997b]. We
employ the model in “offline” mode, where the dynamical
core is disabled and the velocity fields are loaded from the
AVISO data. The code simply solves the two-dimensional
advection diffusion equation

@q

@t
þ v �rq ¼ kr2q (2)

where k is a horizontal diffusivity and q is a passive tracer.
Many different numerical schemes exist for solving this
equation; we experimented with the standard second-order
centered difference scheme and also a second-order scheme
with a superbee flux limiter [Roe, 1985; Hill et al., 2012].
Both schemes performed reasonably. However, the second-
order scheme without limiter sometimes introduced spurious
extreme values of q, far outside its expected range, in
regions of high mixing. These extreme values result in
inflated rq, which corrupts the mixing diagnostics. For this
reason, we opted to use the flux-limiting scheme. The
tradeoff is that the flux limiter induces some amount of
spurious numerical diffusion at the grid scale, in addition
to the prescribed diffusion. This numerical diffusion is
diagnosed and accounted for, following Marshall et al.
[2006], using the methods described in section A.

3. Effective Diffusivity in a Pacific Sector

[15] Effective diffusivity developed as a diagnostic in the
atmosphere [Nakamura, 1996; Nakamura and Ma, 1997;
Haynes and Shuckburgh, 2000a, 2000b] and was later
applied to the Southern Ocean/ACC system [Marshall
et al., 2006; Shuckburgh et al., 2009a, 2009b; Abernathey
et al., 2010]. Both these environments share an important
feature: tracers have a strong, monotonic gradient in latitude,
with the mean flow oriented perpendicular to the tracer
gradients. The geometry of the mean flow in other ocean
basins, however, is much more complex, with gyres, western
boundary currents, and equatorial jets all contributing to the
circulation. Furthermore, surface tracers (temperature and
salinity) are not simply aligned with streamlines globally,

as they are in the ACC, chiefly because strong air-sea
forcing and vertical advection often dominate over advection
by the horizontal flow. These issues make it very challeng-
ing to select an initial tracer distribution with which to
perform a truly global effective diffusivity calculation.
[16] As a bridge to understanding mixing rates globally,

we performed the following experiment: we took a sector
in the East Pacific (180�W–130�W longitude, full range in
latitude) and turned it into a re-entrant channel. This sector
is unique in that it contains very little land and that the
EKE is relatively homogenous in longitude. The mean flow
(from ECCO) was zonally averaged and made constant in
longitude (�u ¼ �u yð Þ), with �v ¼ 0 (the meridional mean flow
was already weak in this sector.) The eddy velocities were
derived from AVISO as described in the previous section
and were made consistent at the overlap longitude during
the correction step described in section 2.1 and section A.
Shuckburgh et al. [2009b] and Ferrari and Nikurashin
[2010] also performed experiments of this type in limited
Southern Ocean sectors. Although this synthetic flow seems
far removed from the real ocean, it contains the essential
elements necessary to assess meridional mesoscale mixing
rates in this sector.

3.1. Effective Diffusivity Calculation

[17] The effective diffusivity diagnostic measures the rate
of material transport across tracer contours [Nakamura,
1996]. This transport is related to the length of the contour
itself, with complex, highly filamented contours associated
with higher effective diffusivity. Because its coordinate
system follows the tracer, rather than being fixed in space,
effective diffusivity is especially successful at identifying
barriers to transport. Formally, the effective diffusivity is
defined as

Keff ¼ k
L2e
L2min

: (3)

Le is the “equivalent length” of a tracer contour deformed by
eddies, Lmin is the minimum possible contour length, and k
is the small-scale background diffusivity. The equivalent
length of a tracer contour q, enclosing an area of A(q), can
be expressed as

L2e qð Þ ¼
d
dA

Z
A
jrqj2dA
@q

@A

� �2 (4)

where the integral is taken over the area A. This expression is
easy to evaluate numerically for any instantaneous tracer
concentration q(x,y), and its value is readily mapped to an
“equivalent latitude,” i.e., the latitude of the mean tracer
contour �q yð Þ (a unique mapping between q and y is only
possible if the meridional gradient of �q is monotonic; this
was part of the motivation to perform the simple periodic-
domain experiment in the first place). Likewise, Lmin(y) is
trivially defined as the width of the 50� domain at each
point n latitude. Our initial tracer is proportional to latitude:
q(x, y, t = 0) = y.
[18] Once the calculation is initialized, the tracer quickly

(within 2 or 3months) forms fine structure due to eddy
stirring, and Le increases rapidly over this period. In the long
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term, Le is expected to decay as small-scale diffusion
homogenizes the tracer; however, no strong decrease is
observed over a 2-year period. Instead, Le reaches a stable
profile which evolves slowly due to seasonal and interannual
variability of the eddy field. Other studies have found similar
temporal behavior [Marshall et al., 2006; Shuckburgh et al.,
2009a]. To compute a long-term mean value, we allow the
tracer to evolve for a year and calculate Le every month.
At the end of the year, the tracer is re-initialized, and the
process is repeated every year from 1993 to the end of
2009. A second tracer is also modeled, 6months out of
phase with the first. We compute a mean Keff by averaging
over the last 6months of each tracer year. This mean value
and its standard deviation (suggesting the interannual
variability) are plotted in Figure 1b. As discussed in
Marshall et al. [2006] and Abernathey et al. [2010], Keff is
almost completely independent of the choice of k (we have
confirmed explicitly that this is the case using experiments
with different k).

