
DECEMBER 2004 2845A D C R O F T E T A L .

q 2004 American Meteorological Society

Implementation of an Atmosphere–Ocean General Circulation Model on the Expanded
Spherical Cube

ALISTAIR ADCROFT, JEAN-MICHEL CAMPIN, CHRIS HILL, AND JOHN MARSHALL

Massachusetts Institute of Technology, Cambridge, Massachusetts

(Manuscript received 25 October 2002, in final form 16 January 2004)

ABSTRACT

A hydrodynamical kernel that drives both an atmospheric and oceanic general circulation model is implemented
in general orthogonal curvilinear coordinates using the finite-volume method on the sphere. The finite-volume
method naturally describes arbitrary grids, and use of the vector-invariant form of the momentum equations
simplifies the generalization to arbitrary coordinates. Grids based on the expanded spherical cube of Rancic et
al., which contain eight singular points, are used. At these singularities the grid is nonorthogonal. The combined
use of vector-invariant equations and the finite-volume method is shown to avoid degeneracy at these singular
points.

The model is tested using experiments proposed by Williamson et al. and Held and Saurez. The atmospheric
solutions are examined seeking evidence of the underlying grid in solutions and eddy statistics. A global ocean
simulation is also conducted using the same code. The solutions prove to be accurate and free of artifacts arising
from the cubic grid.

1. Introduction

The most commonly used coordinate system in oce-
anic and atmospheric general circulation models is the
latitude–longitude grid characterized by two coordinate
singularities—one at each geographic pole. The sin-
gularities themselves are not necessarily problematic,
but associated with them is a convergence of meridians
that leads to ever-decreasing zonal grid spacing as one
approaches the poles. These small grid sizes impose
severe limits on the time step demanded by explicit
time-stepping schemes. Approaches to overcoming this
limitation include the use of implicit (unconditionally
stable) time stepping for the fast modes, semi-Lagrang-
ian methods for large Courant numbers, and filters that
stabilize the model against computational instabilities
(truncation or scaling of Fourier modes in the zonal
direction). In the ocean, most of these techniques are
not easily applied—semi-Lagrangian methods are dif-
ficult to make absolutely conservative and have prob-
lems in regions where trajectories intersect solid bound-
aries, and the use of zonal filters is likewise difficult in
the presence of irregular solid boundaries. A more el-
egant solution is to avoid the converging meridian prob-
lem entirely by using a different coordinate system or
gridding of the sphere.

Many coordinate systems have been investigated for
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use in global modeling. These include the gnomonic
cubic grid of Sadourny (1972) and Ronchi et al. (1996),
and icosahedral grids of Ringler and Randall (2002).
Most general circulation models, whether oceanic or
atmospheric, are written using orthogonal curvilinear
coordinates. Ours, in particular, the Massachusetts In-
stitute of Technology (MIT) general circulation model
(GCM; Marshall et al. 1997a,b), uses the finite-volume
paradigm (Adcroft et al. 1997) for discretization, which
is inherently able to describe curvilinear grids, but, the
model equations assume orthogonal coordinates. Im-
plementing the model in a general curvilinear coordinate
system would require significant algorithmic changes
(these issues are summarized in the appendix). Further,
the model is written assuming quadrilaterally shaped
finite volumes, so adapting the code to work with some
other basic shape would be difficult. We, therefore, re-
strict ourselves to grids that use orthogonal curvilinear
coordinates. Such considerations preclude grids con-
structed from triangles or hexagons (Ringler and Ran-
dall 2002) and many of the quadrilaterally based grids
proposed to date, such as the nonorthogonal gnomonic
cubic grid (Sadourny 1972; Ronchi et al. 1996; Purser
and Rancic 1998). However, one class of grids, de-
scribed by Rancic et al. (1996) and McGregor (1996),
uses conformal mapping and are, therefore, orthogonal.
The conformally expanded spherical cube has near-uni-
form coverage of the sphere and, thus, allows for a
longer explicit time step. However, the expanded cubic
grids are only orthogonal in the interior of the coordinate
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system; they are not orthogonal at coordinate singular-
ities (corners of the cube). One issue that we address
here is whether an orthogonal coordinate model can be
implemented on such grids without incurring significant
errors in the vicinity of nonorthogonal singular points.

In this paper, we will outline the issues we encoun-
tered when implementing a hydrodynamical kernel on
a conformally mapped expanded cube (spherical cubic
grid). The kernel can be applied to either the ocean or
the atmosphere by exploiting an isomorphism between
the equations that govern the two fluids, as described
in Marshall et al. (2004, manuscript submitted to Mon.
Wea. Rev.). Because we will be concerned here with
asymmetries in the solutions due to anisotropic prop-
erties of the grid, we concentrate on idealized atmo-
spheric solutions (Williamson et al. 1992; Held and
Saurez 1994), but also present some oceanographic so-
lutions. In section 2 we discuss the form of the equations
and our general discretization. In section 3 we describe
the specific discretization adopted and discuss our treat-
ment of the coordinate singularities. In section 4 we
present modified orthogonal grids that build on the orig-
inal conformally mapped expanded spherical cube. Nu-
merical results for two- and three-dimensional calcu-
lations, both atmospheric and oceanic, are presented in
section 5.

2. Primitive equations in curvilinear coordinates

The equations of motion in curvilinear orthogonal
coordinates (l, f) can be written in two distinct ways:
(i) the conservative form, for which the horizontal mo-
mentum equations are

] u 1 u] u 1 y] u 1 v] ut x y p

y] h u] hx f y l2 f 1 2 y 1 ] F 5 F (1a)x u1 2h hf l

] y 1 u] y 1 y] y 1 v] yt x y p

y] h u] hx f y l1 f 1 2 u 1 ] F 5 F , (1b)y y1 2h hf l

where u, y are the wind speeds in the l and f directions,
v is the rate of change of pressure (vertical coordinate),
F is the geopotential and f 5 f (l, f) is the Coriolis
parameter, Fu and Fy represent sources and sinks of mo-
mentum, and x and y are curvilinear distances along
coordinates l and f and will be defined below; and (ii)
the vector invariant form (as used by Sadourny 1975),
which are

] u 2 ( f 1 z)y 1 v] u 1 ] (F 1 K ) 5 F (2a)t p x u

] y 1 ( f 1 z)u 1 v] y 1 ] (F 1 K ) 5 F . (2b)t p y y

Here, the relative vorticity is given by

1 1
z 5 ] (h y) 2 ] (h u) andx f y lh hf l

1
2 2K 5 (u 1 y ).

2

In both forms the map factors, hl and hf describe the
distortion of the grid and relate the curvilinear distances
(Dx, Dy) to the coordinate changes (Dl, Df):

Dx 5 h Dl and Dy 5 h Df.l f

As described in the appendix the map factors are re-
lated to the metric tensor of the coordinate transfor-
mation gij by

h 5 Ïg and h 5 Ïg .l 11 f 22

For orthogonal coordinates the metric tensor is diagonal,
g12 5 g21 5 0, so that orthogonal coordinates can be
seen as a simplifying subset of general curvilinear co-
ordinates.

