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[1] The interpretation of surface altimetric signals in terms of Rossby waves is revisited.
Rather than make the long-wave approximation, the horizontal scale of the waves is
adjusted to optimally fit the phase speed predicted by linear theory to that observed by
altimetry, assuming a first baroclinic mode vertical structure. It is found that in the tropical
band the observations can be fit if the wavelength of the waves is assumed to be large,
of order 600 km or so. However poleward of ±30�, it is more difficult to fit linear theory to
the observations, and the fit is less good than at lower latitudes: the required scale of the
waves must be reduced to about 100 km, somewhat larger than the local deformation
wavelength. It is argued that these results can be interpreted in terms of Rossby wave,
baroclinic instability, and turbulence theory. At low latitudes there is an overlap between
geostrophic turbulence and Rossby wave timescales, and so, an upscale energy transfer
from baroclinic instability at the deformation scale produces waves. At high latitudes there
is no such overlap and waves are not produced by upscale energy transfer. These ideas are
tested by using surface drifter data to infer turbulent velocities and timescales that are
compared to those of linear Rossby waves. A transition from a field dominated by waves
to one dominated by turbulence occurs at about ±30�, broadly consistent with the
transition that is required to fit linear theory to altimetric observations.
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1. Introduction

[2] Altimetric observations of sea surface height (SSH) of
the ocean show westward propagating phase anomalies in all
of themajor oceans except theAntarctic Circumpolar Current
(ACC), the Kuroshio and the Gulf Stream, where the prop-
agation is eastward. Chelton and Schlax [1996] attempted to
understand these observations in terms of linear, first bar-
oclinic Rossby waves in a resting ocean and in the long-wave
limit. They found that observed phase speeds were larger than
predicted by theory outside the tropics by as much as a factor
of two (see, e.g., the introduction of Colin de Verdière and
Tailleux [2005], who review an extensive literature on the
subject). Chelton et al. [2007] recently observed that SSH
variability appears to be nondispersive and consistent with
the behavior of nonlinear eddies in many regions of the world
ocean, particularly poleward of 25�, in western basins and in
the ACC. Some of the discrepancy between the observations
and linear theory can be resolved by including mean flow and
topography [Killworth et al., 1997;Dewar andMorris, 2000;

Killworth and Blundell, 2005;Maharaj et al., 2007]. We find
that the ‘‘fit’’ of linear theory to observations at high latitudes
is not as successful as at low latitudes. However, the down-
stream phase speed observed in the ACC is captured rather
well. Less satisfying, is the mismatch of best fit speeds to
observations in the 40� to 50� latitude bands. Killworth and
Blundell [2005] appear to obtain a closer fit there, the reasons
for which are not clear to us.
[3] A number of authors adopt the planetary geostrophic

approximation [Dewar, 1998, appendix; Killworth and
Blundell, 1999, 2003; Colin de Verdière and Tailleux, 2005]
and so automatically make the long-wave approximation by
neglecting relative vorticity. Others have considered Rossby
basin modes in the quasi-geostrophic approximation [Cessi
and Primeau, 2001; LaCasce and Pedlosky, 2004]. As noted
by Killworth and Blundell [2005], all such calculations im-
plicitly assume production of waves at the eastern boundary,
yet their ray tracing calculations through the observed hydro-
graphy indicate that such waves are generally unable to cross
the basin. Instead, Killworth and Blundell [2007] investigate
the assumption that waves are produced throughout the ocean
via local forcing by winds, buoyancy exchange or baroclinic
instability of the mean state; they put this assumption to use
by computing the dispersion relation at each lateral posi-
tion, assuming local forcing and horizontal homogeneity
(i.e., doubly periodic boundary conditions for each 1� � 1�
section, the ‘‘local approximation’’).
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[4] Both Killworth and Blundell [2007] and Smith [2007]
(in a similar analysis) find that the oceans are rife with
baroclinic instability, occurring at or below the deformation
scale, thus providing a ready source of energy, cascading
upscale from below, for the waves and turbulence seen at the
ocean’s surface. Indeed both altimeter observations and
numerical ocean models provide evidence of an inverse
spectral flux of kinetic energy from the deformation scale
up to an arrest wavelength of order 500–1000 km, which
decreases with latitude but does not scale closely with the
deformation scale [Scott and Wang, 2005; Schlösser and
Eden, 2007]. Such an inverse cascade is possibly the result
of nonlinear interactions in geostrophic turbulence. (The in-
verse cascade observed by Scott and Wang [2005] presented
a conundrum since up to 70% of the variability at the ocean
surface is contained in the first baroclinic mode [Wunsch,
1997], and it was thought that first baroclinic energy should
cascade toward the Rossby radius. However Scott and Arbic
[2007] showed in simulations of two-layer baroclinic turbu-
lence, that while the total energy in the first baroclinic mode
cascades toward the Rossby radius, the kinetic energy moves
upscale.) The inverse cascade can be arrested or slowed
before reaching the basin scale by Rossby waves [Rhines,
1975], stratification N2(z) (when energy is contained in baro-
clinic modes, particularly if N2 is surface intensified as in the
ocean [see Fu and Flierl, 1980; Smith and Vallis, 2001]), or
dissipative processes [Arbic and Flierl, 2004; Thompson and
Young, 2006]. It is not yet clear which of these processes, if
any of them, sets the ultimate arrest scale.
[5] Rhines [1975] theorized that, because the eddy time-