3.2. Discussion of Mixing Rates and Mean Flow Effects

[19] Building on work by Taylor [1921], Prandtl [1925],
and Keffer and Holloway [1988], Ferrari and Nikurashin
[2010] developed a simple analytical model for mixing
across a jet, representing eddy effects with a stochastic
advection term [see also Klocker et al., 2012a]. The cross-
jet diffusivity was found to be

KFN ¼ g

g2 þ k2 �u� cð Þ2 EKE (5)

where g is the eddy decorrelation timescale, k the eddy
wavenumber, EKE ¼ �u02 þ v02=2 the eddy kinetic energy,
�u the zonal mean flow, and c the eddy phase speed. A similar
expression can be derived for the QGPV diffusivity in a
baroclinically unstable flow [Green, 1970] and was used
by Smith and Marshall [2009] and Abernathey et al.
[2010] to interpret spatial patterns of diffusivity in the
ACC. Here, we do not attempt to fit this formula to our
results exactly; the parameters k, g, and c can be difficult
to assess, as documented in Klocker et al. [2012a].
Nevertheless, the formula provides a very useful framework
for interpreting our diagnosed diffusivities. In particular, we
see that KFN depends not only on the eddy kinetic energy but
also on the steering-level factor �u� cð Þ2: given a particular
EKE, the diffusivity is maximized when this term is zero,
which corresponds to isotropic turbulence. The diffusivity
can be suppressed by the propagation of eddies relative to
the mean flow.
[20] To explore the influence of these factors, we plot vrms

(square root of EKE) and �u for our domain in Figure 1a. We
also plot an estimate of phase speeds c from the region
inferred by Radon transforms of SSH data, courtesy of Chris
Hughes (personal communication). The phase speed c is
negative throughout most of the domain, consistent with
the well-known westward propagation of eddies and Rossby
waves [Chelton and Schlax, 1996; Tulloch et al., 2009]. To
further probe the role of the mean flow, we also performed
performed the same experiment with the mean flow removed,
i.e.,�u ¼ 0. TheKeff for the zero mean flow case is shown as the
dashed line in Figure 1b. In terms of (5), this experiment can
be interpreted as replacing the suppression factor �u� cð Þ2 with
c2 (it is important to remember that, in our kinematic model,
removing the mean flow does not alter the phase speed c).
According to the formula, in cases where �u� cð Þ2 > c2, set-
ting �u ¼ 0 results in higher KFN; we refer to this as mean flow
suppression. In cases where �u� cð Þ2 < c2 , setting �u ¼ 0
results in lower KFN; we refer to this as mean flow enhance-
ment. However, we reemphasize the point of Ferrari and
Nikurashin [2010] that, by altering the mean flow, we are re-
ally just modulating the suppression factor in the denomina-
tor of (5). In no case does the presence of a mean flow truly
enhance cross-jet mixing beyond the diffusivity expected for
homogenous, isotropic turbulence. This should be kept in
mind whenever we refer to mean flow “enhancement” in
subsequent discussions.
[21] Beginning in the Southern Ocean, we see a picture

already familiar from the work of Marshall et al. [2006],
Ferrari and Nikurashin [2010], and Klocker et al. [2012a,
2012b]: relatively weak mixing in the core of the ACC
where the mean flow is strongest (near 55�S) and slightly
elevated values on the equatorward flank (north of 50�S)
where eddy energy is still high but the mean flow is weaker.
Comparing with the zero mean flow values, we see that the
mean flow strongly suppresses mixing rates; without it, they
reach values >4000 m2 s�1 in the ACC. Moving north to the
midlatitudes, we see relatively uniform mixing between 40�S
and 20�S of approximately 1000m2 s�1. It is intriguing to
note, however, that the relatively weak eastward mean flow

(a) (b)

Figure 1. (a) Zonal mean flow �u, dominant phase speed c,
and RMS eddy speed from the Pacific zonal sector experi-
ment. The phase speed was diagnosed from the altimetric
sea-surface height using Radon transforms by Chris Hughes
(personal communication). (b) Diffusivity diagnostics. The
mean Keff is in black, with �1 standard deviation in gray.
The dashed line shows the mean Keff produced when the
mean flow is set to zero.
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in this region still exerts a suppressing effect; without it, the
mixing rates double.
[22] Moving further northward, a crucial transition

occurs near 20�S. Here, observe a switch from mean flow
suppression at high latitudes to mean flow enhancement at
lower latitudes. This is also the latitude where the mean flow
itself switches signs, from positive (eastward) to negative
(westward). This behavior can be easily explained in terms
of (5): south of this transition latitude, the phase speed c
and mean flow �u have the opposite sign, but north of it, they
have the same sign. So south of the transition latitude,
�u� cð Þ2 > c2, while north of it, �u� cð Þ2 < c2 (this concept
is illustrated visually in Figure 1).
[23] The equatorial Pacific contains three distinct currents:

the South Equatorial Current (westward), the Equatorial
Counter Current (eastward, centered on 5�N), and the North
Equatorial Current (westward, near 15�N). Consistent with
(5), we observe mean flow enhancement in the South and
North Equatorial currents, because �u and c have the same
sign there. But in the Counter Current, we have suppression
because �u is eastward while c is westward. Of course, the
mixing rates are also modulated by the variations in EKE,
but this experiment suggests a very strong role for the
�u� cð Þ2 term in equatorial region.
[24] In the rest of the North Pacific north of 20�N, the

mean flow remains eastward and exerts a suppressing effect.
The peak in Keff near 55�N is associated with high EKE near
the Aleutian islands and Alaskan coast.
[25] Overall, this sector displays a wide range of mixing

rates, spanning an order of magnitude from 500 to
5000m2 s�1. These mixing rates are shaped by meridional
variations in EKE, �u , and c. Especially high mixing rates
in the subequatorial regions arise due to relatively high
EKE combined with an alignment between the westward
mean flow and westward propagating eddies.

4. Global Osborn-Cox Diffusivity

[26] The East Pacific is ideal for investigating mixing rates
using Keff because of its lack of land and relative zonal
symmetry. But focusing only on this sector neglects the most
energetic regions of the global ocean: the western boundary
currents. The complicated flow geometry near western
boundaries makes it problematic to calculate Keff there,
because the mapping between tracer contours and a physical
location in space breaks down. More generally, it is
desirable to quantify tracer mixing rates in two dimensions,
which will never be possible using the effective diffusivity
method.

