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ABSTRACT

A hierarchy of hydrodynamical instabilities controlling the transfer of buoyancy through the oceanic mixed layer
is reviewed. If a resting ocean of horizontally uniform stratification is subject to spatially uniform buoyancy loss
at the sea surface, then gravitational instability ensues in which buoyancy is drawn from depth by upright convection.
But if spatial inhomogeneities in the ambient stratification or the forcing are present (as always exist in nature),
then horizontal density gradients will be induced and, within a rotation period, horizontal currents in thermal-wind
balance with those gradients will be set up within the mixed layer. There are two important consequences on the
convective process:

1) Upright convection will become modified by the presence of the thermal wind shear; fluid parcels are exchanged
not along vertical paths but, rather, along slanting paths in symmetric instability. Theoretical considerations
suggest that this slantwise convection sets the potential vorticity of the mixed layer fluid to zero but, in general,
will leave it stably stratified in the vertical.

2) The convective process ultimately gives way to a baroclinic instability of the horizontal mixed layer density
gradients. The resulting baroclinic waves are important agents of buoyancy transport through the mixed layer
and can be so efficient that the convective process all but ceases.

The authors illustrate and quantify these ideas by numerical experiment with a highly resolved nonhydrostatic
Navier–Stokes model. Uniform spatial cooling at the surface of a resting, stratified fluid in a 2½-dimensional model
on an f plane, in which zonal strips of fluid conserve their absolute momentum, causes energetic vertical overturning.
A well-mixed boundary layer develops over a depth that is accurately predicted by a simple 1D law. In contrast,
differential surface cooling induces a mixed layer front. Fluid parcels, made dense at the surface, sink along slanting
trajectories in intense nonhydrostatic plumes. After cooling ceases the Ertel potential vorticity within the convective
layer is indeed found to be vanishingly small, corresponding to convective neutrality measured in the absolute
momentum surfaces that are tilted from the vertical by the horizontal vorticity of the thermal wind.

In analogous fully three-dimensional calculations, the absolute momentum constraint is broken, and the convection
at first coexists with, but is ultimately dominated by, a baroclinic instability of the mixed layer. For typical mixed
layer depths of 500 m stability analysis predicts, and our explicit calculations confirm, that baroclinic waves with
length scales O(5 km) develop with timescales of a day or so. By diagnosis of fully developed mixed layer turbulence,
the authors assess the importance of the baroclinic eddy field as an agency of lateral and vertical buoyancy flux
through the layer. A novel scaling for the lateral buoyancy flux due to the baroclinic eddies is suggested. These
ideas are based on analysis of several experiments in which the initial stratification, rotation rate, and buoyancy
forcing are varied, and the results are compared to previous attempts to parameterize the effects of baroclinic
instability. There is a marked difference between the scaling that accounts for the resolved experiments and the
Fickian schemes used traditionally in large-scale ocean models.

Finally, consideration of the results in light of high-resolution mixed layer hydrographic surveys in the northeast
Atlantic suggests mixed layer baroclinic instability may be very important at fronts. The authors speculate that the
process exerts a large influence on the character of newly subducted thermocline water throughout the extratropical
ocean.

1. Introduction
Knowledge and accurate representation of the pro-

cesses controlling the development of the upper ocean
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is vital if we are to understand the ways in which the
large-scale ocean structure is determined and develop
a quantitative theory of it. The surface mixed layer of
the ocean, directly in contact with the atmosphere, is
of central importance in determining the manner and
rates of heat, freshwater, momentum, and gas exchange
with the interior of the ocean. Traditional oceanic
mixed layer paradigms (e.g., Kraus and Turner 1967;
Mellor and Yamada 1974) suppose that the properties
of this surface layer are set by vertical mixing caused
by mechanical stirring from the wind, surface gravity
wave breaking and by convective mechanisms induced
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FIG. 1. (a) A traditional mixed layer model where a layer with zero vertical stratification is developed by
gravitational overturning and surface buoyancy loss. (b) In the presence of a lateral density gradient in a
rotating frame, symmetric instability sets the potential vorticity to zero, leaving weak stratification. This layer
is unstable to baroclinic waves, which results in lateral buoyancy transfer in the mixed layer.

by buoyancy loss from the sea surface. The latter pro-
cess dominates in mixed layers deeper than O(100 m)
and is a consequence of the familiar gravitational over-
turning (or upright convection) associated with denser
fluid overlying lighter fluid (represented schematically
in Fig. 1a).

The upper ocean is not horizontally homogeneous,
however, as is clearly revealed by any high-resolution
survey (e.g., Samelson and Paulson 1988). For ex-
ample, Fig. 2 is a section from the northeast Atlantic
(obtained in April 1991 by a SeaSoar—a towed, un-
dulating CTD; Cunningham et al. 1992; Pollard 1986)
revealing density gradients from the smallest resolved
scales [O(5 km) horizontally: O(5 m) vertically] to the
length and depth of the survey. One frequently ob-
serves unstable regions adjacent to stratified fluid. At
the northern end of the section the upper 250 m is
homogeneous, or slightly unstable, a signature that ac-
tive overturning is under way. A warmer layer is seen
to the south that has large regions of very weak strat-
ification despite a surface cap of lighter fluid in the
upper 20–30 m. At 45.48N, near the southern end of
the section, an anticyclonic eddy is apparent. This fea-
ture occupies the upper 300 m of the water column
and has a characteristic diameter of 25 km. The core,
and the surrounding fluid, is weakly stratified with stat-
ically unstable patches. A shallower (upper 100 m)
feature is present at 46.58N and is almost detached from
the less dense water to the south. These observations
give no obvious indication of a vertically homogeneous
mixed layer separated from stratified water below. In-
deed, it is very difficult to define the mixed layer in

an unambiguous way. The mixed layer depth, diag-
nosed as the depth at which the density exceeds the
surface value by 0.05 kg m23 , is shown, but does not
correspond to any clear mixed layer base. In fact, the
mixed layer depth determined in this way is very sen-
sitive to the exact criterion used. Nevertheless, there
are significant lateral gradients within the convectively
stirred layer, caused by a variety of hydrodynamical
processes induced by surface buoyancy and momentum
fluxes. Clearly, if these hydrodynamical processes are
sufficiently slow and large scale, the earth’s rotation
will influence them.

In this paper we review and investigate some of the
key processes that control the flux of buoyancy ver-
tically and horizontally in the upper ocean. We argue,
and illustrate by numerical experiment, that in the pres-
ence of lateral density gradients upright convection can
be modified by thermal wind shear so that overturning
occurs along paths that slant to the vertical. This slant-
wise convection rapidly (typically over a few hours)
restores the Ertel potential vorticity of the convecting
layer to zero and maintains a layer with weak vertical
stratification. But of equal importance is that this state
is susceptible to nonhydrostatic baroclinic instability,
which quickly develops causing vertical and lateral
transfer of buoyancy in the mixed layer (Fig. 1b) on
geostrophic scales. Numerical experiments show that
baroclinic instability in the mixed layer can result in
lateral buoyancy fluxes that significantly modify the
shoaling and deepening of the layer and are so efficient
that the convective process all but vanishes.

Finally, scaling laws are deduced, and tested against
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FIG. 2. Vertical section of potential density (kg m23: referenced to the surface) along a southward cruise track in the northeast Atlantic
in April 1991 (Vivaldi cruise). The measurements were made from a SeaSoar instrument (Pollard 1986), a towed undulating CTD that cycles
between the surface and 500 m every 4 km along the track. The dashed line shows the mixed layer depth diagnosed as the depth at which
the density exceeds the surface density by 0.05 kg m23. The contours mark those regions where the vertical stratification is very weak or
unstable [N 2 , 1 3 1028 s22, where N is the Brunt–Väisälä frequency, Eq. (2)]. The profiles of N 2 were smoothed with a 20-db low-pass
filter.

our numerical experiments, in an attempt to quantify
the importance of these dynamical processes in the
field. They suggest that lateral transfer by mixed layer
baroclinic instability may be ubiquitous and represent
an important process that is absent from one-dimen-
sional mixed layer paradigms. It is most significant at
the time of subduction, in the aftermath of deep-reach-
ing convection (shortly after the data in Fig. 2 were
taken), and may be influential in setting the charac-
teristics of newly formed thermocline water.