In the above equations we have used spatial deriva-
tives ]x and ]y written in terms of physical distance
rather than with derivatives in the curvilinear coordinate
]l and ]u. Switching from one to another involves a
simple transformation,

1 1
] u 5 ] u and ] u 5 ] u.x l y fh hl f

Use of ]x and ]y renders the equations compact and
understandable by avoiding the introduction of coeffi-
cients in front of all of the derivatives. However, the
principle reason for their use is that the equations are
then naturally discretized using the finite-volume meth-
od. Map factors that would otherwise be explicit in the
equations are incorporated into the grid of volumes,
areas, and lengths that describe a finite-volume grid. As
we now describe, this approach leads to a different result
than if we had discretized the equations in curvilinear
coordinates.

For example, consider discretizing the divergence of
a horizontal flux = · F. Expressed in the curvilinear co-
ordinates (l, f), this is

1
= · F 5 [] (h F ) 1 ] (h F )],l f l f l fh hl f

which can be discretized using finite differences as

1
[] (h F ) 1 ] (h F )]l f l f l fh hl f

1 1 1
→ d (h F ) 1 d (h F ) , (3)i f l j l f[ ]h h Dl Dfl f

where diu [ ui11/2 2 ui21/2 and d ju [ u j11/2 2 u j21/2. In
physical (x, y) coordinates, instead, it is natural to write
(using Gauss’ divergence theorem)
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FIG. 1. The logical arrangement of tiles used in implementing the
cubic topology. Note that the coordinate systems match across the
interior edges, while the exterior edges (dashed arcs) need either a
1 p/2 or 2p/2 rotation of coordinates.

1 1
= · F → = · F dA 5 F · dlEE RA A

1
5 [d (DyF ) 1 d (DxF )], (4)i l j fA

where

A 5 dx dy. (5)EE
If the integral in Eq. (4) is expressed in terms of the
curvilinear coordinates (l, f), the result is unchanged
as long as the area A is unchanged. The finite-difference
approximation in orthogonal curvilinear coordinates (3)
is recovered if the true area in Eq. (4) is replaced with
the approximation

A ø h h DlDf.l f (6)

This subtle difference between finite-volume and finite-
difference interpretations leads to significant differences
in regions of high curvature with finite resolution. One
advantage in using (6) is that formal conservation of
higher moments is easier to achieve. We have not tried
to find a higher-moment-conserving discretization using
(5), but see no reason why one should not exist.

The vector-invariant form of the momentum equa-
tions (2) are simpler to implementation than the con-
servative form (1); the metric terms and map factors are
‘‘hidden’’ inside the definition of vorticity and defini-
tions of grid lengths and areas and, thus, do not need
to be discretized directly in the momentum equations.
Moreover, we will show later that the vector-invariant
equations, when discretized using the finite-volume
method, have a distinct advantage over (1) when the
coordinate system has singularities.

In summary, the three-dimensional equations that
must be discretized in the hydrostatic version of our
hydrodynamical kernel are

] u 2 ( f 1 z)y 1 v] u 1 ] (K 1 F) 5 F , (7a)t p x u

] y 1 ( f 1 z)u 1 v] y 1 ] (K 1 F) 5 F , (7b)t p y y

P u 1 ] F 5 0, (7c)p p

] u 1 ] y 1 ] v 5 0, (7d)x y p

] u 1 ] (uu) 1 ] (uy) 1 ] (uv) 5 Q /P, (7e)t x y p

where Q is the sources and sinks of heat, P 5 cp(p/pc)k

is the Exner function, and u is potential temperature.

3. Implementation of the hydrodynamical kernel
on the conformally expanded cube

Implementation of the hydrodynamical kernel will be
described in two parts: (i) computational issues involv-
ing the mapping of the cubic topology onto the rect-
angular or linear memory of a parallel computer, and

(ii) discretization of the hydrodynamical equations on
the expanded cubic grid.

a. Computational implementation

The grid proposed by Rancic et al. (1996) uses a
conformal mapping of a face of a cube onto a tile on
the surface of a sphere. The resulting coordinate system
on the sphere is orthogonal. Six such mapped tiles can
be patched together to cover the entire sphere. Because
the edge of each tile is a coordinate line, shared with
the neighboring tile, orthogonality ensures that the nor-
mal coordinate smoothly matches between tiles. The
arrangement of these six tiles in computer memory is,
as we shall see, relatively straightforward.

The parallelization of the MIT GCM uses a tile and
halo strategy in which each tile might be associated with
one processor in a multiprocessor computer. The halo
region retains a duplicate of data on neighboring tiles,
allowing the frequency of communication between pro-
cessors to be reduced. The tiling strategy is readily re-
configured to implement a cubic topology.

Figure 1 shows one of many possible arrangements
of six tiles that mimic the topology of the surface of a
cube. This arrangement is similar to that of McGregor
(1997) but is flipped in orientation. All pairs of tiles are
treated identically. For convenience, we refer to the fac-
es of the cube by colors: red (R), green (G), blue (B),
magenta (M), yellow (Y), and cyan (C). The connec-
tivity is such that interior edges in Fig. 1, namely R–
G, G–B, B–M, M–Y, Y–C, and C–R, look as though
the tiles are a regular decomposition of a plane. Most
importantly, the coordinate systems smoothly match and
are cooriented across these interior edges. However, the
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FIG. 2. The two possible alignments of a C grid with the tile boundaries (indicated by the
square): (a) scalar points fall on the tile edge and corners, (b) normal flow components fall at
tile edges.

connections across the upper outer edges, namely R–B,
B–Y, and Y–R, require a rotation of coordinates. That
is, the local coordinates and flow at the upper edge of the
R tile must be rotated p/2 counterclockwise to match the
local coordinates and flow of the B tile at the left edge,
as is apparent by inspection of the 3D rendering of the
tiles in Fig. 1. Such a transformation is not encountered
in a regular decomposition of a plane. The vector trans-
formation at the edges is implemented in the same low-
level software used to update the halo regions. Thus, the
numerical code is unaffected by the unusual topology.

The model variables are staggered in space using the
Arakawa C-grid arrangement. There are two choices of
alignment of the C grid with the tile boundaries, as
shown in Fig. 2: (a) tracers and tangential flow com-
ponents align on the tile edge, and (b) normal flow
components align on tile edge. The second arrangement
(b) is the most natural for ocean modeling and is the
default in our model. We did not investigate choice a,
but see no reason why it could not be implemented.