4.1. Definition

[27] In order to quantify mixing locally, we must employ a
suitable definition. From a Lagrangian standpoint, mixing
means the decorrelation of particle trajectories; the “mixing
rate” is proportional to the rate of decorrelation. A key
property of this process is its irreversibility, through which
particles “forget” where they came from. For tracers, mixing
means the generation of small length scales which, in the
presence of small-scale diffusion, leads to irreversible
homogenization of tracer concentration [Ottino, 1989;
Nakamura, 2008]. This is precisely what is measured by
effective diffusivity. The Osborn-Cox diffusivity is a

diagnostic which attempts to quantify this process locally
[Osborn and Cox, 1972]. Since mixing is not, in fact, a
local process, this objective is inherently problematic.
Nevertheless, it is informative to separate the local, irrevers-
ible mixing from the eddy transport due to other, reversible
processes [Marshall and Shutts, 1981; Nakamura, 2001].
Furthermore, since our experiments show that mixing is
approximately local on large scales, the Osborn-Cox
diffusivity can be regarded as a reasonable approximation
to the overall eddy diffusivity.
[28] The origin of the Osborn-Cox diffusivity is in the

tracer variance budget. We briefly review its derivation here,
following Nakamura [2001], to clarify its physical interpre-
tation. By taking a time mean of (2), we obtain the
Reynolds-averaged tracer equation:

@�q

@t
þ �v�r�q ¼ �r��v0q0 þ kr2�q: (6)

[29] The overbar indicates a time/ensemble mean and a
prime a departure from that mean, such that q ¼ �qþ q0. This
equation describes the evolution of the mean tracer �q and
looks identical to (2) except for the eddy flux term on the
right. The general eddy parameterization problem is often
framed in terms of determining a tensor K that relates the
eddy flux term in (6) to the mean background gradient, such
that r��v0q0 ¼ r� �Kr�qð Þ [Plumb and Mahlman, 1987;
Griffies, 1998]. Many processes besides mixing can contrib-
ute to K, including eddy-induced advection, reversible
displacement of tracer contours, and advection of tracer
variance. Our goal here is not to determine K fully but rather
to isolate, map, and quantify the irreversible mixing which
arises due to stirring by eddies.
[30] Mixing is associated only with eddy fluxes that are

down the mean gradient. To highlight this portion of the
flux, (6) can be uniquely rearranged to the form

@�q

@t
þ �vþ v�ð Þ � r�q ¼ r � K þ kð Þr�q½ � (7)

where v* is an eddy-induced advection (formed from the
antisymmetric part of K) and K is a scalar eddy diffusivity
for the eddy flux in the direction normal to the mean
gradient, defined such that �Kr�q ¼�v0q0 � r�q=jr�qj. The
tracer variance budget constrains the sign and magnitude
of K. The variance budget is obtained by subtracting (6)
from (2), multiplying by q0 and taking the average. The
resulting equation is

@

@t

�q02

2
þr�
�
v
q02

2
þ�v0q0 � r�q ¼ r2 k

�q02

2
Þ � k
�jrq

0 2
���

(8)

where the quantity �q02=2 is the tracer variance. Substituting
the definition of K into the last term on the LHS, we can
solve for K to find

K ¼ KK þ KOC (9)

where

KK ¼ @�q02

@t
þr��vq0 2 � kr�q0 2

� �� �
=2jr�q 2

�� (10)

and
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KOC ¼ k
jrq

0 j2
�

jrq
�

j2
(11)

[31] KK arises due to time evolution in the variance field
or from the transport of variance. The tendency term is
generally small in our simulations, except in a few particular
locations (discussed subsequently). The variance advection
term includes both mean advection �v �q02 (related to the
“rotational flux” discussed by Marshall and Shutts [1981])
and the triple correlation term v0�q02 . These terms are zero
in isotropic, homogeneous turbulence, and regardless of
the details of the turbulence, they vanish in a globally
integrated budget. Locally, they can be either positive or
negative [Wilson and Williams, 2004]. Detailed diagnostics
of the terms in the variance budget are performed in
section C.
[32] The Osborn-Cox diffusivity KOC is a diffusivity for

the part of the downgradient eddy flux associated with
irreversible mixing. The physical interpretation of KOC

resembles that of Keff: it quantifies the enhancement of
small-scale diffusion due to fine-scale tracer gradients

created by eddy stirring. The factor�rq
0 2=
�� ��r�q 2

���� can be
interpreted as ratio of length scales that measures the
efficiency of this process, just like the factor L2e=L

2
min in Keff.

In fact, it can be shown that KOC integrated along a tracer
contour is equivalent to Keff [see Nakamura, 1996, equation
2.2–2.5]. But because KOC is a positive-definite Eulerian
mean quantity, it can be used to produce a two-dimensional
map of mixing rates.

4.2. Experiments

[33] The methodology we use for the global experiments
follows in a straightforward way from the previous section.
We initialize a tracer globally, stir it with the corrected
AVISO velocity field v0 in combination with the ECCO
mean flow �u, and reset the tracer after 1 year. The process
is repeated for 17 years of AVISO data; the statistics
necessary to compute KOC and the terms of the variance
budget are generated by time averaging over the whole
17-year period. This procedure can be viewed as an ensem-
ble of 17 individual yearly experiments. The results are not
very sensitive to the averaging period, provided the period
is short enough to prevent the tracer gradients from being
completely mixed away; in which case, KOC becomes
undefined.
[34] A central challenge in designing the global experi-

ment is the choice of an initial tracer, which we call
q0 = q(x, y, t= 0). The above derivation makes it clear that
KOC should be interpreted as a diffusivity across the mean
gradient r�q . Therefore, although KOC is a scalar quantity,
there is an implicit orientation to the mixing process it repre-
sents. The orientation ofr�q is determined in part by q0 and in
part by the flow itself, which tends to work to align the tracer
with the jets. Observations and simulations of drifter
trajectories suggest that particle dispersion and tracer diffu-
sivity in the ocean are highly anisotropic, with zonal or
along-stream dispersion occurring much more rapidly than
in the meridional/cross-stream direction [Sallée et al., 2008;
Kamenkovich et al., 2009; Griesel et al., 2010; Rypina
et al., 2012; Fox-Kemper et al., 2012] (the likely explanation
for this anisotropy is the mechanism of “shear dispersion”