2. Theoretical background

The various types of instability that occur naturally
in the oceanic mixed layer are hybrid in nature. It is
instructive, however, to consider idealized limit cases
in which one or another of the destabilizing forces acts
alone. Four simple types of instability are of interest
(they are reviewed in a meteorological context by Eady
1951) and are discussed here in the context of oceanic
mixed layers:

1a) Gravitational instability (‘‘ordinary’’ convection
or static instability)

1b) Centrifugal instability (sometimes called inertial
instability)

2a) Baroclinic instability (of the thermal wind)
2b) Helmholtz instability (at a velocity discontinuity).

Instability of type 1a has been the traditional focus in
studies of the mixed layers. Instability of type 1b is un-
likely to occur in pure form in the mixed layer, but the
hybrid gravitational–centrifugal instability 1ab (known as
‘‘symmetric instability’’) is likely to occur and is one of
the focuses of the present study. Instability of type 2a is
not widely associated with mixed layer processes, but a
number of theoretical studies (Stone 1971; Young and
Chen 1995; Fukamachi et al. 1995; Barth 1994) have
pointed to its importance. We argue here that baroclinic
instability may be one of the most important processes
active in mixed layers. Finally, instability of type 2b is
significant in mixed layers where there is a strong ver-
tically sheared flow—especially at low latitudes (see Pol-
lard et al. 1973; Price et al. 1986). Because it is a me-
chanically driven, rather than a buoyancy driven, process
we do not consider it further here. In the following brief
review we make much use of parcel theory—this is sum-
marized in appendixes A and B.

a. Type 1a: Gravitational instability

Consider a resting ocean of constant stratification Nth

(the thermocline stratification) subject to uniform and
widespread buoyancy loss from its upper surface as
shown in Fig. 1a. The thermodynamic equation is
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Db
5 B, (1)

Dt

where b 5 2(g/ro)s is the buoyancy; s the potential
density; r0 a constant reference density; g the acceler-
ation due to gravity; B 5 ]B/]z is the buoyancy forcing,
the divergence of the flux B; and D/Dt is the material
derivative.

The fluid cannot simultaneously overturn on the large
scale; rather the qualitative description must be that the
response to widespread cooling is one in which rela-
tively small convection cells (plumes) develop. Fluid
parcels at the surface become dense and sink under grav-
ity displacing less dense parcels from below. The con-
tinual exchange of fluid parcels in this way will, over
time, create a layer that, as we show below, is very
close to neutral with respect to its thermodynamic prop-
erties. However, as long as the buoyancy loss persists
there will be, on the average, a small statically unstable
buoyancy gradient:

]b
2N 5 , 0, (2)mix ]z

where Nmix is the Brunt–Väisälä frequency in the over-
turning layer. If , 0, then exchange of parcels2Nmix

vertically must release gravitational potential energy.
Since horizontal motion does not affect potential energy,
one need only consider vertical overturning; parcel the-
ory [see appendix A, Eq. (A3)] then yields an upper
limit on the growth rate v:

v2 # | |.2Nmix (3)

For a prescribed , with appropriate boundary con-2Nmix

ditions, it is straightforward to obtain complete solutions
through linear stability analysis (see, e.g., Rayleigh
1916; Veronis 1958; Chandrasekhar 1961); these show
that v2 is nearly attained when the convection cells are
tall and thin, for which little energy is supplied to hor-
izontal motion. Laboratory simulations, however, sug-
gest that the aspect ratio of fully developed turbulent
convection approaches unity such that horizontal and
vertical scales are of the same order.1

Many competing effects combine to control the de-
tailed dynamics on the plume scale. However, irrespec-
tive of these details, the gross transfer properties of the
population of convective cells must be controlled by the
large scale; the raison d’être for the overturning is to
flux buoyancy vertically to offset buoyancy loss at the
surface. As shown in appendix A, the following ‘‘law’’

1 The detailed dynamics setting the plume scale in ocean convection
is, as yet, unclear. For example, if the convecting layer becomes deep
enough then the concomitant increase in the lateral scale may cause
the convection to be influenced by Taylor columns associated with
the earth’s rotation. This may occur in open-ocean deep convection,
but will not be pursued here. In recent years it has been studied at
some length—see the review by Marshall et. al. (1994).

of vertical buoyancy transfer for the plume scale Bp can
be developed using the same parcel theory that leads to
Eq. (3):

Bp 5 wDb 5 Dz1/2Db3/2, (4)

where w is the vertical velocity in the plume, Dz its
vertical extent, and Db is the difference in buoyancy of
the rising and sinking fluid. Note that the above scaling
is appropriate in the highly supercritical limit and as-
sumes that visco–diffusive parameters are irrelevant. It
also assumes that the mixed layer is sufficiently shallow
that rotational effects are not dominant; that is, Ro* 5
(1/h) B/ f 3, the natural Rossby number, is sufficientlyÏ
large (h is the mixed layer depth and f the Coriolis
parameter). Then the classical nonrotating scalings are
appropriate. In some of the convection experiments of
Jones and Marshall (1993) Ro* was small enough for
rotation to affect the convection scale. In the experi-
ments presented below the rotational limit does not ap-
ply.

If the plumes, acting in concert, achieve a vertical
buoyancy flux sufficient to balance loss from the sur-
face, then Bp 5 B0, and choosing a deep mixed layer
exposed to a heat loss of ;500 W m22, typical of deep
winter mixed layers:

Dz 5 1000 m; B0 5 1027 m2 s23,

we deduce that the temperature anomalies, DT ;
0.0018C, typical vertical velocities are [using (A2) of
the appendix A] a few centimeters per second with
timescales of perhaps 8 h or so. Here we have assumed
that the buoyancy loss is all due to heat and the thermal
expansion coefficient of water a is 2 3 1024 K21. It is
notable that such a tiny temperature difference between
rising and sinking fluid parcels can achieve a very large
heat (and buoyancy) flux. We conclude that in the ab-
sence of lateral inhomogeneities the vertical column
within the convecting layer is indeed very well mixed;

in Eq. (2) is very small relative to typical ther-2Nmix

mocline stratifications. In the limit that Nmix/Nth K 1
and to the extent that entrainment of stratified fluid from
the base of the mixed layer can be neglected, Eq. (1)
tells us that the depth of the mixed layer h must increase
with time t according to (Turner 1973):

Ï2B t0
h 5 , (5)

Nth

where B0 is the buoyancy forcing at the sea surface and
Nth is the stratification of the underlying fluid.

b. Type 1b: Centrifugal instability

Suppose that the mixed layer is of uniform density
everywhere ( 5 0) and that a horizontal barotropic2Nmix

velocity u(y) exists within the layer with du/dy a con-
stant. Now energy exists only in kinetic form. Let us
consider overturning in the yz plane with no variations
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in x. Then a consideration of the zonal momentum equa-
tion (assumed inviscid) on an f plane tells us that

Dm
5 0, (6)

Dt

where

m 5 u 2 f y (7)

is the absolute momentum with f the Coriolis parameter
and u the zonal velocity.

Since u 5 u(y), the m surfaces are vertical at all times
and parcel theory (appendix B) tells us that energy is
released if uy . f, corresponding to negative absolute
vertical vorticity z, and that the growth rate is

v2 # f (uy 2 f ) 5 2 fz. (8)

Linear theory predicts that the maximum growth rate
occurs for shallow, broad cells since there is no energetic
advantage to be gained in exchanging particles verti-
cally.