Regardless of whether arrangement a or b is used,
there is a degeneracy at the corners of the cube asso-
ciated with a singularity of the coordinate systems. One
manifestation of this is illustrated in Fig. 3, where we
have assumed arrangement b. Consider the interpolation
of the y component of flow in the green coordinate
system to the corner point (the interpolation is indicated
by the solid line in the lower-right panel). The left-most
contribution to the interpolation is in the halo region
and ‘‘virtually’’ points to the red ‘‘y.’’ Because the
green–blue coordinate systems match, the same inter-
polation should be replicated on the blue tile. Now,
however, the (blue) halo y is set equal to 2u on the red
tile due to the coordinate rotation on the red–blue
boundary. Because the y and u on the red tile are sep-
arate, independent variables, the apparent value of y at
the same geographic point is different on each of the
blue and green tiles. This is clearly not sensible and
must be rectified.

The only solution to this problem is to avoid inter-

polation of vector quantities to the cube corners. Dis-
cretizing the momentum equations on a C grid, whether
in conservative (1) or vector-invariant form (2), inevi-
tably places momentum fluxes or other vectors at both
the tracer (cell centers) and vorticity (cell corners)
points. This means that a different choice of grid align-
ment (e.g., Fig. 2a) does not solve the problem. How-
ever, as we now discuss, the vector-invariant form of
the equations can be discretized using alignment Fig.
2b such that only scalar quantities fall on cell corners.

b. Discretization of the vector-invariant equations on
a grid with singularities

The vector-invariant equations (7) can be discretized
on a C grid using the most natural/simple forms except
for the Coriolis terms. The components of the Bernoulli
gradient =(K 1 F) naturally aligns with u and y points,
as does the vertical advection of momentum. The Cor-
iolis terms involves interpolation of a component of a
vector (the flow) and will be considered more carefully
later. The model equations are discretized as follows:

ij j
DpDy [Dx ] u 2 f 1 z Dx y 1 d (F 1 K )]u u t y i

ki
1 Av d u 5 DpDx Dy F , (8a)k u u u

ji i
DpDx [Dy ] y 1 f 1 z Dy u 1 d (F 1 K )]y y t u j

kj
1 Av d y 5 DpDx Dy F , (8b)k y y y

k
DPu 1 d F 5 0, (8c)k

d (DpDy u) 1 d (DpDx y) 1 d (Av) 5 0, (8d)i u j y k

i j
DpA ] u 1 d (DpDy uu ) 1 d (DpDx yu )t i u j y

k
1 d (Avu ) 5 DpA Q , (8e)k

where
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FIG. 3. Interpolating the y component of flow in the green coordinate system to the corner on
the green tile should yield the same values as on the blue tiles because the coordinate systems
are aligned. However, the green halo y is set equal to the red y, while the blue halo y is set equal
to minus the red u. The solid stencil at top left indicates the locations of the flow components.
The fourth point (empty circle) is the natural position for interpolating the y (in red–green
coordinates) to the corner using values on the red tile.

1
z 5 [d (Dy y) 2 d (Dx u)] and (9)i y j uA z

1 i j
2 2K 5 (u 1 y ). (10)

2

In the above equations, A (without a subscript) is cen-
tered on the tracer points. Otherwise, subscripts indicate
centering on that subscript (i.e., Az is the area of a vor-
ticity cell while A is the area of a tracer cell, and Dxu

is the distance between tracer points centered on u). We
have chosen an enstrophy-conserving form for the Cor-
iolis terms and an energy-conserving form for the ver-
tical advection of momentum. These choices are not
relevant to the discussion at hand but can have an impact
on the smoothness of the solution (Sadourny 1975). The
above discretization is second-order accurate on a reg-
ular grid, but accuracy may be reduced where a cur-
vilinear grid has high curvature.

There are several issues of note in the above dis-
cretization.

1) FINITE-VOLUME DISCRETIZATION OF VORTICITY

Rather than discretizing the vorticity using finite dif-
ferences

1 1
z ø d (h y) 2 d (h u), (11)i f j lh Dy h Dxf l

we discretize using the finite-volume method. The vor-
ticity is then expressed in terms of the circulation G,

G
z ø , (12)

A

where

G 5 y dl 5 d y dx 2 d u dyR i E j E
5 d (Dyy) 2 d (Dxu), (13)i j

and A is the area enclosed in the circulation contour. In
Fig. 4 it is clear that this area is six sided, with three
circulation contributions. Note that in the finite-differ-
ence form (11) a higher-order representation widens the
stencil of the difference operator in the direction of the
differences. In contrast, a higher-order approximation
of the line integral in Eq. (13) widens the stencil of
interpolation (of the integrand) in the direction of the
integral. Finite-difference and finite-volume methods,
therefore, differ substantially at a higher order. At sec-
ond order, the stencils of the finite-volume and finite-
difference methods are the same in the interior of the
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FIG. 4. The vorticity everywhere is discretized as the circulation
divided by the area. At the tile corners the line integral involves six
segments (three pairs of values) that uniquely defines the vorticity
even though the coordinate singularity is enclosed within the area.

FIG. 5. Operator-splitting phases on the cube. Operations in a cer-
tain direction (meaning computational coordinate) are indicated by
the arrows. Each i–j direction on each tile can be followed contin-
uously around four sides of the cube so that operations in this direction
should be coordinated. Three phases are required to cover both di-
rections on all tiles. The sequence (I–II–III) is reversed (III–II–I)
every other time step in the manner of Strang splitting.

tile, but differ numerically because A ± hlhfDlDf, as
noted in section 2. Of most importance here is the fact
that the finite-difference form yields ambiguous results
at the corners, while the finite-volume form (using cir-
culation) unambiguously defines the vorticity every-
where, even around coordinate singularities.

2) NONCOMMUTING DIFFERENCE OPERATORS

Finite-difference operators must be considered to not
commute. That is, the order of operations is important;
for example,

j ii jy ± y . (14)

Under normal circumstances the order of operations is
not important, and such identities can be assumed. Now,
however, we disallow such identities so that components
of vector quantities can be interpolated ‘‘around’’ the
singularities. For example, consider the linear (second
order) interpolation of y to the u points, normally written
as ij. Writing the interpolation in two steps, we havey
two possible schemes:

ji i jy* 5 y and y 5 y* , (15a)
or

ij j i† †y 5 y and y 5 y . (15b)

In scheme (15a), y* falls on the vorticity points and,
thus, on tile corners and singularities. Hence, this
scheme is subject to the degeneracy problem outlined
above in section 3a. In scheme (15b), y † falls at the cell
centers. Here, there are no ambiguities and the operation

is well defined. The final interpolation, evaluating ji,y
is likewise unambiguous and well defined.