[Young et al., 1982], which describes how mixing is
enhanced along the jet axis in the presence of a sheared mean
flow). These considerations suggest that if the mean jet
crosses the contours of q0, higher values of KOC will result.
Our experiments confirm this hypothesis.
[35] Here, we describe the results of experiments with

three different tracer initializations,

q0 ¼
’ latitude trLATð Þ
c streamfunction for the mean flow trPSIð Þ
θ climatological sea� surface temperature trSSTð Þ

8<
:

(12)

[36] The use of latitude as an initial tracer (an experiment
we refer to as trLAT) is an obvious option. Its meridional
gradient means that KOC is associated with a meridional
diffusivity, in clear analogy with the previous section.
However, with trLAT, there is no consistent global
relationship between the tracer and the ocean jets; contours
of trLAT are more or less aligned with the ACC and
the equatorial jets but are perpendicular to western
boundary currents.
[37] An alternative possibility is to use an initial tracer that

is perfectly aligned with the mean flow everywhere. The
streamfunction c for the mean flow defines such a tracer.
We call this experiment trPSI. The KOC produced by this
experiment can be interpreted as representative of cross-
stream mixing. A major disadvantage of trPSI is that it
contains local maxima and minima, for instance, in the
middle of gyres or in the alternating jets of the equatorial
Pacific. In our experiments, vanishingly weak background
gradients r�qj j in these regions lead to spuriously high KOC

values. Such spurious values do not necessarily represent
regions of strong mixing but rather are implicit in q0.
Furthermore, the local extrema tend to be mixed away
quickly, which leads to significant time dependence in the
variance budget, further undermining the validity of KOC

in these regions. We also explore the third tracer, the mean
sea-surface temperature θ, which is somewhat aligned with
the mean flow but contains different local extrema from
trPSI.

4.3. Maps of KOC

[38] The results for the three experiments are shown in
Figure 2 on a logarithmic scale. Despite significant differ-
ence in the variance budgets themselves (see section C), all
three calculations share the following key attributes in KOC:
• Large values (KOC> 104 m2 s� 1) on the flanks of

western boundary currents such as the Gulf Stream and
Kuroshio (though this is not necessarily a cross-stream
diffusivity)
• Local minima (KOC< 103 m2 s� 1) in the subpolar gyres

around 45�N/S
• Patterns in the Southern Ocean consistent withMarshall

et al. [2006], with high values on the northern flank of the
ACC and lower values farther south
• Very high values in the tropics, but with somewhat

differing spatial patterns

[39] Many of the apparent differences can be understood
in terms of the issues reviewed above. Both trLAT and
trSST exhibit high KOC in the western boundary current
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extension regions. trPSI, on the other hand, does not have
such a pronounced maximum in these regions. We attribute
this to the fact that trPSI is totally aligned with the mean
currents in these regions, while the others are not. The
misalignment means that the tracers experience the much
stronger along-stream mixing rate, rather than the weaker
cross-stream mixing rate felt by trPSI. This conclusion is
supported by the experiments with no mean flow, presented
in the next section.
[40] As also mentioned above, KOC becomes undefined

where r�q 2 ¼ 0
���� . trLAT avoids this situation better than

the other tracers because it contains no pre-existing local

extrema. For both trSST and trPSI, however, the q0 field
contains local maxima to begin with, and these points
inevitably are associated with very large values of KOC.
Figure 2 masks the areas where r�qj j is less than equal to
10% of its global mean value, i.e., where the background
gradients are very weak. There are almost no such areas
for the latitude tracer, but there are several large regions
for the other tracers. This mask, however, does not remove
all the problems associated with the weak initial gradients.
For instance, the banded structures in KOC near the equator
in the trPSI experiment are clearly due to the bands in
the streamfunction itself, which arise due to the alternating

(a)

(b)

(c)

Figure 2. Osborn-Cox diffusivity on a logarithmic scale, i.e., log10 (KOC). The initial tracer concentra-
tions used were (a) latitude, (b) SST, and (c) streamfunction for mean flow. The values have been masked
in areas where r�qj j is very weak. Solid black contours are included at values of 1000 and 10,000m2 s�1.
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zonal jets in this region. trLAT, which has no such small-
scale variations in its initial conditions, does not display
these structures.
[41] Further discussion and interpretation of the results,

and a comparison with other studies, can be found in
section 5.

4.4. Impact of Mean Flows

[42] The role of the mean flow in determining the spatial
pattern of KOC can be assessed by conducting the global
experiment with the mean flow set to zero. We call the
Osborn-Cox diffusivity obtained this way Ku¼0