Pure centrifugal instability of this kind is not likely
to be common in oceanic mixed layers because of the
stabilizing effect of the earth’s rotation, except perhaps
at low latitudes in regions of anticyclonic vorticity.

c. Type 1ab: Symmetric instability;
gravitational–centrifugal instability

Now let us combine the results of sections 1a and 1b
to consider a system in which neither or uy vanishes.2Nmix

This corresponds to the normal state of affairs in a mixed
layer—drawn schematically in Fig. 1b—in which the
density varies in the horizontal across the mixed layer
(because of more vigorous convection on one side than
the other, for example). On the large-scale a zonal cur-
rent u(y, z) will develop in thermal wind balance with
lateral mixed layer density gradients, given by

by
u 5 m 5 2 . (9)z z f

The presence of rotation and a zonal flow in thermal
wind balance with a lateral density gradient place,
through Eq. (6), important rotational and angular mo-
mentum constraints on the convective process. The m
surfaces, which before were vertical, are now, because
of the presence of the thermal wind and its associated
horizontal component of vorticity, tilted over. Because
the m surfaces are material surfaces, they will induce
fluid particles to move along slanting rather then vertical
paths. Moreover, the stability of the layer will depend
on the sign of =b measured in the m surface (corre-
sponding to gravitational instability) or the sign of the
absolute vorticity normal to the b surface (correspond-
ing to centrifugal instability). Both viewpoints are com-
plementary and entirely equivalent. Emanuel (1994)
calls this more general mixed instability ‘‘slantwise con-
vection.’’ The stability depends on the sign of the po-
tential vorticity (Hoskins 1974):

1
Q 5 h ·=b, (10)

g

a measure of the stratification in the direction of h, the
absolute vorticity vector or, equivalently, a measure of
h normal to b surfaces. If, as in our thought experiment,
there are no variations in x, then the absolute vorticity
vector lies in a surface of constant absolute momentum,
and Q is just the Jacobian of m and b:

1
Q 5 J (m, b). (11)yzg

If Q is negative, then the flow is unstable to symmetric
instabilities and slantwise convection might be expected
to return the Q of the layer to zero, the state of marginal
stability. The sign of Q depends on the slope of the m
surfaces relative to the b surfaces and is zero when they
are exactly coincident; in the limit of zero Q there is
no stratification in an m surface and the component of
h normal to the b surface is zero. The magnitude of the
absolute vorticity, resolved perpendicular to the b sur-
faces, is simply |h| 5 gQ/|=b|. For small slopes |=b| ;

and2Nmix

2f N z 1mixQ 5 2 , (12)1 2g f Ri

where z 5 f 2 uy is the vertical component of the
absolute vorticity and Ri 5 / is the Richardson2 2N umix z

number.
Parcel theory can be readily employed to analyze the

stability of a zonal flow in thermal wind balance to
overturning in a vertical plane. The method is outlined
in appendix B—see also chapter 12 of Emanuel (1994).
Maximum release of energy occurs when fluid parcels
are exchanged along surfaces coincident with the b sur-
faces. Then parcel theory yields

z 1
2 2v # 2 f 2 , (13)1 2f Ri

and the flow will be unstable when Q , 0 or, equiva-
lently,

Ri , f /z (14)

[see Eq. (B5), appendix B].
Thus, we see that symmetric instability (overturning

in the vertical plane with conservation of zonal mo-
mentum) is to be expected when

R absolute vorticity is small (anticyclonic shear), though
it need not be negative

R horizontal thermal gradient is strong (large uz)
R the static stability is small.

These conditions are likely to be met frequently within
the oceanic mixed layer.

Moreover, the arguments above suggest that, if Q ,
0, then one might expect convection (appropriately gen-
eralized in the ‘‘symmetric’’ sense) to occur and that
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FIG. 3. Dispersion relation for baroclinic instability in a uniformly
stratified layer where Ri 5 1. The dashed line is Eady’s (1949) result,
appropriate for asymptotic large Ri; the full line is due to Stone’s
(1971) nonhydrostatic theory for Ri $ 1, where the ratio of the aspect
ratio to the Rossby number is unity. The wavenumber has been non-
dimensionalized with a characteristic scale u/ f where u is the char-
acteristic zonal speed. The growth rate has been nondimensionalized
by the inertial frequency and the dimensional dispersion curve is for
the case of a layer 500 m deep.

the end state of the convective process will be one in
which Q → 0.

d. Baroclinic instability

Let us now allow variations in x; the momentum of
fluid parcels can be changed by pressure gradient forces
and will not be conserved. On the large-scale Coriolis
effects are important and, through the thermal wind re-
lation, make possible a storage of potential energy on
which instabilities can feed. The three spatial dimen-
sions permit currents in the x direction that are side-by-
side in a baroclinic instability, rather than above one
another as in the case of uniform overturning in sym-
metric instability. If the Richardson number of the flow
is large, then the ensuing motion is quasigeostrophic;
the most unstable modes, on the scale of the Rossby
radius of deformation, exchange parcels along surfaces
that have a slope one-half of that of the isentropic sur-
face. The growth rate can be deduced using parcel the-
ory [see (B8)]2:

2f
2v # , if Ri k 1. (15)

Ri

In the oceanic mixed layer Ri will not be large—it
is likely to be of order unity—and the quasigeostrophic
result (15) must be modified.

Stone (1971, 1972) derived expressions for the
growth of linear baroclinic waves in the low Richardson
number limit and showed that the results of Eady (1949)
apply with only quantitative modification [essentially
Ri → (1 1 Ri)]. The baroclinic instability mechanism
endures in flows in which Ri is O(1) and, indeed, co-
exists with symmetric instability if Ri , 1. Stone
showed that the growth rate of the most unstable (mod-
ified) Eady mode is

f
v 5 0.304 , (16)

1/2(1 1 Ri)

and the scale of this mode is

Nh
1/2L 5 1.016 (1 1 Ri) Ri $ 1.r f

Figure 3 compares the Eady (1949) and Stone (1971)
dispersion relations for unstable modes when Ri 5 1.

2 Care must be taken in the application of parcel theory to baroclinic
instability because fluid parcels do not conserve momentum, so com-
putations of kinetic energy change cannot be made with precision.
Moreover, unlike convection and symmetric instability, which are
local in nature, baroclinic instability is global and intimately asso-
ciated with the temperature distribution along the boundary. Nev-
ertheless analogies with convection can be usefully drawn. Indeed,
Eady (1949) drew such analogies and, along with exact solutions of
the linear problem, also showed how to deduce Eq. (15) heuristically
using parcel theory.

Although Eady’s analysis is formally inapplicable, his
result is qualitatively correct. Stone’s more general the-
ory predicts that the growth rates are slower and the
fastest growing modes are at larger scales. Figure 3 also
shows the corresponding dimensional values for a layer
of depth 500 m. In such an unstable mixed layer the
linear theory predicts that the fastest growing mode has
a wavelength of a few kilometers and will grow ex-
ponentially with a characteristic timescale of around a
day.

Summary. We conclude that there is a hierarchy of
instability mechanisms potentially at work in oceanic
mixed layers; theory suggests that symmetric instability
and baroclinic instability ought to be ubiquitous in
mixed layers and potentially important in the mixed
layer buoyancy budget. In the following sections we
present numerical calculations that confirm the impor-
tance of these processes and illustrate

1) the evolution of a symmetric instability when ab-
solute momentum is conserved by zonal strips of
fluid, showing convection along slanting paths and
the restoration of the mixed layer to the neutral, zero
potential vorticity state

2) the development of a baroclinic instability of the zero
potential vorticity state when the absolute momen-
tum constraint is relaxed

3) the modification of the properties of the mixed layer
due to lateral and vertical eddy transfer of buoyancy
due to fully developed geostrophic eddies.
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3. Numerical experiments in convective,
symmetric, and baroclinic instability

In order to test the theoretical ideas summarized in
the previous section we employ a numerical model con-
figured to focus on the processes of interest. The model,
described in Marshall et al. (1997a,b) solves the Navier–
Stokes equations for a Boussinesq incompressible fluid
using finite-volume techniques; it need not make the
hydrostatic approximation.

The model geometry is shown in Fig. 4a. A periodic
channel with constant depth is used of, nominally, length
50 km and width 30 km. The cell dimension is 250 m
in the horizontal with vertical spacing varying between
40 m at the surface and 400 m at the bottom. Initially
the fluid is uniformly stratified and motionless. We adopt
a linearized equation of state with one thermodynami-
cally active variable:

s 5 r0[1 2 a(T 2 T0)], (17)

where the expansion coefficent a is 2 3 1024 K21 at
temperature T0.