3) OPERATOR SPLITTING AND ADI-LIKE

OPERATIONS

Operator splitting is used to accurately apply one-
dimensional schemes in multiple dimensions (see Pietr-
zak 1998). For instance, we use flux-limited advection
schemes to avoid false extrema (described in section
5a); these schemes work in one dimensions and are
extended to three dimensions using operator splitting.
In Cartesian coordinates operator splitting calculates
fluxes in each direction consecutively, say x then y, and
[in the case of Strang splitting (Strang 1968)] will re-
verse the order on each consecutive model step. If we
apply such a scheme based on local coordinates within
each tile, we find that fluxes on tile boundaries that are
calculated independently on each tile do not match. This
is because the local x and y directions are not globally
contiguous across all tile boundaries. To overcome this,
we implement operator-splitting methods using three
phases, as illustrated in Fig. 5. During each phase, only
four tiles are active and calculations are made in a di-
rection pseudoparallel to a great circle that passes
through those four tiles. The sequence of phases is re-
versed every other time step as in Strang splitting. This
reduces biases in the operator-splitting error. However,
some asymmetry remains in the system for the following
reason: consider the fluxes evaluated during phase II.
Fluxes in the M tile are evaluated in the local x direction
using values previously updated during phase I, while
fluxes in the B tile, evaluated in the local x direction,
use unmodified values. Although the fluxes are contig-
uous across the B–M edge (i.e., conservation is satis-
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FIG. 6. To calculate the curvilinear lengths of the coarse grid (thick
solid lines), a finer grid (dashed lines) is laid down and the lengths
on the fine grid are approximated as great arcs. The blue line indicates
the great arc approximation of the target grid. The two red segments
are the great arcs used in a single refinement and the four green
segments are those used in two refinements. The area of the grid cell
is similarly approximated as the sum of the enclosed fine-grid cell
areas, each approximated using the excess-area rule. This idealized
figure illustrates how the refinement method rapidly converges on the
true grid even in regions of high curvature.

fied), there is asymmetry in the evolution. Thus, oper-
ator splitting is not implemented perfectly. We over-
come biases due to this error by permuting the order of
phases every other model step (e.g. I–II–III, III–II–I,
II–III–I, I–III–II, etc.).

4. Grid generation

In the discrete equations [(8)] we describe the grid
in terms of length (Dxu, Dxy, Dyu, Dyy) and area (A,
Az) only, and not in terms of map factors ( , , . . .).u uh hl f

This allows the code to be written in a notation similar
to that of a Cartesian grid model, which also happens
to reduce the number of grid descriptors. Using metric
factors, we would need two factors per point on the
staggered grid, totaling eight factors. Using the conser-
vative form of the momentum equations requires eight
lengths and three areas, totaling 11 factors. In the above
discretization of the vector-invariant equations only four
lengths and two areas are needed, totaling six factors.
These grid descriptors are only two-dimensional and,
thus, are relatively cheap to store. Moreover, with fewer
factors, consistency in grid generation is easier to main-
tain.

Calculation of the grid lengths and areas is carried
out numerically. A fine grid is laid down such that the
target grid can be constructed as a subset of the fine
grid. Figure 6 shows an idealized, high-curvature grid

cell with a fine grid overlaid, allowing for two refine-
ments in a multigrid calculation. Curvilinear lengths on
the surface of the sphere are approximated as great arcs
(radius multiplied by subtended angle at center of
sphere). Such an approximation is quite inaccurate if
applied to the target (coarse) grid. However, approxi-
mating the curvilinear lengths as the sum of the fine-
grid segments leads to an algorithm that rapidly con-
verges to the true curvilinear length. The area of the
grid cell is likewise approximated as the sum of the
areas of the fine-grid cells. Each fine-grid cell is ap-
proximated as a quadrilateral of great arcs, the area of
which is proportional to the ‘‘excess’’ (the excess of a
quadrilateral xs on the surface of a sphere is the sum of
the internal angles ai, minus 2p):

2A 5 r x ,s

where

x 5 22p 1 a .Os i
i

The nodes of the fine grid are determined either by
a semianalytical conformal mapping, as described in
Rancic et al. (1996), or by numerically following con-
ventional orthogonal grid–generation methods (via the
solution of two elliptic equations for grid coordinates,
see Fletcher 1991). Numerically generated grids tend to
have some nonorthogonal traits; numerically evaluating
the angles between intersecting grid lines reveals that
the angle is never exactly p/2. We have found the orig-
inal method of Rancic et al. (1996) to be superior in
this regard with the least deviation from orthogonality,
but nonorthogonality seems to be unavoidable in the
immediate vicinity of the corner singularities.

The conformal mapping of Rancic et al. (1996) leads
to a grid that has a near-uniform aspect ratio (of value
unity) and with a ratio of longest-to-shortest element
lengths that scales as M 1/3, where M is the number of
elements on an edge. The shortest element length, there-
fore, scales as M 24/3, which is significantly better than
a conventional latitude–longitude grid (N 22). However,
this scaling behavior falls far short of the scaling of the
gnomonic cubic grid (Sadourny 1972). For the gno-
monic cubic grid, the ratio of longest-to-shortest ele-
ment lengths rapidly approaches 2 as the number of
points is increased. This means that the gnomonic grid
scales perfectly in that the shortest length scales as M 21.
We, therefore, now consider how the conformal grid of
Rancic et al. (1996) can be modified to improve the
scaling.

We used two variants of a simple approach in which
we rescale the coordinates after the original conformal
mapping, thereby preserving orthogonality. For exam-
ple, the tile coordinates (x1, x2) can be mapped to

1 2 2
21 21(x9, x9) 5 tan x , tan x , (16)1 2 1 221 1 2tan (2/3) 3 3

where the coordinates range from 21 to 11. This
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FIG. 7. Expanded cubic grids with 16 cells to a side (C16 for short) yielding 64 points around
the equator. (a) The conformal projection proposed by Rancic et al. (1996). (b) As in (a) after a
rescaling of coordinate following Eq. (16). (c) As in (a), but numerically rescaled such that the
edge segment lengths are uniform. (d) As in (c), but applied to the third grid line.

FIG. 8. The scaling behavior of a variety of cubic grids. Plotted is
the shortest grid element Dsmin, normalized by the length of a cube
edge. (Magenta) is the conformally mapped grid of Rancic et al.
(1996), labeled ‘‘Conformal,’’ (red) using the remapping in Eq. (16)
labeled ‘‘tan,’’ (blue) has equal element lengths along an edge, labeled
‘‘Edge,’’ (cyan) has equal element lengths along the equator, labeled
‘‘Equator.’’ For comparison, N 24/3 and N 21 are plotted as dotted
curves. The N 21 scaling represents the best scaling behavior possible.

stretches the coordinate near the edges and compresses
them near the tile center. The resulting grid is shown
in Fig. 7b, and the scaling behavior is shown in Fig. 8
(red curve labeled ‘‘tan’’). It has a more uniform dis-
tribution of segment lengths along a tile edge, but at
the expense of symmetry (cf. Figs. 7a and 7b); the aspect
ratio of cells near the tile edges is no longer as close
to unity as for the Rancic et al. (1996) grid.