OC . We show
results of these experiments for trLAT and trPSI in
Figures 3 and 4. As discussed above, these two tracers have
very different orientations relative to the mean flow, in
particular in the western boundary current regions, where
trLAT is nearly perpendicular to the mean flow. trPSI,
on the other hand, is always perfectly aligned with the mean
flow. The effect of removing the mean flow will be different
in each case. By removing the mean flow from the trLAT
experiment, we eliminate the effects of shear dispersion
along jet axes. Because trPSI does not experience these
effects as strongly, that experiment provides a closer anal-
ogy with the zonally symmetric results of section 3, in which
all mixing was by construction “cross front.”
[43] Focusing first on trPSI (Figure 4), we note similar

patterns of suppression and enhancement to those found in

the Pacific channel experiment of section 3 (compare with
Figure 1). We observe strong suppression by the mean flow
throughout the ACC. In the tropics where the mean flows
become westward (the same sense as Rossby wave propaga-
tion), the presence of the mean flow leads to enhancement
which is correlated with the structure of the equatorial jets.
Where the Equatorial Counter Current flows eastward, we
observe suppression. In the western boundary currents and
their extension jets that flow eastward between the subtropi-
cal and subpolar gyres, we observe significant suppression.
Just as in the ACC, the combination of eastward flow and
westward propagating waves/eddies leads to suppression of
mixing. It has been suggested [Bower et al., 1985] that the
Gulf Stream creates a mixing barrier near the surface, and
our results here are consistent with this interpretation.
[44] For the most part, the effects of the mean flow on

trLAT are similar, with the same broad patterns of enhance-
ment and suppression. There is a big difference, however, in
the western boundary current regions. In the core of the Gulf
Stream, and on the northern flank of the Kuroshio extension,
the mean flows clearly suppress mixing, as observed across
the region for trPSI. However, for trLAT, the addition
of the mean flow causes extremely enhanced mixing on
the southern flanks. We interpret this as mixing along
the jet axis caused by shear dispersion, which is possible
due to the initial misalignment between trLAT and
the current.

(a)

(b)

Figure 3. (a) Osborn-Cox diffusivity on a logarithmic scale for the latitude tracer experiment (trLAT)
with the mean flow set to zero. (b) The log ratio between KOC with and without the mean flow. The black
contours are the streamfunction of the mean flow, indicating the position of mean currents.
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[45] To gauge the potential effects of shear dispersion, we
can employ the simple scaling derived by [Young et al.,
1982]. Their model predicts an enhanced downstream
diffusivity of

Ka ¼ k
1

2

a
o

� �2
(13)

where a is the mean flow shear and o is the wave angular
frequency. Typical values in a boundary current region
such as the gulf stream are a’ 106 s�1 and o’ 108 s�1. This
crude estimate indicates that shear dispersion is capable of
producing diffusivities 5000 times the background diffusiv-
ity k. This suggests that shear dispersion is indeed a
plausible mechanism for producing the elevated downstream
mixing in these regions.

5. Discussion and Conclusions

5.1. Summary

[46] We have constructed a global map of eddy mixing
rates based by using satellite observations to simulate the
evolution of passive tracers. We began in a “zonalized”
version of the East Pacific, where we computed effective
diffusivity as a function of latitude. We found surprisingly
high mixing rates (>5000 m2 s�1) in the tropics. We saw that
the zonal mean flow acts to suppress mixing at high
latitudes, where the flow is eastward, as previous studies in
the ACC have already confirmed. However, between 30�N

and S, where the mean flow is westward, the presence of a
mean flow actually enhances mixing rates. We suggested
that this behavior arises due to the westward phase speed
of eddies and waves. When the mean flow and the phase
speed have the same sign, as in the westward-flowing
equatorial currents, the mean flow enhances mixing. When
they have the opposite sign, as in the eastward-flowing
equatorial counter current or in most of the mid-latitude
ocean, the mean flow suppresses mixing. Near the equator,
where the mean flow consists of zonal jets of alternating
sign, we saw complex patterns of enhancement and suppression.
[47] We then introduced the Osborn-Cox diffusivity KOC,

which arises from the tracer variance budget. We reviewed
how KOC captures the part of the cross-gradient eddy flux
that is locally balanced by dissipation. When the variance
budget is nonlocal and nonsteady, there are additional fluxes
not captured by KOC (in section C we show, both in the
Pacific channel model and in global simulations, that these
effects are generally small; the variance budget contains
nonlocal fluxes on scales of O(500 km), but the overall
balance between variance production and dissipation is
captured well by KOC).
[48] We calculated KOC from global simulations using

three different initial tracers: one aligned with latitude, one
proportional to the streamfunction of the mean flow, and
one proportional to SST. Despite significant differences in
the variance budget for these tracers, the resulting KOC

values showed similar large-scale structure and magnitudes.

(a)

(b)

Figure 4. Same as Figure 3 but for trPSI.
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Differences arose in regions with weak initial background
tracer gradient and in regions where the initial tracer was
strongly perpendicular to the mean flow. We also performed
global experiments with the mean flow set to zero—these
confirmed the general picture of mean flow suppression at
high latitudes and mean flow enhancement at low latitudes.
The effect of the mean flow in the boundary current regions
was much more tracer dependent.

5.2. Comparison With Other Studies

[49] Most studies of lateral mixing in the ocean are based
on the statistics of particle dispersion [Owens, 1984; Davis,
1991; LaCasce and Bower, 2000; Lumpkin et al., 2002;
Zhurbas and Oh, 2003; Zhurbas and Oh, 2004; LaCasce,
2008; Waugh and Abraham, 2008; Sallée et al., 2008;
Lumpkin and Elipot, 2010; Rypina et al., 2012]. Such
Lagrangian methods are particularly valuable because they
can take advantage of the ample surface-drifter trajectory
data. One limitation of these Lagrangian methods is that they
are constrained by the number of particles within the area of
interest, leading to a tradeoff between precision and spatial
resolution. There are also challenges associated with
translating Lagrangian particle statistics into the Eulerian
eddy diffusivities required by numerical ocean models.
Klocker et al. [2012b] recently showed that particle-based
and tracer-based diffusivities agree well in a simple channel
flow resembling a sector of the ACC, but it is unclear
whether this result applies to the more complex flow
geometries of the real ocean. In general, tracers and particles
both provide valuable information and should be considered
complimentary.
[50] The recent study by Rypina et al. [2012] is an