To represent unresolved dynamics and ensure nu-
merical stability a Laplacian diffusion of heat and
momentum is applied. The diffusivities and viscosi-
ties are equal with horizontal and vertical magnitudes
of 5 and 0.02 m 2 s21 , respectively. The horizontal
diffusivity was chosen to be the smallest possible to
guarantee a coherent vertical velocity and vorticity
on the grid. Our numerical solutions are less sensitive
to the vertical diffusivity; indeed the vertical diffu-
sivity could have been set to zero without any dele-
terious effects. Free slip is allowed at the solid bound-
aries. The model also integrates a dynamically passive
tracer held at a constant value in the uppermost layer,
and initially set to zero elsewhere. The calculations
presented in this paper were carried out on a 128-
node CM5 computer at the Massachusetts Institute of
Technology.

a. Gravitational instability; upright convection

First, we investigate upright overturning using 2D (y,
z) nonhydrostatic dynamics where initially the fluid is
uniformly stratified (Nth 5 8 3 1024 s21), resting, and
rotating at a constant rate of 1024 s21. The motion is
forced by a steady, constant, surface buoyancy loss of
2 3 1027 m2 s23, that corresponds to an oceanic heat
loss of 400 W m22 (Table 1: experiment 1).

Results after 9 days show energetic vertical over-
turning in a boundary layer several hundred meters thick
(Fig. 5a; upper 1000 m only), whereas below there is
extremely weak flow—essentially this region is undis-
turbed. The gross aspects of the convection are resolved
in the model, albeit coarsely. The streamfunction shows
the convection cells are organized into rolls with no
preferred direction of slant in the vertical plane. Figure
5b is a horizontal average of the boundary layer in Fig.

5a. It reveals a temperature inversion close to the surface
of around 0.0258C, whereas in the interior of the con-
vective layer there is a much smaller vertical temper-
ature gradient with a contrast of 0.0038C over the full
depth of the boundary layer, in good accord with the
parcel theory of section 1a. The gross predictions from
the ‘‘law of vertical buoyancy flux’’ [Eq. (4)] derived
in appendix A are well supported by the explicit cal-
culation.

Using the mean temperature profile (Fig. 5b) we es-
timate a depth for the mixed layer using a criterion based
on the stratification. This procedure is applied at several
times during the evolution of the experiment and the
resulting time series plotted in Fig. 5c along with the
prediction of the simple 1D, nonpenetrative law [the
solid curve—Eq. (5)]. We see good agreement with the
theory. The confirmation of the 1D result suggests that,
at least in this numerical model, the mixed layer deepens
and cools without significant entrainment of the under-
lying water or formation of a front at the base of the
layer (in other words, there is no penetrative convec-
tion).

b. Symmetric instability

Now we examine convection in the presence of lateral
inhomogeneities that induce lateral density gradients and
a thermal wind in balance with it. Moreover, we configure
the model so that zonal strips of fluid conserve their
absolute momentum (all ]/]x terms are set to zero). A
buoyancy flux at the sea surface is specified that varies
across the channel according to a hyperbolic tangent,
thus,

B 5 B1/2{tanh[2(y 2 Ly/2)/Lf ] 1 1}, (18)

where B1/2 is the buoyancy flux at midchannel, y the
distance across the channel, Ly the channel width, and Lf

a characteristic length scale of the forcing (see Fig. 4b
and Table 1: experiment 2). The tanh function smoothly
changes the forcing across the channel and provides a
well-defined maximum gradient in flux, located at the
channel center. This allows a mixed layer to grow that
is deeper on one side of the channel than on the other,
inducing a lateral density gradient and a thermal wind in
balance with it.

Figure 6 shows the fields from the central portion of
the channel after 9 days of cooling. It is clear from the
isotherms that the overturning motions cause fluid to
move systematically in slanting paths and maintain a non-
vanishing stratification in the region that is being actively
mixed. However, the temperature field alone is a poor
indicator of the regions of active overturning. Rather,
potential vorticity is the key dynamical variable as shown
by Fig. 6b. There are distinct plumes, of negative PV,
draining the surface source of negative PV into the in-
terior. The tracer in Fig. 6c shows striking similarities to
the PV distribution reminding us that both quantities are
materially conserved.
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FIG. 4. (a) Schematic diagram of the model domain with an iso-
pycnal outcropping into the mixed layer with a lateral density gra-
dient. The Boussinesq, incompressible Navier–Stokes equations are
solved starting from a resting fluid with uniform stratification. (b)
Hyperbolic tangent cooling function used to generate a mixed layer
front.

The timescale of the symmetric instability has been
estimated using parcel theory. The relevant expression
for the growth rate is Eq. (13), which we now write as

2 2f N th2v # 2 Q*, (19a)
2Nmix

where Q* is the PV nondimensionalized by its thermo-
cline value

Q* 5 gQ/( )2fN th (19b)

and is the quantity plotted in Fig. 6b. Typical values of
/ and Q* are 4 and 20.3 respectively, yielding a2 2N Nth mix

growth rate of around 3 h.
The integration shown in Fig. 6 was continued for

another 24 hours, but now with the surface cooling
switched off. Figure 7 shows that within this period

almost all of the convective, turbulent flow has
ceased, leaving a layer with nonvanishing vertical
stratification but very small potential vorticity
(around 1% of the undisturbed value). This is con-
firmed by the close alignment of the isotherms with
the contours of absolute momentum m. The plumes
of negative PV have been mixed away by the sym-
metric instability, erasing density gradients along ab-
solute momentum surfaces and setting the Richardson
number to unity.

Also shown in these figures is the predicted mixed
layer depth, h, based on the simple one-dimensional
scaling Eq. (5). Inspection of Figs. 6 and 7 clearly
shows that the prediction is in good agreement with
the base of the mixed layer. Although the mixed layer
fluid has nonzero N, that N is much smaller than Nth ,
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TABLE 1. The numerical experiments. Experiments 1 and 2 were in a 2D domain (no x variation), experiments 3–16 fully 3D, experiments
1–13 were in a channel 30 km wide: experiments 14–16 in a channel 60 km wide. The Burger number quoted [Eq. (27)] is at time t 5
tmodel.

Experi-
ment

Nth

(31024 s21)
f

(31024 s21)

Cooling
width, Lf

(km)
Heat flux
(W m22)

Buoyancy
flux, B1/2

(31027 m2 s23)
By

(310211 m s23)
Bu

(31023)
lrot

(m)
tmodel

(days)

1
2
3
4
5
6

8.37
8.37
8.37
8.37
8.37

16.7

1.0
1.0
1.0
1.0
1.0
1.0

`
10
10
10
10
10

400
400
400
800
200
400

1.96
1.96
1.96
3.92
0.981
1.96

0
3.92
3.92
7.84
1.96
3.92

—
—
82.4

153
48.0
73.7

443
443
443
626
313
443

—
—
9.72
9.04

11.3
8.69

7
8
9

10
11

8.37
4.18
8.37
8.37
8.37

1.0
1.0
1.0
2.0
0.5

10
10
10
10
10

100
400
50

200
200

0.491
1.96
0.245
0.981
0.981

0.981
3.92
0.491
1.96
1.96

37.7
82.4
28.6
17.9

160

221
443
157
111
886

17.8
9.72

27.0
16.9
9.43

12
13
14
15
16

16.7
8.37
8.37
8.37
8.37

1.0
2.0
1.0
1.0
1.0

10
10
20
20
10

50
400
400
200
400

0.245
1.96
1.96
0.981
1.96

0.491
3.92
1.96
0.981
3.92

33.8
24.9
35.1
24.2
84.3

157
157
443
313
443

31.9
11.8
16.6
22.8
9.95

so there is little systematic departure from the 1D
scaling—the slantwise convection has resulted in lit-
tle cross-channel buoyancy flux—a matter we ex-
amine in detail in section 4.

c. Baroclinic instability

We now perform an identical experiment, but in a
3D domain, allowing zonal as well as meridional vari-
ations, and hence the possibility of baroclinic insta-
bility (Table 1: experiment 3). A typical example of
the flow development is shown in Fig. 8. The near-
surface fields of temperature reveal progression from
plume-scale convection at day 3 to finite amplitude
baroclinic instability at day 6 with a mature field of
geostrophic turbulence by day 9. A surface-intensified
jet evolves in balance with the across-channel tem-
perature gradient, with the eddying part of the flow
dominating. Since there is no stress applied at the
ocean surface, the global zonal momentum cannot
change and eastward flow at the surface is compen-
sated by a westward current below. The length scale
for the baroclinic instability at day 6 is around 5 km—
somewhat larger than the prediction of Stone’s linear
instability analysis of about 3 km (Fig. 3). We believe
this is primarily due to a nonlinear inverse cascade
to larger scales familiar in two-dimensional turbu-
lence (Rhines 1975; Held and Larichev 1996, and ref-
erences therein).3