Another rescaling is made numerically by finding the
function that makes the segment lengths along the edge
exactly equal (and, therefore, correspond to the gno-
monic grid but only on the edges). The grid is shown
in Fig. 7c. Although the distortion of the aspect ratio is
now severe, this grid has the same perfect scaling as
the gnomonic grid; the smallest length scales as M 21.
Geometrically this can be seen because the smallest el-
ements appear at the tile centers, but cannot be made
shorter than the edge elements without a convergence
of coordinate lines. The other extreme has elements of
exactly equal lengths along a great arc across the center
of a tile (cyan curve labeled ‘‘equator’’). This com-
presses the resolution at the corners similar to the orig-
inal conformal mapping. A compromise is to chose a
coordinate line near the edge of the tile and set lengths
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to be uniform along that line. The result of choosing a
line x1 5 3/8, the third grid line from the edge, is shown
in Fig. 7d, and scales as shown by the green curve
labeled ‘‘j 5 3’’.

5. Numerical results

To test the implementation of the model on the cubed
sphere we first conducted several of the shallow-water
tests described by Williamson et al. (1992). These were
especially useful in revealing implementation problems.
The three-dimensional model is tested by repeating the
experiments of Held and Saurez (1994, hereafter HS94).
Not all results are reported here—we have selected those
that we found most useful in identifying strengths and
weaknesses of the model.

a. Williamson test 1: Advection of cosine bell

A passive tracer is advected around the sphere by a
specified flow field equivalent to solid body rotation
around an arbitrary axis. An initial tracer distribution
(a cosine bell on the equator of the flow rotation) is
advected around the sphere once in exactly 12 days. The
flow is nondivergent and so can be described by a
streamfunction c(l, f) given by

c(l, f) 5 2aU (sinf cosa 2 cosl cosf cosa),o

where a is the angle between the geographic coor-
dinate axis and the axis of the solid body rotation; Uo

5 2pa/(12 3 86 400) ; 40 m s 21 is the maximum
wind speed, and a 5 6370 km is the radius of the
sphere.

The coarsest-resolution grid used was C32 (the cubic
grid of Rancic and Purser with 32 points across a tile),
which is equivalent to G64 (128 3 64 points in spherical
polar coordinates) in equatorial resolution. The calcu-
lations are made on grids of different resolutions to
establish the rate of convergence. Here we used C32,
C46, C64, and C96, all using the conformal cubic grid
of Rancic et al. (1996), shown in Fig. 7a, which reflect
resolutions at which this model is often used.

The model can be configured to use one of many
advection schemes. Here, we show three variants of
third-order interpolation (based on a uniform mesh).
Figure 9a shows the solution after 12 days on a C96
grid using third-order spatial interpolation with a sec-
ond-order Adams–Bashforth scheme; dashed contours
are the true solution. This formally reduces to second
order for variable resolution grids. The error is shown
in Fig. 9b and the time evolution of the l1, l2, and l`

norms as defined by Williamson et al. (1992) are plotted
in Fig. 9c. The better-than-second-order convergence is
shown in Fig. 10a (circles). The second variant uses a
direct space–time discretization using a third-order
polynomial representation (Hundsdorfer and Trompert
1994; Hundsdorfer et al. 1995; Pietrzak 1998), which
again formally reduces to second order on a variable

space mesh. The error (not shown) and its scaling (cross-
es in Fig. 10a) are much the same as for the linear
advection scheme. Figure 9d shows the error using a
Sweby flux limiter on the direct discretization fluxes
(Hundsdorfer et al. 1995). Note that the errors are spa-
tially more compact (due to the limiting), but have more
structure due to the multidimensional aspect of the al-
gorithm.

b. Impact of different cubic grids

We motivated the generation of new grids by rescal-
ing the tile coordinates (see section 4) as a means of
improving the scaling of the grid. We now evaluate these
grids by finding the maximum time step that yields a
‘‘stable’’ solution in the Williamson et al. (1992) ex-
periment 1, as described in section 5a.

The grids shown in Figs. 7a, 7b , and 7c should allow
successively larger time steps. For each of these grids
we increased the time step in increments of 1 min until
the solution either became unstable or began to exhibit
visible noise at the grid scale. Using the upwind-biased
third-order interpolation with the second-order Adams–
Bashforth scheme, we find that we can indeed achieve
longer time steps on the rescaled grids (‘‘tan’’ and
‘‘edge,’’ Table 1). However, the maximum Courant
number (CFLmax) for which the solutions are stable are
reduced on the rescaled grids. We believe that this is
due to the nonuniform aspect ratio.

This hypothesis is borne out further if we use a more
stable advection scheme; the third-order direct space–
time method (Hundsdorfer and Trompert 1994; Hunds-
dorfer et al. 1995; Pietrzak 1998) is stable up to Courant
number 2 and increases accuracy as the Courant number
approaches 1. Table 2 shows the maximum stable Dt
and associated Courant numbers. We now find little dif-
ference in Dt between the grids, but with a wider range
of stable Courant numbers.

It seems, then, that rescaling the tile coordinates
yields grids with more uniform spacing, thus, allowing
longer time steps in models. However, the improvement
is limited by the effects of anisotropic resolution or
distorted aspect ratios.

We evaluated these grids in the Williamson et al. test
1 case of section 5a. Figure 10 shows the convergence
rates for differently rescaled grids all using the same
Courant number and linear advection scheme. The equa-
tor grid (with equal element lengths around the equator)
is visually very similar to the original conformally
mapped grid of Rancic et al. (1996), and the numerical
convergence rates are indistinguishable. Likewise the
edge grid and tan grid are quite similar and also scale
in a similar fashion to each other. The tan rescaling does
have systematically reduced l2 norms (vertical shift of
dashed line), but the scaling is only slightly better (slope
of dashed line is 2.7 while slope of solid line is 2.6).



2854 VOLUME 132M O N T H L Y W E A T H E R R E V I E W

FIG. 9. Results for Williamson et al. (1992) test 1 at a flow angle of p/4 that translates the tracer anomaly directly
over the grid singularities. (a) Solution after 12 days obtained on a C96 conformal grid using linear differencing and
(b) the error (with contour interval of 5 m). (c) The evolution of the l1, l2, and l` norms as defined by Williamson et
al. (1992). (d) The error using nonlinear interpolation (direct space–time discretization) with the Sweby flux limiter.

c. Held and Suarez forcing

The experiments of HS94 were reproduced using the
same model on both a conformal cubic grid (C32) and
the conventional geographic latitude–longitude grid
(G64), which are of equivalent resolutions but are slight-
ly coarser than those used by HS94. The forcing is as
described by HS94 but cast in pressure coordinates.

We use 20 equal thickness levels in the vertical, which
has enough resolution to represent the gross structures
seen in the HS94 solutions. Despite the moderately low
horizontal resolution, the climatology produced by the
model is quite reasonable, as will be described next.

The G64 model requires zonal filters applied pole-
ward of 6458 for numerical stability. Both models use
an eighth-order Shapiro filter on both temperature and
momentum tendencies to represent small-scale dissi-
pation. The time step using G64 is 7.5 min and that
using C32 is 10 min. Note that internal gravity waves
are explicit so that even though advective CFL limits
would allow a time step of the order of 1 h, the internal
gravity wave speed limits the time step in the full dy-
namical model. Note, also, that we are using the con-

formal grid of Rancic et al. (1996); the maximum-al-
lowed time step on the C32 using the tan rescaling gives
a time step of 12.5 min.