important point of comparison for our results. These authors
performed a comprehensive analysis of particle spreading
and the associated Lagrangian diffusivities in the North
Atlantic, focusing on the anisotropy of the spreading process
and using both simulated and observed trajectories. They
found that, at most locations, spreading is faster (and
therefore diffusivity is greater) in the meridional direction.
But in the Gulf Stream, they found that the fastest spreading
occurs along the axis of the current, with slower spreading
(and weaker diffusivity) across the stream. The magnitudes
of along-stream mixing exceeded 105 m2 s� 1 in places,
while the cross-stream mixing did not exceed
5000 m2 s� 1. Our KOC diagnostic, which is a scalar, cannot
distinguish this anisotropy using a single tracer. However,
the presence of anisotropic mixing seems clearly related to
the differing values of KOC we found from different tracers;
the tracers with gradients perpendicular to the Gulf Stream
experienced much stronger mixing. When this effect is taken
into account, the magnitudes of diffusivity we found are
totally compatible with Rypina et al. [2012], and the spatial
patterns are also similar. Furthermore, Rypina et al. [2012]
compared statistics from real drifters with simulated trajecto-
ries from the AVISO data set (the same one we have used)
and concluded that, on large scales, there was strong qualita-
tive agreement. The real drifters produced somewhat higher
values of diffusivity than the simulated trajectories.
[51] As the comparison with Rypina et al. [2012] suggests,

one limitation of our method based on KOC is the representa-
tion of the mixing process as a scalar quantity. A more
general definition of eddy diffusivity involves a tensor diffusivity

which relates the eddy flux in each direction to each component
of the gradient [Plumb, 1979; Redi, 1982; Plumb and Mahlman,
1987; Griffies, 1998]. The recent study by Fox-Kemper et al.
[2012] attempts to grapple with the full three-dimensional
diffusivity tensor, diagnosed from multiple passive tracers in an
eddy-permitting numerical model. Their results, like those of
Rypina et al. [2012], indicate strong anisotropy in mixing rates,
with a large major-axis diffusivity (whose magnitude exceeds
6000m2 s�1 over large parts of the ocean) and a smaller minor-
axis diffusivity. The ranges of values and spatial patterns they
find are broadly consistent with our results as well. Their results,
however, also show a significant degree of small-scale “noise” in
the diffusivities, including negative values, pointing to a
downside of that approach.
[52] A final important reference is the recent study by Liu

et al. [2012], who used an adjoint-based inverse method to
estimate eddy diffusivities within a coarse-resolution
numerical model, producing 3-D maps of the Gent and
McWilliams [1990] coefficient (KGM), as well as other
values relevant for eddy parameterization. Although the
relationship between these quantities and the diagnostics
described here is indirect, certain similarities emerge, such
as elevated KGM in parts of the western boundary regions.
Direct comparison is hampered by the fact that KGM and
KOC represent physically distinct processes and by the strong
vertical variations in the estimates of Liu et al. [2012].
Furthermore, Liu et al. [2012] do not allow the mixing
coefficients to be anisotropic, which could potentially
explain their model’s misfit in jet regions. The magnitudes
of KGM they find rarely exceed 2000m2 s�1, but this is not
necessarily in conflict with our findings. Overall, their study
supports the notion that spatially variable eddy mixing is an
important ingredient of ocean circulation.

5.3. Composite Kmin From Multiple Tracers

[53] From the discussion above, we surmise that the differ-
ent tracers experience different KOC because of the inherent
anisotropy in the mixing process. As a final step, we present
a composite map showing the minimum value of KOC from
each experiment at each point in space in Figure 5 (we call
this quantity Kmin). It is our hope that such a map can be a
useful guide for coarse-resolution ocean models to employ
spatially variable mixing rates. Of course, an anisotropic
tensor diffusivity would be more appropriate than a scalar
in parameterizing the full complexity of eddy transport
[Redi, 1982; Griffies, 1998; Fox-Kemper et al., 2012]. But
in practice, many large-scale ocean models are quite far from
this degree of sophistication. Liu et al. [2012] clearly
demonstrate that a spatially variable yet isotropic diffusivity
can lead to a significant improvement in model performance.
Kmin effectively defines a lower bound on the mixing rate.
The rationale for suggesting Kmin is that, especially in frontal
regions, it is more important to accurately represent (and not
overestimate) the across-stream mixing rather than the
downstream mixing. This is because lateral mixing is often
the only way for cross-frontal transport to occur, while
downstream transport is easily accomplished by the jet itself.
[54] Besides the issue of anisotropy, another central

challenge in applying our results to ocean models is the
question of the vertical variation in mixing rates. The mixing
rates presented here are derived from the surface geostrophic
flow; they should be applicable over the surface mixed layer,
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in which there is no geostrophic shear. The issue of how to
extrapolate altimetric observations to infer currents at depth
is an extremely active topic of research at present, with no
clear consensus on the best method [Wunsch, 1997; Lapeyre,
2009; Scott and Furnival, 2012]. Further complicating the
picture is the fact that, although eddy kinetic energy
generally decays with depth, the diffusivity itself can have
pronounced mid-depth maxima when the mean flow
suppression effects decay more quickly than the EKE [Smith
and Marshall, 2009; Abernathey et al., 2010; Klocker et al.,
2012a]. While those previous studies focused only on the
Southern Ocean, we suspect that mid-depth mixing maxima
are also present in the Northern Hemisphere western bound-
ary currents and their extension jets. A deeper understanding
of the vertical structure of eddy mixing globally is therefore
a top priority for future research.
[55] Despite the many caveats, it is interesting to speculate

about the implications of our results for the modeling of
ocean general circulation. Conventional coarse-resolution
ocean models usually employ a uniform eddy mixing rate
of around 1000m2 s�1. Our results indicate that near-surface
mixing rates are at minimum at three or four times this large
in broad areas of the tropical ocean. This implies a much
greater role for eddy-induced transport in these regions.
Corroborating this conclusion is the comment byDanabasoglu
and McWilliams [1995] that an enhanced eddy mixing coeffi-
cient in the tropical Pacific significantly reduced the misfit be-
tween their coarse model and the observations. On the other
hand, it seems likely that eddy effects are overestimated by
such models in large parts of the subpolar gyres, where mixing
rates of 500m2 s�1 and less are prevalent. It is our hope that the
estimates provided in this paper can serve as a useful observa-
tional reference point in the ongoing effort to improve the pa-
rameterization of mesoscale eddies in ocean and climate
models.