3 It is possible that the dissipation in the model may also influence
our results, although the broad conclusions are independent of the
size of the assumed diffusivities provided that they are sufficiently
small. Stability theory suggests (e.g., Lin and Pierrehumbert 1988)
that the wavelength of the fastest growing mode is insensitive to the
assumed viscosity, although the growth rate does show some sensi-

Figure 9 shows the zonal-mean sections of temper-
ature and absolute momentum. At day 3 the one-di-
mensional prediction agrees reasonably well with the
mixed layer depth one might diagnose assuming a ver-
tically homogeneous mixed layer. Indeed, the observed
stratification is very weak except near the surface where
a static instability prevails, triggering the convective
instability. By day 6, however, weak stratification has
returned to the mixed layer despite the ongoing buoy-
ancy loss. This result cannot be explained using one-
dimensional ideas, and by day 9 it is unclear how to
distinguish between mixed layer fluid and the under-
lying water based on the temperature field alone.

In Fig. 10a we plot the PV at a depth of 671 m on
day 9 and can identify the major dynamical processes
at work. The largest-scale features are the baroclinic
eddies, which interleave high PV ambient fluid, typ-
ical of the southern part of the domain, with the con-
vectively modified low PV water to the north. There
is a strong gradient between these two water types
with relatively small volumes of water with inter-
mediate PV (Fig. 10b shows a volumetric census of
the various PV and N 2 classes in Fig. 10a). To the
north the patches of negative PV identify the energetic
plumes, which draw the PV and buoyancy from the
fluid. Figure 11, a north–south vertical section at this
time, shows the motion is dominated by geostrophic
eddies over most of the channel: the flow is quasi-
two-dimensional and coherent over several kilome-
ters. In contrast we observe regions of active con-
vection toward the northern wall. These nonhydro-

tivity, being reduced at higher values. Nonlinear interactions rapidly
result in structures with larger scales than linear theory predicts,
which are thus less susceptible to damping.
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FIG. 5. Results from the gravitational overturning experiment (experiment 1—Table 1). (a) Vertical section
at day 9 showing isotherms (solid, contour spacing of 0.028C), overturning streamfunction (dashed, contour
spacing of 2 m2 s21) and flow. The flow is shown by the small dashes, which indicate equivalent displacements
after 30 min. The peak speeds are (0.069, 0.024) m s21 in the (y, z) directions. The thick dashed line is the
prediction of the 1D law for the depth of the mixed layer [Eq. (5)]. Only the central third and upper 1000 m
of the 30-km-wide and 2000-m-deep channel are shown. (b) Across-channel mean temperature profile at day
9. (c) Time series of mixed layer depth. Full line is 1D prediction [Eq. (5)]—circles are model results (a vertical
temperature gradient of 5 3 1025 8C m21 is used to diagnose the mixed layer depth).

static plumes are distinctly different with O(1) aspect
ratio, large vertical velocities, and negative PV. It is
hard to distinguish between symmetric instability and
upright overturning, unlike in the calculations of sec-
tion 3b which clearly show the slantwise motions. The
effect on PV is clear however: It is rapidly reset to
zero by the convection induced by surface buoyancy
loss.

One day after the cessation of cooling the plumes of
negative PV have disappeared, leaving a large pool of
fluid with very small potential vorticity (Fig. 12). This
low PV fluid is then vigorously folded in with the un-
modified water to the south by eddies that persist for
several more days. The census of PV and N 2 shows that
symmetric instability must have played an active role

since there is a significant volume of water that has zero
PV, but positive N 2.

There is no ambiguity about the depth of the mixed
layer when one considers the distribution of zonal-mean
potential vorticity (Fig. 13). One might choose the Q*
5 0.5 contour to distinguish between mixed layer and
interior fluid, for example; the PV is normalized by the
initial value [Eq. (19b)]—the interior, undisturbed fluid
has a value of 1. At day 3, before the baroclinic eddies
have evolved, there is good agreement between the one-
dimensional prediction and the mixed layer depth di-
agnosed by consideration of the PV field. The PV in
this region is close to zero, as expected. By day 9, how-
ever, there is a significant departure from the one-di-
mensional prediction of mixed layer depth. The zonal-
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FIG. 6. Vertical sections from the 2D integration (experiment 2) at day 9, for the central part of the channel. (a)
Temperature (contour spacing of 0.028C), (b) Ertel potential vorticity normalized by the PV of the initial condition, and
(c) tracer. In each figure the flow and 1D mixed layer depth are shown as in Fig. 5. Peak speeds (y , w) are (0.11, 0.050)
m s21.

average PV shows that the deepening has been retarded
on the side of the channel where there is large surface
buoyancy loss, whereas it is increased on the weakly
cooled side. This systematic lateral flux is provided by

baroclinic eddies and becomes the major contribution
to the buoyancy budget for columns of water in the
region where the cooling is weak. Comparing the angles
of mixed layer isotherms in the 2D and 3D integrations
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FIG. 7. Two-dimensional switch-off experiment. As Fig. 6, but at day 10, after the surface cooling has ceased for 24
h. Absolute momentum surfaces are also shown by dotted lines (contour spacing 0.1 m s21). Peak speeds are (0.030,
0.0045) m s21 in the (y, z) directions at this time.

shows that the slopes are steeper in the 2D case (Figs.
6 and 11). This suggests that baroclinic instability is
more effective at transferring fluid parcels horizontally
than symmetric instability. Below we study this hori-

zontal transfer process directly by considering the model
heat budget (Fig. 14).

The simulations shown in Figs. 8–14 exhibit consid-
erable nonhydrostatic behavior as measured by a nonhy-
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FIG. 8. The evolution of temperature at a depth of 65 m for days 3, 6, and 9 of experiment 3. The
switch over from small-scale gravitational convection to finite amplitude baroclinic instability and
geostrophic turbulence is clear.

drostatic parameter, n. Marshall et al. (1997a) show that
the condition for nonhydrostatic dynamics is that

n [ Ri Ro k 1,

where Ro is the Rossby number. We observe a transition
from nonhydrostatic plume dynamics through baroclinic
instability modified by nonhydrostatic effects to hydro-
static baroclinic instability as the lateral scale expands—

see Table 2 of Marshall et al. (1997a) where typical values
of n are presented in a range of numerical simulations that
span the hydrostatic to nonhydrostatic regime.

4. Buoyancy transfer by baroclinic eddies

Here we quantitatively assess the eddy transfer oc-
curing in our mixed layer and the way it modifies the
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FIG. 9. Sections of zonal mean temperature (full lines, contour spacing of 0.058C) and absolute mo-
mentum (dotted lines, contour spacing of 0.25 m s21) for days 3, 6, and 9 of experiment 3. On average
the mixed layer is weakly stratified by day 9 despite the ongoing surface buoyancy loss. The thick dashed
line in each plot is the prediction of the 1D law for the depth of the mixed layer [Eq. (5)]. Notice the x-
scale change from Figs. 5, 6, and 7.

development of the layer. Consider Fig. 14 showing the
evolution of the total heat content for the southern half
of the channel. The simple 1D prediction (surface heat
loss only) is plotted with the true model heat content

as they develop with time. The southern half of the
channel loses heat at a greater rate than the simple 1D
model, a consequence of the systematic lateral eddy
flux; the northern half gains this heat through eddy trans-
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FIG. 10. (a) Horizontal section of potential vorticity (normalized by initial PV value) at 671-
m depth at day 9 from experiment 3, (b) volumetric census of PV and N 2 classes at day 9
(logarithmic scale to base 10) showing that a significant fraction of the fluid has negative PV
and N 2. The total volume of water in the integration is 3 3 1012 m3 and was used to normalize
the volumes in (b).

fer and so loses heat at a lesser rate than the 1D pre-
diction. The lateral eddy buoyancy flux is diagnosed as
the difference between the 1D model and the evolution
observed in the model.