The zonal mean climatologies (10-yr means) are
shown in Fig. 11. There is broad agreement between
both the G64 and C32 solutions and the results of HS94.
However, on closer examination the G64 solutions have
some notable discrepancies, namely a high-altitude po-
lar jet (Fig. 11e), probably associated with the strong
temperature gradients near the poles (Fig. 11c) and a
lack of tilt in the midlatitude jets. The C32 solutions
show no such problems and compares more closely with
HS94. We presume that the primary reason for the dif-
ferences between G64 and C32 are due to the zonal
filters. It is not clear why our implementation of zonal
filters produces significantly worse results than G72 of
HS94. HS94 point out that G72 was the coarsest res-
olution that produced agreeable results, so the problem
may lie with the resolution.

Figure 12 shows the zonally averaged eddy variance
of temperature xt. Again, C32 is more favorable thanT*
G64; there is more eddy activity in C32 again, we be-
lieve, due to the absence of zonal filters in C32.
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FIG. 10. (a) The scaling of the l2 norm with resolution on the
conformally mapped grids using the same Courant (CFL) number:
linear interpolation (circles) nonlinear (DST; crosses), and DST with
the Sweby flux limiter (squares). The scaling is approximately
O(Dx ) for the linear scheme; on a regular grid this scaling would

1/22#
be O(Dx3). (b) The scaling of l2 norm for different rescaled grids:
conformally mapped grid of Rancic et al. (1996; circles) also shown
in (a), rescaling to give uniform resolution along the equator
(squares); rescaling to give uniform element lengths along the edge
(diamonds); the analytic rescaling given by (16) (crosses).

TABLE 1. The maximum Dt and corresponding CFL number that
could be used and still produce a stable and smooth solution. The
grids were all of size C32 and the advection scheme was the third-
order upwind interpolation used in section 5a.

Scheme Dtmax CFLmax

Conformal (Fig. 7a)
Tan [Eq. (16), Fig. 7b]
Edge (equal edge elements, Fig. 7c)

38 min
50 min
51 min

0.68
0.6
0.47

TABLE 2. As in Table 1, but using the direct space–time third-
order discretization with operator splitting.

Scheme Dtmax CFLmax

Conformal (Fig. 7a)
Tan [Eq. (16), Fig. 7b]
Edge (equal edge elements, Fig. 7c)

122 min
119 min
120 min

2.1
1.4
1.13

Zonal averages are useful for comparing climatol-
ogies but might hide problems associated with the un-
derlying horizontal grid. For example, standing pat-
terns might be triggered by the variable resolution
around a latitude circle. To reveal such problems we
also examine the horizontal distributions of quantities
such as eddy temperature variance. Figures 12c and
12d show the time average eddy variance at 950 mb.
We have overlaid edges of the cubic grid for reference.
The pattern is clearly dominated by a latitudinal profile,
but does reveal zonal structures. Subtracting the zonal
mean (Figs. 12e and 12f) reveals these variations to
be of order 2 K2 in both models, with no obvious
correlation to the cubegrid in C32. The amplitude of
these anomalies should decay as the length of time-
averaging period is increased; that is, the statistics
should be invariant with longitude if enough samples

are made. The amplitude of
t
2

xt
is plotted in2 2T9 T9

Fig. 13. Unfortunately, the decay is slow. Thus, to
discern any deviation from expected behavior require
a significantly longer integration than our resources
allow. This serves to indicate both that our statistics
are indifferent to the underlying grid, but also that they
are perhaps insufficient to detect biases due to the un-
derlying grid.

Another diagnostic given by HS94 was the eddy zonal
spectra. We show the spectra for both T*2 and U*2 (Fig.
14). The former has clear peaks at mode 6 in both G64
and C32. The eddy energy spectra show similar struc-
tures to those from HS94. If, at this coarser resolution,
we had found a peak at mode 4, we most certainly might
have suspected some influence of the underlying cubic
grid.

d. Global ocean circulation

As mentioned, the MIT GCM can model both the
atmosphere and ocean. Here we demonstrate that the
ocean circulation found using the cubic grid is com-
parable to the solution found using the spherical polar
grid.

The model is configured with 15 levels in the vertical
with a maximum depth of 5200 m, forced with monthly
wind stress from Trenberth et al. (1989), observed heat
and freshwater fluxes from Jiang et al. (1999), and with
a restoring of sea surface temperature to climatology by
Levitus and Boyer (1994) with a time scale of 60 days.
The model parameters are listed in Table 3. Calculations
are made on a spherical polar grid with 48 resolution
(G45) and on a comparable cubic grid C24, which has
nominally 3.758 resolution. The G45 calculation uses a
typical form of viscous stress tensor to represent the
eddy viscosity. However, on the expanded spherical
cube, a stress tensor places vector quantities on the sin-
gularities. To avoid this we use the vorticity-divergence
form of viscosity that does not satisfy varies higher-
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FIG. 11. Solutions from G64 and C32 calculations, both using five vertical levels driven by HS94 forcing. All fields
are time and zonal means. (top) In situ temperature for (a) the conformal expanded cube grid C32, (b) the regularT
spherical polar grid G64, (c), (d) potential temperature , and (e), (f ) zonal winds. Results are comparable to thoseu
of HS94. The G64 solutions have significant problems in the highest latitudes where zonal filters are in use; strong
temperature gradients and a polar jet appear right at the poles. The C32 model appears to treat the high latitudes
much better and is closer to the G72 calculation of HS94.

order properties that an eddy viscosity should (Griffies
2004).

The bathymetry was generated from the earth topo-
graph 5-min (ETOPO5) world bathymetry using a to-
pology-preserving algorithm described by A. Adcroft
(2004, unpublished manuscript). We did not hand edit
the data (e.g., deepen overflows or widen passages), but
did fill in the Arctic, north of 808N in G45 to avoid the
converging meridian problem. Despite using an objec-
tive interpolation method, the resulting topographies can
be quite different simply because the different horizontal
grids place features at different locations. The differ-
ences in topography between the two models is apparent
in the land mask shown in Fig. 15.

Figure 15 shows the drift in potential temperature
from the Levitus (2004) initial conditions at 290-m
depth after 500 yr of integration as a 100-yr time mean.
Broadly speaking, the drifts appear to be similar in the
Tropics and Northern Hemisphere. The largest differ-
ences appear in the Southern Hemisphere. This is most
likely due to the sensitivity of the Antarctic Circumpolar
Current (ACC) dependence on the geometry of the
Drake Passage and underlying topography. Most im-
portantly, there are no apparent correlations with the
nodes of the cubic grid.