Appendix A: Velocity Field Interpolation and
Divergence Correction

[56] In order to resolve fine-scale filaments in the tracer
field, we model the tracer advection at finer resolution than
the original AVISO grid. The raw AVISO velocity fields
are linearly interpolated to a 1/10� lat-lon grid. The

boundaries for the fine resolution grid are derived from the
GEBCO 1-arc-min gridded data, distributed by the British
Oceanographic Data Service.
[57] To conserve tracer under two-dimensional advection,

the advecting velocity fields must be nondivergent and must
have no flow normal to the boundary. However, divergence
is present in the AVISO-derived velocities for several
reasons: (1) the variation of f with latitude, (2) the algorithm
used at the equator, and (3) the interpolation to a finer grid.
Furthermore, the normal flows are also not guaranteed to
vanish at the boundaries. We therefore derive nondivergent
velocities from the AVISO fields following the procedure
of Marshall et al. [2006]. Via a Helmholtz decomposition,
the full AVISO field can be written as the sum of a nondiver-
gent stream function component and a velocity potential
component:

v0
AV ¼ r� cþrw: (A1)

[58] The “corrected,” divergence-free field is

v0 ¼ v0
AV �rw: (A2)

[59] To determine w, we solve the elliptic problem

r � v0
AV ¼ r2w: (A3)

subject to the boundary conditionrw ¼ v0AV � n̂ to eliminate
flow normal to the boundary. Over most of the ocean, the
correction term is O(0.1) or less when compared to the eddy
velocities. The ratio only exceeds 0.5 near boundaries in the
equatorial region.

Appendix B: Numerical Diffusivity and Sensitivity
of Results to k

B1. Quantifying Numerical Diffusivity

[60] The small-scale diffusivity k plays an important
role in several mixing diagnostics. It is well known that
numerical advection/diffusion can introduce extra diffusion
beyond what is specified explicitly by k. We quantify this

Figure 5. Composite value of K produced by taking the minimum KOC at each point from the three
experiments. See text for discussion.
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effect, as done in Marshall et al. [2006] and Abernathey
et al. [2010], through the domain-averaged tracer variance
budget. Multiplying (2) by q and taking an integral over
the entire domain gives

@

@t

Z Z
q2

2
dA ¼ �knum

Z Z
rq 2dA
���� (B1)

where the quantity knum is a measure of the total amount of
diffusion, explicit and implicit, in the model (by taking knum
outside the integral, we have assumed that it, like the
explicitly specified k, is constant in space; this assumption
may not be valid, but computing the numerical diffusivity
locally is not possible with this method). We can evaluate
these integrals from the model output and solve for knum.
We tested values of k ranging from 25 to 150 m2 s�1.
Tracers were initialized with a gradient in latitude and
evolved for 1 year, with q output every month. This was
repeated for four separate years of altimetric data. The result
indicates that knum is maximum at the beginning of the
advection but within a few months settles into a reasonably
steady state. The mean values of knum are given in Table B1.
In what follows, knum will always be used in place of the raw
k when analyzing our simulations.

B2. KOC Dependence on k

[61] Here, we address the degree to which KOC is indepen-
dent of k. The factor r�q 2

���� , the mean background gradient,
is set primarily by the initial conditions and is independent

of k, so KOC will be independent of k if �rq0 2 / k�1
���� .

Employing the same set of experiments used to calculate
knum, we calculated the domain-averaged value of �rq0 2jj
for a range of k. The results, shown in Figure B1 on a loga-
rithmic scale, do indeed show that this factor is inversely
proportional to k, with power-law relationship close to �1.
A linear fit of the points in Figure B1 reveals that, actually,

�rq0 2ok�0:8
���� . The departure of the exponent from �1 means

that KOC does depend weakly on k: specifically, that
KOC/ k� 0.2.

[62] Measurements of the true background diffusivity in
the ocean on scales of 1–10 km have been estimated by
Ledwell et al. [1998] from deliberate tracer release
experiments. Based on observations of tracer filament width,
they concluded that k’ 2 m2 s�1 at 300m depth in the North
Atlantic. This is significantly less than the knum = 66 m2 s�1

value we used. Assuming the k� 0.2 dependence holds down
to such low values of k, we can extrapolate what value of
KOC would result from to employing k’ 2 m2 s�1. Since

(2/66)0.2’ 0.50, this implies that that our estimates could
be off (too large) by a factor of 2. Abraham et al.
[2000] estimated values 0.5–5 m2 s�1 based on analysis
of a phytoplankton bloom, implying factors of 1.7–2.7.
It remains to be seen, however, whether the k�0.2 does
hold down to very small k, or whether, at some point,
KOC truly does become independent of k. We speculate
that higher resolution would lead to even less sensitivity
to the value of k, as observed for Keff by Marshall et al.
[2006].