We now study the eddy flux in the context of a closure
based on the local mean buoyancy gradient following
Green (1970) and Stone (1972). An alternative approach
is to find the flux required to return the flow to a mar-
ginally stable state (Stone 1978)—the familiar analog
for gravitational instability is convective adjustment to
a neutrally stable state. However, recent work by Pavan
and Held (1996) and Vallis (1988) suggests that a bar-
oclinic adjustment procedure is less successful than a
local transfer relationship in predicting baroclinic eddy
fluxes (at least in their two-layer quasigeostrophic beta-
plane models). Therefore, we pursue a gradient closure

and express the lateral buoyancy flux across the channel,
y9b9 , due to baroclinic instability as

y9b9 5 2Kby , (20)

where K, an eddy transfer coefficient, is to be related
to mean-flow quantities. The lateral buoyancy gradient
is by and the overbar indicates a mean quantity (aver-
aged along the channel).

According to ‘‘mixing length’’ theory, the transfer
coefficient can be expressed in terms of the character-
istic velocity and length scales of the transfer process,
thus

K 5 y9l9 5 cey eddym. (21)

Here m is a measure of the lateral transfer length scale,
y eddy is a measure of the typical eddy velocity, and ce
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is an efficiency factor. The velocity scale will be de-
duced from the thermal wind in the mixed layer, while
the transfer length scale will be related to the inherent
scales in the problem—to the deformation radius and
the width of the baroclinic zone.

Eddy velocity scale. We suppose, not unreasonably,
that the eddy velocity is given by

2M h
y 5 |u| 5 u h 5 , (22)eddy z f

the maximum speed of the thermal wind in the mixed
layer. Here h is the mixed layer depth at the channel
center, M 2 5 |]b/]y| is a measure of the lateral strati-
fication, and the thermal wind relation has been used.

Transfer length scale. What is the appropriate spatial
scale to characterize the transfer process (mixing
length)? Two choices are readily apparent in our channel
calculation: the scale of the eddies themselves and the
width of the front on which they grow (controlled in
our calculations by the scale of the forcing function).
The strong impression one obtains by inspection of the
evolving fields of our numerical experiments (such as
Figs. 8 and 10) is that, as the eddies mature, they expand
to match the scale of the baroclinic zone.

We provisionally suppose, then, that the transfer
length scale is proportional to the frontal width. That
is,

m 5 Lzone. (23)

In our experiments

Lzone 5 2Lf , (24)

where Lf is the width of the hyperbolic tangent function
used to force the model [Eq. (18)].

Thus, using (23), we write (21) as

K 5 ceLzoneu, (25)

where u 5 y eddy is given by (22).
Below we seek support for the form (25) from our

explicit calculations and determine the efficiency factor
ce.

Transfer timescale. Using the characteristic velocity
scale and the lateral transfer length scale allows one to
form a timescale for the transfer process itself. The
transfer timescale t transfer is

t transfer 5 m/y eddy ø Lzone/u (26)

using (22) and (23).
If the transfer space scale is controlled by the defor-

mation radius rather than Lzone, then the above scaling
laws would be modifed by powers of the Burger number,
Bu,

Bu 5 / ,2 2L Lr zone (27)

where the deformation radius is

Lr 5 Nthh/ f.

The choice of transfer scale is one of the principle
features distinguishing the baroclinic eddy parameteri-
zations of Green (1970), who supposed that the transfer

scale was Lzone, and Stone (1972), who supposed that it
was Lr, the radius of deformation. This distinction is of
little consequence when the Burger number is nearly
constant, but it will turn out to be important here. In
our experiments (see Table 1) Bu varies by an order of
magnitude since Lr and Lzone can be specified indepen-
dently by changing the initial stratification and the scale
of the externally imposed cooling function. We can thus
study the dependence of our closure ideas on the Burger
number. We now test the scaling law against our explicit
numerical calculations focusing on two central issues;
the space and timescale of the transfer process and the
closure for the magnitude of the eddy buoyancy flux.

a. Testing the transfer timescale

Figure 14 shows the development of the cumulative
eddy heat flux in one particular experiment—as time
goes by the eddies become more and more important.
We estimate from the model the time tmodel at which
lateral transfer by eddies has become significant. We
then compare this to t transfer, Eq. (26), for each of the
14 experiments shown in Table 1.

The first step is to relate t transfer to external parameters,
which are controlled in the experiments. Using (22), Eq.
(26) can be written:

L fzonet 5 . (28)transfer 2hM

To express M 2 in terms of external parameters we
assume that

1) the mixed layer smoothly connects with the ther-
mocline below,

M 2 5 |hy| ,2N th (29)

and
2) the 1D law of mixed layer deepening applies at the

channel center [Eq. (5)].

Hence,

t
2M 5 |B |N . (30)y th!2B

Substituting for M 2 in (28) using (30) and solving for
the time we find

B f
t 5 2 . (31)transfer 2!By

For the form of cooling chosen to drive our numerical
experiments, Eq. (18), the above expression can be eval-
uated at midchannel and expressed as

Lzonet f } , (32)transfer lrot

where lrot 5 B/ f 3 5 Ro*h is the rotational lengthÏ
scale formed from the external parameters B and f eval-
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FIG. 11. Vertical sections from experiment 3 at day 9, half way along the channel (x 5 25 km). (a) Temperature
(contour spacing 0.028C), (b) Ertel potential vorticity normalized by the PV of the initial condition, and (c) tracer.
Velocities are as in Fig. 5 [peak speeds are (0.21, 0.022) m s21 in the (y, z) directions].

uated at midchannel; this scale, the physical interpre-
tation of which is discussed in Marshall et al. (1994),
crops up in many problems in rotating convection.

The instability timescale observed in the model mea-
sured against f, tmodel f, is plotted in Fig. 15 against Lzone/
lrot, Eq. (32), for 14 experiments in which the external

forcing, rotation rate, initial stratification, and domain
size were all varied (Table 1). We see that, indeed, the
scaling law for t transfer f is a good prediction for the
timescale deduced from the model tmodel f. The numer-
ical results also confirm that the transfer timescale is
independent of the ambient stratification and the domain
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FIG. 12. Three-dimensional switch-off experiment. As Fig. 10 but at day 10, 24 h after the
surface cooling has ceased. Both PV and N 2 are now nonnegative.

size. For example, experiments 6 and 8 were performed
with initial stratifications that varied by a factor of 4,
yet showed only an 11% change in the transfer times-
cale; experiments 3 and 16 were identical except that
experiment 16 was carried out in a channel twice as
wide, and the difference in transfer timescales was only
2% (see Table 1).

If, instead, we had chosen a transfer scale of Lr then,
replacing Lzone by Lr in Eq. (28), we find that the transfer
timescale varies as (Lzone/Lrot)2/3. The implied curve is
also shown in Fig. 15 and is clearly less successful at
explaining the data than Eq. (32) assuming Lzone is the
transfer scale. It appears, then, that the appropriate trans-
fer scale is set by the width of the baroclinic zone, rather
than the instability scale.

b. The magnitude of the lateral fluxes—Finding the
constant ce

Next we consider the magnitude of the eddy buoyancy
flux driven by baroclinic eddies observed in our suite

of numerical experiments (Table 1) and the ability of
the simple ideas outlined above to predict it. We focus
on the cumulative eddy transfer of heat as a function
of time, E(t), plotted in Fig. 14. We suppose that E(t)
is due entirely to eddies since the plume convection/
symmetric instability is suppressed by the eddies (Fig.
8). For each integration we estimate ce by finding the
value that gives the best fit to the time evolution of the
model using Eq. (25) to specify the value of K, evaluated
at t 5 tmodel. For example, the dashed line in Fig. 14
shows the result for experiment 1. The magnitude of ce

from all 14 experiments was 0.0817 6 0.023. We also
allowed the K to vary with time, changing it in pro-
portion to the observed speed of the thermal wind in
the mixed layer as suggested by (25) according to (22).
There is some change—in this case ce 5 0.119 6
0.031—since the majority of the eddy flux occurs when
the eddies are mature.