The global Eulerian mean meridional overturning cir-
culations (MOC) for G45 and C24 are shown in Fig. 16.
The calculation of MOC in C24 involves integrating the
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FIG. 12. The zonal time mean temperature variance in the (a) G64 and (b) C32 models. There is clearly more2T9
eddy activity in the C32 model although not quite as much as the HS94 G72 model. This is most likely due to the
lower horizontal and vertical resolutions. The reduced eddy activity in the G64 model is probably due to the zonal
filters that begin to damping motions at 6458 latitude. (c), (d) The time mean variance

t
at 950 mb over 10 yr. Because2T9

the forcing is zonally symmetric, the solution and eddy statistics should approach zonality. (e), (f ) The same variance
as (c) and (d) with the zonal mean removed. If inhomogeneities or discontinuities in the grid are influencing the solution
we expect to see correlations with the underlying grid.

normal flow across zigzag lines that match the model grid
but stay close to latitude circles. The overturning stream-
functions shown are broadly similar with a Northern Hemi-
sphere maximum of 28.7 Sv (1 Sv [ 106 m3 s21) that
differs by only 0.1 Sv between the models. The strength
of the deep overturning of Antarctic Bottom Water
(AABW) is different; where the G45 model has 9 Sv, the
C24 model has only 4.5 Sv. This may be due to the dif-
ferent resolution in the Weddell Sea (808S, 508E), as is
apparent in Fig. 15.

Figure 17 shows the zonal time average salinity in
G45 and C24. Again, the models broadly agree but differ

in some details; the denser patch of North Atlantic Deep
Water in G45 and fresher surface waters around Ant-
arctica. Such differences in buoyancy easily lead to
changes in deep circulation observed above and them-
selves may depend on subtle details of the model con-
figuration. Again, we suspect that the different topog-
raphy is largely the cause.

The inhomogeneities introduced by topography
makes assessing the influence of the horizontal grids in
ocean models very difficult. However, based on the
broad agreement of the solutions, we conclude that the
use of the cubic grid in ocean models in quite appro-
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FIG. 13. The amplitude of the inhomogeneity
t

2
xt

as a2 2T* T*
function of averaging time window. This reflects the amplitude of
patterns such as in Figs. 12e and 12f;

t
should become zonally2T9

uniform as the time window for averaging is made longer. C32
(squares) and G64 (circles). Even after 15 yr of averaging, the in-
homogeneities are dominated by random fluctuations inherent in the
dynamics and not by features correlated to the grid.

priate, and even beneficial, because the Arctic ocean
can be treated properly.

6. Discussion

We have described the implementation of a finite-
volume hydrodynamical kernal on a general orthogonal
curvilinear grid. The use of vector-invariant rather than
conservative momentum equations avoids the need to
write out the general metric terms for an arbitrary grid.
By restricting ourselves to orthogonal coordinates we
were able to adapt an existing model; a general curvi-
linear, nonorthogonal coordinate model would require
substantially more steps and algorithmic changes.

The conformal cubic projection of Rancic et al.
(1996) was used for gridding the sphere. This avoids
the converging meridians of conventional geographic
coordinate grids. The cubic grid has eight coordinate
singularities at the corners of the projected cube. The
singularities pose a difficulty for discretization. By using
the finite-volume interpretation of dependent variables
we are able to replace gradients across the singularities
with line integrals around an enclosing area. We also
avoid interpolation across a singularity by choosing a
particular order of operations so that interpolated terms
are always expressed in terms of intermediate variables
that never fall at the corners.

On the grid of Rancic and Purser, the shortest grid
length scales as M 24/3 (M is the number of elements
along a tile edge), while a spherical polar grid scales as
N 22 (N is number of points between poles). The M 24/3

scaling is inferior to the perfect M 21 scaling of the gno-
monic cubic grid (which is nonorthogonal). We were
able to generate other orthogonal grids simply by re-

scaling the coordinates. One of these grids also has a
M 21 scaling, but the improved distribution of resolution
always comes at the expense of uniform aspect ratio.
We demonstrated that the CFL criteria improve for the
rescaled grids. Use of these grids will most likely de-
pend on the particular application.

One concern in implementing the model on the cubic
grid was that it is orthogonal everywhere except at the
cube corners; only three cells meet at the corner node
and so the angle between coordinate lines on the tangent
plane is (2/3)p and, thus, is not orthogonal. This hap-
pens only at a singularity so one might hope that the
dynamics only feels a ‘‘pin prick’’ associated with non-
orthogonality. To deal with nonorthogonality at the cor-
ners, the model equations could be written in general
curvilinear coordinates, essentially adding cross terms
to the orthogonal coordinate equations. On the other
hand, our approach is not formally ‘‘missing any terms’’
because we do not discretize terms at the singular points.
Higher curvature and finer resolution is also associated
with the cube corners compared to elsewhere on the
grid. The truncation errors in the model must, therefore,
possess a spatially dependent envelope. Such inhomo-
geneities could affect the local dynamics and might
show up in long-term statistics. However, as shown here,
the solutions seem unaffected by the variable resolution
and the special nature of singular points. This suggests
that our finite-volume treatment at singularities is suc-
cessful.

Solutions obtained with the HS94 forcing are very
encouraging. One possible explanation for not seeing
stronger effects of the grid is that the model is not ac-
curate enough. Perhaps at a higher resolution variable
resolution and singularities might manifest themselves
more strongly. We expect that this will not be the case
because we saw no such indication in the Williamson
et al. (1992) tests. However, we have not yet made high-
er-resolution runs with the HS94 forcing.

We have not presented atmospheric calculations here
in which zonal symmetry is broken by the forcing (or
orography). The primary reason is that we have focused
on seeking asymmetries or structures associated with
the grid. We are confident that the model is accurate
enough that such grid artifacts are not evident using 15
yr of statistics. Calculations with orography and realistic
forcing are now being made. The impact of the grid will
be assessed by changing the orientation of the grid geo-
graphically by, for example, zonal shifts. Unfortunately,
by shifting the geography we are forced to change the
orography and forcing because the interpolation and var-
iable resolution of the grid leads to different numeric
representations. It is, therefore, significantly more com-
plicated to assess such grids in a realistic configuration.
This will be the subject of future work.

Assessing the cubic grid in the ocean confronted this
same problem of evaluating a nonsymmetric solution.
The broad similarity between solutions on the cubic and
geographic grids suggests that the approach is viable.
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FIG. 14. Spectral power of eddy temperature variance T*2 as a function of zonal wavenumber in the (a) G64 and
(b) C32 models following HS94. Both models have peaks at mode 5, slightly enhanced in C32. Note the absence of
power at highest latitude in G64 due to the zonal filters whereas there is variability at all points on the C32 grid. Power
spectra of eddy zonal winds U*2 for (c) G64 and (d) C32 models.

However, one potential criticism levied against the use
of cubic grids is that the resolution is too uniform; the
smaller deformation radius in the ocean at high latitudes
warrants finer resolution near the poles. The cubic grids
presented here used the same number of elements on
each tile, yielding near-uniform resolution. Projecting a
tall box onto the sphere can produce equivalently uni-
form resolution around the equatorial tiles and refined
resolution at the poles. Thus, there is unexplored flex-
ibility in the approach outlined here that could be used
to great effect to model the ocean.