Appendix C: Variance Budgets

[63] It is edifying to explicitly calculate the variance
budgets from our numerical simulations in order to better
understand the assumptions underlying KOC. We first
examine the variance budget in the Pacific channel experi-
ments. The zonal symmetry simplifies the budget and also
facilitates easy comparison with of KOC with Keff. In a zonal
average, indicated by the symbol �ðÞx, the variance budget (8)
simplifies to

@

@t

�q0 x

2
þ @
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q
0 2 x

2

 !�
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 !�
� kjrq

0 j2 x�
:

(C1)

[64] Because there is no mean meridional flow, the
variance advection term only includes the triple correlation.
The terms were diagnosed from the simulations and are
shown as functions of y in Figure C1. The variance diffusion
term (the first term on the right side of (C1)) was two orders
of magnitude smaller than the others and so was not plotted.
We did not diagnose the tendency term but instead assume it
to be given by the residual. The dominant balance is clearly
between variance production (v0q0 x� @�qx

@y ) which is everywhere

Table B1. Average Numerical Diffusivity knum Diagnosed From
(B1)

k (m2 s�1) knum (m2 s�1)

25 63� 12
50 83� 15
75 104� 17
100 126� 20
125 148� 23
150 171� 25

Figure B1. Relationship between knum and k if �rq0 2jj
diagnosed for six different values of k. The solid line
represents a �1 power-law dependence.
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positive and variance destruction ( kjrq
0 j2 x�

), which is
negative. The triple correlation term is generally much
smaller. In some narrow peaks, its magnitude approaches
1/2 of the other two terms; however, positive peaks are
neighbored by negative peaks, indicating that the term acts
only to move variance around on small scales. The residual
term is small, at maximum accounting for 20% of the
balance. But the fact that it is nonzero indicates that the
variance is not in a steady state, but rather is evolving slowly
over the course of the year.
[65] Next, we consider the mixing diagnostic KOC

and compare it to Keff. In a zonally averaged context,
KOC¼ k �rq0 2 x=j jr�qx 2jj . The third quantity worth comparing is

Kflux ¼ ��v0q0 x=
@�qx

@y
(C2)

a conventional diagnostic of mixing in channel flows. Based
on our preceding discussion of the variance budget, we can
see that Kflux is a diffusivity for the full cross-gradient flux,
including the nonlocal part. Thus, we expect it to
depart from KOC wherever the tendency term or the triple
correlation term is significant.
[66] We plot Keff, Kflux, and KOC in Figure C2; the

agreement is quite good in most places. The slight disagree-
ment between Kflux and KOC near 55�N is easily attributed to
the presence of a variance tendency at this latitude, apparent
in Figure C1 (the same comment applies to the area around
40�S). Some disagreement between diagnostics is also
evident in the peaks near the equator. The relatively strong

Figure C1. Terms in the zonal mean variance budget (C1).
The tendency term was not diagnosed explicitly but is
assumed to be equal to the residual.

Figure C2. Comparison of three different diffusivity diag-
nostics (Keff, Kflux, and KOC) in the Pacific channel experi-
ment. We also show the value of KOC from the global
trLAT experiment averaged over the same domain (the
peak of this final quantity near the equator is not shown on
the graph but reaches a maximum of close to 20,000m2 s�1).

Figure C3. KOC (11) computed locally in the Pacific channel
experiment.
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triple correlation term is likely responsible for this. Also, we
note that in these regions, we found slight disagreement be-
tween Keff obtained with different values of k; we speculated
that this could be due to spatially varying knum in regions of
intense mixing. Overall though, these issues are small, and
the three diagnostics give essentially the same results.
[67] We have also plotted KOC from the global trLAT

experiment in Figure C2 to facilitate a direct comparison
between the global and sector results. Overall, the agreement
is quite good; the primary difference is that the peak values
in the global experiment are higher. This is due to much
higher overall variance in the global experiment.
[68] The advantage of KOC is that, unlike the other

diagnostics, it can give a two-dimensional picture of mixing,
revealing variation in x as well as y. To illustrate this, we
simply compute the local value of KOC, as defined in (11)
(the zonal average of this quantity is identical to what is
plotted in Figure C2). The full KOC(x,y) is plotted in
Figure C3. A high degree of zonal symmetry is indeed
evident, but some zonal variations also emerge, for instance,
between 20�S and the equator or near 50�S.

[69] Finally, we examine the full variance budget of (8)
from our global experiments. Figures C4 and C5 show
the relevant terms in the two-dimensional variance budget
(8) for trLAT and trPSI (the variance budget for
trSST is very similar to trLAT and is not plotted). Also
plotted are the mean tracer concentration �q and variance
�q02=2. It is striking how different the variance field is for
the different tracers. For trPSI, the region of highest
variance is along the equator. This is due to the very
strong background gradients of �q which are present near
the equator; these gradients in streamfunction coincide
with the strong quasi-zonal equatorial jets. In contrast,
the variance produced by trLAT is highest in boundary
current regions.
[70] The variance budgets themselves reflect these differ-

ences. The variance production and dissipation for trPSI
are both strongest at the equator, where the variance is
highest. Likewise, these terms are most intense in the
boundary currents for trLAT. As we saw in the zonally
averaged budget (Figure C1), production is largely balanced
locally by dissipation for both cases. The variance advection

Figure C4. Diagnostics of tracer variance from the global trLAT experiments. The top row shows the
mean tracer concentration �q and variance �q02=2. The magnitude of the terms is meaningless, since the tracer
units themselves are arbitrary. In the bottom four panels, the terms of the variance budget (8) are all
arranged on the right side of the equation, so that a positive value acts to locally increase the variance
(the bottom four panels are plotted with the same color scale, with red indicating positive and blue
negative. The residual, shown in the bottom right panel, is assumed to correspond to a net tendency
(the tendency was not diagnosed explicitly).
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(which includes both triple correlation and mean advection)
mostly displays intense small-scale variations on scales
below 500 km, with closely neighboring sites of positive
and negative contributions. This means that variance is gen-
erally dissipated within 500 km, or less, of where it is
produced, implying that on large scales, the variance budget
is approximately local. The areas where the advection terms
are significant are mostly in boundary currents, the ACC, or
near the equator.
[71] The only glaring exception to this quasi-local balance

is in near the equator for trPSI, where coherent zonal
bands of positive and negative values are present. These
bands indicate a systematic transfer of variance from a
production region to a dissipation region. We note that this
transfer is truly a combination of triple correlation and mean
variance advection, rather than being due just to one term,
although only the net advection is plotted.
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