We discuss the implication of our results for the pa-
rameterization of eddy fluxes (and place them in the
context of other work on this subject) in section 5.
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FIG. 13. Sections of zonal mean Ertel potential vorticity (normalized by initial PV value) at days 3, 6, and 9 of
experiment 3. The thick dashed line in each plot is the prediction of the one-dimensional law for the depth of the mixed
layer [Eq. (5)].

5. Discussion

a. Implications for the oceanic mixed layer

How do our results apply to the mixed layer in a
general context? Here we address the issues of how they

may be modified in the presence of other processes, and
estimate their quantitative significance.

Theory (section 2) suggests that a mixed layer with
spatial density gradients ought to convect along sloping
paths. This symmetric instability rapidly generates a lay-
er with vanishing potential vorticity (Ri 5 1), but non-
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FIG. 14. Evolution of terms in the heat budget for the southern half
of the channel in experiment 3. The circles show the evolution of
the observed heat loss—it increases with time due to the surface
cooling (shown by the dashed line) and eddy heat transfer to the
north. The full line shows the prediction of the eddy parameterization
scheme as explained in the text, where ce 5 0.0827.

FIG. 15. Regression of normalized transfer timescale measured
from the model versus Lzone/lrot. Each symbol is the result of a different
experiment from Table 1 (experiments 3–16). The full line has a
gradient of unity, corresponding to the scaling law given by Eq.
(25)—where the transfer scale is the width of the baroclinic zone.
The dashed line has a gradient of 2/3, corresponding to the case in
which the transfer scale is the deformation radius. The t model is
defined to be the time at which the cumulative heat lost from the
southern half of the channel is twice the cumulative heat lost from
the surface (Fig. 14).

zero vertical stratification. Thereafter, a nonhydrostatic
baroclinic instability develops that provides a lateral and
vertical buoyancy flux that becomes the dominant mode
of buoyancy transfer. The fully nonlinear numerical ex-
periments are in general support, and indicate that the
PV of the surface-forced layer is reset to zero on a
timescale of a few hours, with pronounced stratification
in the overturning fluid. Baroclinic eddies subsequently
develop, and we suggest scaling laws for the magnitude
of the buoyancy transfer, that found support in the nu-
merical model.

The model does not, of course, attempt to include all
the processes at work in the upper ocean, however. There
are processes other than spatial gradients in the buoy-
ancy forcing or stratification that cause lateral density
gradients in the mixed layer. The real ocean develops
surface frontal regions from larger-scale strain (due to
instability of the main thermocline for example) and
outcropping of density surfaces. Lateral contrasts in me-
chanical forcing that result from isolated atmospheric
disturbances and remotely produced waves can also be
important. These include mixing due to breaking surface
waves generated by the wind, inertial waves, and Lang-
muir turbulence. Upwelling at a coastal boundary is
another important source of nearshore fronts.

For the purpose of simplicity, and to facilitate un-
derstanding, we have not attempted to represent these
processes in our model. They may modify or disrupt
the thermal wind that is ultimately set up in the mixed
layer. But it is reasonable to suppose that deep mixed

layers in which lateral gradients persist for several ro-
tation periods will come close to a balanced state. In-
deed, one of the key findings of our study is that currents
in thermal wind balance in the mixed layer, averaged
over a few kilometers and days, do persist despite strong
surface forcing. The consequence is a vigorous baro-
clinic instability. Eddies develop over several days—
somewhat slower than the timescale for convection/
symmetric instability—and efficiently redistribute
buoyancy within the mixed layer.

What is the significance of the mixed layer baroclinic
instability for the real ocean? We will use our param-
eterization derived in section 4 and calibrated against
our numerical calculations, to make inferences from ob-
servations of sea surface density about the magnitude
of the transfer coefficient K. Combining (25) and (22),
we obtain

gL |s |hzone yK 5 c L |b |h / f 5 c , (33)e zone y e r f0

with ce set equal to 0.1.
It is unclear what Lzone should be, but let us assume

a conservatively low estimate of 20 km based on the
FASINEX survey (Pollard and Regier 1992). We can
now use estimates of sy from observations of sea sur-
face density made on a 10 000-km cruise track in the
northeast Atlantic during April and May 1991 shown
in Fig. 16a. These data were taken with a thermosali-
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FIG. 16. (a) Sea surface density (kg m23) measured every 250 m along a cruise track in the northeast
Atlantic in April and May 1991. The cruise involved six north–south legs between 428 and 548N from
the European continental slope to the Mid-Atlantic Ridge (Cunningham et al. 1992). Mixed layer depths
ranged from around 50 m to a few 100 m (Fig. 2 shows the upper oceanic structure from the first 300
km of the cruise track). Seawater was drawn on board from a depth of 6 m and analyzed using a
thermosalinograph then averaged to give a sea surface density value every 250 m. (b) Distribution of sea
surface density gradients (kg m24). The data in (a) have been smoothed using a low-pass filter with
wavelength 5 km. (c) Distribution of transfer coefficients (m2 s21) calculated from Eq. (33) using the
density gradient distribution from (b). Four mixed layer depths h have been assumed (50, 100, 200, and
400 m). Also shown is a constant transfer coefficient of 250 m2 s21 typical of the values used in oceanic
general circulation models.
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nograph, giving an average measurement every 250 m
along the cruise track. Before computing the gradient,
the dataset was smoothed with a low-pass filter, cutting
off signals shorter than 5 km. The gradient was binned
and its distribution is shown in Fig. 16b. The mixed
layer depth varied between several tens of meters and
a few hundreds (for example, the data in Fig. 2, from
the first part of the cruise, shows depths of 200–400
m), so we compare results for four characteristic depths
(50, 100, 200, and 400 m).

Figure 16c shows the estimate of transfer coefficient
due to mixed layer baroclinic instability. We plot the
distribution of K corresponding to each range of sy for
the four mixed layer depth choices. Typically the trans-
fer coefficients are in the range from 100 to 1000 m2

s21 and are largest for deep mixed layers and strong
fronts. [Typical values of eddy diffusivity used in eddy-
resolving basin models are O(100 m2 s21).] It is clear
that a constant K (constant Fickian diffusion—com-
monly used in oceanic general circulation models) poor-
ly represents the eddy transfer process; the coefficient
estimated using (33) varies by three orders of magnitude
for a given depth. We have repeated these estimates
using a 1-km low-pass filter and find that the transfer
coefficients are increased by a factor of 10 in this case.

Our calculations here (and elsewhere—see, e.g.,
Jones and Marshall 1993; Visbeck et al. 1996) clearly
show that lateral transfer by mixed layer baroclinic ed-
dies is important on the margins of deep convection
chimneys. But our calculations also suggest that they
may be important in less extreme mixing regimes such
as frontal regions associated with O(100 m) deep mixed
layers. It is reasonable to speculate that baroclinic in-
stability of the mixed layer is commonplace and pro-
vides a significant and efficient mechanism of lateral
and vertical buoyancy transport through them. The sea-
sonal cycle modulates the process leading to greatest
power when there is deepest mixing. As such, it will
be most significant when the ocean interior receives
water fresh from atmospheric contact and so will be
responsible, in part, for determining the character of
newly formed thermocline water.

b. Implications for eddy parameterizations

Green (1970) and Larichev and Held (1996) suggest
the following closure for the eddy transfer coefficent:

2m
K 5 c , (34)G GtEady

where tEady 5 Ri/ f 5 Lr/u is a measure of the in-Ï
stability timescale [Eq. (15)] and m is the transfer scale.
Green chose m 5 Lzone, the width of the baroclinic zone.
Instead, Stone (1972) supposed that

KS 5 cSum (35)

as in (25), arguing that u should be given by (22) and
setting m 5 Lr, the deformation radius.

The forms (34) and (35) should be compared to K 5
ceLzoneu, Eq. (25), the form that best fits the data here.
It is straightforward to show

ce 5 cS Bu 5 cG/ Bu,Ï Ï
where cS and cG are the empirical constants used in the
Stone and Green theories. The average Burger number
for the experiments performed here is 0.063, so the ce

ø 0.1 found in the present study implies cS 5 0.42 and
cG 5 0.025. These are in acceptable agreement with
Stone’s (1972) estimate of 0.86 and the Visbeck et al.
(1996) value for cG of 0.015. Clearly, one can only
distinguish between these closure theories by varying
the Burger number, as we have done here. We find that
(25), the simplest of the three, gives the best fit to the
data.