An awkward issue that arises when implementing an
ocean model on the expanded spherical cube is the treat-
ment of eddy viscosity. Formally, the eddy stress tensor
should satisfy certain higher-order constraints such as
to conserve total angular momentum (Griffies 2004).
However, the use of a stress tensor with nonzero off-
diagonal elements places vector quantities on the grid
singularities, which, as we have explained, is degen-
erate. We avoided this here by not using a stress tensor
but this is not completely satisfactory; the problem of

satisfying higher-order constraints on such grids as this
needs to be examined more closely.

We discussed the advantageous scaling of the ex-
panded spherical cube with respect to the conventional
geographic grids. The N 4/3 scaling is a huge improve-
ment over the N 2 scaling. In global ocean modeling,
an alternative solution to the converging meridians
problem is to twist the Northern Hemisphere grid so
that the polar singularity falls within land. Another
alternative is the tripolar grid,1 where the Mercator grid
is cut off at some latitude (say 808N) and another grid
is embedded within that latitude circle. Again, the two
singularities that fall on the cut-off latitude circle can
be oriented so as to fall in land. Both approaches hide
the singularities and the associated fine resolution in
land and thereby avoid much of the problem. These
grids scale better than the conformally expanded spher-
ical cube and remain competitive at a high resolution.

1 The grid has three singularities or poles, but is sometimes referred
to as the bipolar grid.
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TABLE 3. Parameters used in the ocean circulation experiments.

Horizontal eddy viscosity Ah

Vertical eddy viscosity Ay

Bottom drag coefficient CD

Isopycnal/thickness eddy diffusion kGM

3 3 105 m2 s21

1.67 3 1023 m2 s21

1 3 1023 s21

103 m2 s21

Vertical eddy diffusion ky

Enhanced mixing (convection) kc

Reference density ro

Level thickness Dz (m)

5 3 1025 m2 s21

10 m2 s21

1035 kg m23

50, 70, 100, 140, 190, 240, 290, 340, 390, 440, 490, 540, 590, 640, 690

FIG. 15. The 100-yr mean potential temperature drift from Levitus (2004; 8C) at 290-m depth
after 500 yr of integration. The largest differences between the two models (a) G45 and (b) C24
appear in the Southern Ocean.
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FIG. 16. The global Eulerian mean meridional overturning stream-
function c (Sv) after 500 yr of integration. The overturning in (a)
G45 is typical of OGCMs forced with freshwater and no restoring
of salt. The overturning in (b) C24 is calculated by integrating the
net normal flow across zigzag lines that matches the grid. The over-
turning is broadly similar to that in G45, but note the stronger deep
circulation of Antarctic bottom water in G45.

FIG. 17. The zonal time average salinity (psu) after 500 yr of
integration. The average salinity in (a) G45 and (b) C24 are broad-
ly similar but the North Atlantic Deep Water in G45 is slightly
denser.

However, they are not options for atmospheric mod-
eling. In the context of coupled models, it is more
natural to couple models on the same or related grids;
using the cubic grids for both atmosphere and ocean
greatly simplifies the interpolation stages in the cou-
pling process.

Although the scaling of the orthogonal cubic grids is
an improvement over the conventional geographic grids,
they do not scale as well as the gnomonic cubic grid or
grids based on the icosahedra (Ringler and Randall
2002). These cannot be used in an orthogonal coordinate
quadrilateral element model. However, both types of
grids could be adopted if the limitation to orthogonal
coordinates were dropped. For resolutions employed in
ocean modeling today (around 8) the conformally1⁄
mapped expanded cube is competitive, but to achieve
much higher resolutions in the future may require a

general coordinate approach or another novel method
to be used.

APPENDIX

a. General curvilinear coordinates

Sadourny (1972) and Rancic et al. (1996) examined
solutions obtained with the shallow-water equations on
the gnomonic cubic grid. The coordinate system here is
not orthogonal and the model equations must be written
in terms of general coordinates. Written in tensorial
form, the shallow-water equations are then

1
j k] u 1 e G( f 1 z)u 1 ] f 1 u u 5 0, (A1a)it i i j x k1 22

iG] f 1 ] (Gfu ) 5 0, (A1b)it x

where ui and ui are the covariant and contravariant com-
ponents of the flow, f is geopotential, G 5 | g | 1/2 is
the square root of the determinant of the metric tensor
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gij, and e ij is the permutation operator. The metric tensor
is given by

g 5 e · e i, j 5 1, 2,ij i j

where e1 and e2 are the base vectors of the coordinate
transformation. The vorticity z is given by

1
i jz 5 e ] u .ix jG

The covariant and contravariant components are related
by the metric tensor

j i iju 5 g u , u 5 g u ,i ij j

where

11 21g g 1 g 2g22 12i j 215 g 5 g 5 .i j12 22 21 2 1 2g g G 2g g21 11

A more complete description of general curvilinear co-
ordinates can be found in Fletcher (1991).

There are two key algorithmic differences between
general curvilinear and orthogonal coordinate models:
(i) nonorthogonality introduces cross terms in the equa-
tions that can significantly affect the algorithm and per-
formance, and (ii) the equations in general curvilinear
coordinates are expressed in terms of covariant and con-
travariant flow components that introduce new steps in
the algorithm compared to the algorithm in orthogonal
coordinates.

Associated with the appearance of new terms in gen-
eral curvilinear coordinates, relative to the orthogonal
coordinate model, is the need for new steps in the al-
gorithm. For example, the contravariant components
need to be evaluated. This is straightforward when the
flow components are collocated, such as on an Arakawa
A or B grid, but on a C grid we have to interpolate the
components in space as follows:

i j1 11 12u 5 g u 1 g u , (A2a)1 2

i j2 21 22u 5 g u 1 g u . (A2b)1 2

We can expect that the spatial averaging permits a com-
putational mode to exist and be problematic, especially
if g12 becomes nonnegligible (i.e., in regions of high
curvature and rotation).

b. Orthogonal curvilinear coordinates

The above general curvilinear coordinate equations
(A1) reduce to orthogonal curvilinear coordinates when
g12 5 g21 5 0. In this case,

1 1
11 22G 5 Ïg g , g 5 , g 5 ,11 22 g g11 22

1 2u 5 g u , u 5 g u .1 11 2 22

The physical flow (u, y) is given by

1
1u 5 u 5 Ïg u and1 11Ïg11

1
2y 5 u 5 Ïg u2 22Ïg22

so that the kinetic energy simplifies as (1/2)ukuk 5 (1/2)(u2

1 y 2). The shallow-water equations (A1) written in terms
of the physical flow u 5 (u, y) in orthogonal curvilinear
coordinates reduce to

1
] u 1 ( f 1 z)k̂ ` u 1 = F 1 u · u 5 F, (A3a)t 1 22

] F 1 = · Fu 5 0. (A3b)t
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