In contrast to the problem we have addressed in this
paper, several recent studies on parameterizing baro-
clinic eddy fluxes have focused on two-layer quasi-
geostrophic models (Pavan and Held 1996; Larichev and
Held 1995; Held and Larichev 1996; Vallis 1988). Lar-
ichev and Held (1995) find support for Green’s scaling
in statistically steady models of homogeneous turbu-
lence, while Held and Larichev (1996) confirm that the
closure still applies on a beta plane, provided the Rhines
(1975) length scale is used for m in Eq. (34). Our model
differs from these studies in two important respects:
First, we solve the nonhydrostatic Navier–Stokes equa-
tions for flows that are not quasigeostrophic (clearly
evident from the large vertical isotherm excursions in
Fig. 11). Second, there is no statistical steady state and
our eddy field is inhomogeneous due to the shape of
the imposed forcing function. Despite these limitations
we are encouraged by the success of the scaling we
propose. However, we consider it provisional and it must
be tested against statistically steady, homogeneous sim-
ulations of baroclinic instability.
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APPENDIX A

Parcel Theory of Gravitational Instability

Suppose that a weakly stratified ocean is subject to
vigorous cooling at the surface over some hundreds of
kilometers, producing a density inversion and the pos-
sibility of overturning. The fluid cannot simultaneously
overturn on this scale; rather, the qualitative response
to widespread cooling is one in which relatively small
convection cells (plumes) develop. The detailed physics
setting the plume scale is as yet unclear, but clearly the
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gross transfer properties of the population of convective
cells must be controlled by the large scale; the vertical
buoyancy flux due to convection must offset loss at the
surface. A law of vertical buoyancy transfer for the
plume scale and its instability timescale can be devel-
oped using parcel theory as follows.

Suppose that the net effect of overturning is to ex-
change particles of fluid, of density r1 and r2, over a
depth Dz. Dense water sinks displacing lighter water
below, and releases potential energy to power the plume
and flux buoyancy vertically. The change in potential
energy DP consequent on this idealized rearrangement
of particles (Fig. 1a) is given by

DP 5 P 2 Pfinal initial

5 g[(r z 1 r z ) 2 (r z 1 r z )]1 2 2 1 1 1 2 2

5 r DbDz , (A1)0

where Db 5 (b2 2 b1) is the buoyancy difference of
the particles exchanged over a distance Dz 5 (z2 2 z1),
g is the acceleration due to gravity, and r0 is a repre-
sentative value of the density.

Equating the released potential energy to the acquired
kinetic energy of the ensuing convective motion, DK 5
2 3 (1/2)r0w2 (where w is the vertical velocity scale
and there is a factor of 2 because there are two particles),
then

w2 5 DbDz. (A2)

Now, if heavy fluid lies above light fluid, an unstable
disturbance with growth rate v will develop. Thus, set-
ting z } evt; d/dt 5 v; w 5 dz /dt 5 vz, then (A2)
implies

2 2 2 2v z 5 |N |z ,

so

2 2v 5 |N |, (A3)

which is the result given by linear stability analysis [in
the inviscid limit, the lateral scale of the fastest growing
convective mode collapses to zero, no energy is in-
volved in lateral motion, and the limit (A3) is achieved].

The implied vertical buoyancy flux on the plume scale
is then, using (A2),

Bp 5 wDb 5 Dz1/2Db3/2, (A4)

which is Eq. (4).

APPENDIX B

Energy Analysis of the Thermal Wind

We now consider parcels of incompressible fluid at
positions (y1, z1) and (y2, z2) in thermal wind balance
with a meridional density gradient. The parcels are then
interchanged adiabatically (i.e., with conservation of
buoyancy).

a. Potential energy

The change in potential energy (per unit volume) is
again (A1):

DP 5 r (z 2 z )(b 2 b ). (B1)o 2 1 2 1

We also have

]b ]b
Db 5 Dy 1 Dz

]y ]z

so that

2 2(b 2 b ) 5 M (y 2 y ) 1 N (z 2 z )2 1 2 1 2 1

if, for simplicity, N 2 and M 2 are assumed constant and
measure the strength of the vertical and horizontal den-
sity gradients, respectively.

The slope sb of a buoyancy surface is, setting b2 5
b1,

2dy M
s 5 5 2 .b 2dz N

Hence, if s 5 (z2 2 z1)/(y2 2 y1) is the slope of the
surface along which the particles are interchanged, we
may write

b2 2 b1 5 N 2(y2 2 y1)(s 2 sb),

so (B1) becomes

DP 5 r0N 2Dy2s(s 2 sb). (B2)

In convectively stable conditions N 2 . 0. Hence, the
sign of DP is the same as that of the factor s(s 2 sb)
and it will be negative, corresponding to the possibility
of instability, if s , sb, that is, if the slope of the ex-
change surface has a smaller slope than that of the iso-
pycnals.

b. Kinetic energy

We must now consider the change in kinetic energy
involved in exchanging fluid parcels. Let us assume a
zonal motion u 5 u(y, z) of zonal tubes of fluid inde-
pendent of x (rather than just parcels) so that zonal
momentum cannot be changed by pressure gradient
forces. Then we have

Dm
5 0,

Dt

where m 5 u 2 fy is the absolute momentum. For any
small displacement in the y direction we must have

Du 5 fDy

as the change following the motion.
Now consider the change in kinetic energy resulting

from the exchange of tubes of fluid with zonal motion
u1 at (y1, z1) and u2 at (y2, z2). Then
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1
2DK 5 r [{u 1 f (y 2 y )}0 1 2 12

2 2 21 {u 2 f (y 2 y )} 2 u 2 u ]2 2 1 1 2

(u 2 u )2 125 r (y 2 y ) f f 2 .0 2 1 [ ](y 2 y )2 1

Since

]u ]u
(u 2 u ) 5 (y 2 y ) 1 (z 2 z ),2 1 2 1 2 1]y ]z

this may be written

]u ]u
2DK 5 r (y 2 y ) f f 2 2 s ,0 2 1 1 2]y ]z

or, since f ]u/]z 5 2M 2 5 N 2sb, then

]u
2 2DK 5 r Dy f f 2 2 N ss . (B3)0 b1 2[ ]]y

Hence the change in total energy of the mean motion,
DE , is, adding (B3) to (B2) and rearranging,

2 ]u
2f 1 2]z ]u

2 2 2DE 5 r Dy f f 2 2 1 N (s 2 s ) .0 b 21 2]y N 

c. Symmetric instability

Regarding s, the direction of exchange, as a variable,
DE has a minimum when s 5 sb, that is, when the
exchange is in the initial isopycnal surface. Then

z 1
2 2(DE) 5 r Dy f 2 (B4)min 0 1 2f Ri

will be negative if

f
Ri , , (B5)

z

corresponding to negative Ertel potential vorticity and
the possibility of instability. Here z 5 f 2 ]u/]y is the
vertical component of absolute vorticity and

2 2f N
Ri 5 (B6)

4M

is the Richardson number.
From (B4) we may again deduce the growth rate:

z 1
2 2v 5 2 f 2 . (B7)1 2f Ri

d. Baroclinic instability

If the Richardson number of the mean flow is large,
then only changes in its potential energy (B2) need be
taken into account. For a given exchange distance, (y2

2 y1), the release of potential energy will be a maximum
(2DP a maximum) when s(s 2 sb) is a maximum; in
other words, when

sbs 5 ,
2

then

1
2 2 2(DP) 5 2 r N Dy smin 0 b4

21 f
25 2 r Dy .04 Ri

We see that in any region where a thermal wind exists
it is always possible to release potential energy for eddy
growth provided an appropriate rearrangement of par-
ticles takes place.

If an unstable disturbance grows, then y } evt; d/dt
5 v; y 5 dy/dt 5 vy. Equating released potential energy
to acquired kinetic energy of the eddying motion (r0y 2)
we find, in direct analogy with the upright convection
problem outlined above,

2f
2v ø , (B8)

Ri

which is a heuristic derivation of the growth rate of an
Eady wave. Equation (B8) is in effect just (A3) but with
the |N 2| measured along a slope that has one-half that
of the isopycnals. Parcel theory has led us to the same
result one derives from linear stability analysis.
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