scale increases as the spatial scale grows in the inverse cas-
cade, a transition will occur at the spatial scale where the eddy
timescale matches that of Rossby waves with the same spa-
tial scale. The transition scale, commonly referred to as the
Rhines scale, is LR � (2ut/b)

1/2, where ut is the square root
of the eddy kinetic energy (which, in the two-dimensional
system considered, is the only energy). It is at this spatial
scale, Rhines suggested, that the turbulent energy is shunted
into either jets or waves, or both, depending on the strength
and homogeneity of the eddy field. Numerical experiments
presented by Rhines demonstrate that, even when the eddies
are energetic enough to form jets, Rossby waves may also be
energized. Vallis and Maltrud [1993] refined the idea of a
wave-turbulence crossover by noting that while the Rhines
effect cannot halt the cascade alone, it inhibits energy trans-
fer into a dumbbell-shaped region around the origin in wave
number space, which leads to the generation of zonally
elongated flow. There is some evidence for zonal jet forma-
tion in the ocean [Maximenko et al., 2005; Richards et al.,
2006], perhaps a signature of the Rhines effect, in addition to
the observations of waves by Chelton and Schlax [1996] and
Chelton et al. [2007].
[6] Recent research [Theiss, 2004; Smith, 2004] has sug-

gested that, on the giant gas planets, turbulent generation at
small scales should result in jet formation in regions equa-
torward of some critical latitude, and a more isotropic eddy
field in regions poleward of that critical latitude. Scott and
Polvani [2007] confirmed that a critical latitude for jet
formation does arise in direct numerical simulations of forced
dissipative shallow-water turbulence on the sphere. Theiss
[2006] extends the idea further by replacing b with the mean
flow-dependent meridional potential vorticity (PV). Spe-

cifically, he derives a ‘‘generalized’’ Rhines scale, which
includes the effect of mean shears, and a corresponding crit-
ical latitude, poleward of which jets do not form.
[7] Following on these ideas, Eden [2007] analyzed eddy

length scales in the North Atlantic Ocean both via satellite
altimetry and an eddy resolving primitive equation model. At
high latitudes, he shows evidence that eddy scales vary with
the Rossby deformation radius, consistent with Stammer
[1997], while at low latitudes, eddy scales are consistent
with a generalized Rhines scale. That is, eddies scale with the
smaller of the deformation radius and the Rhines scale, with
a critical latitude near 30�N, where the deformation scale is
similar to the Rhines scale.
[8] In this paper we reinterpret sea surface height (SSH)

signals in the context of the aforementioned theoretical ideas.
Specifically, we avoid the issue of jet formation, but posit that
below a critical latitude baroclinic eddies transform some
of their energy into Rossby waves, and that these waves
dominate the surface height field. At higher latitudes, where
Rossby wave frequencies are too small to be excited by
the inverse cascade, the surface height field remains turbu-
lent. We investigate this hypothesis as follows. Assuming
quasi-geostrophic dynamics, we compute the local Rossby
wave dispersion, but rather than make the long-wave approx-
imation, we adjust the horizontal scale of first baroclinic
waves to best fit the observed phase speeds, and thereby infer
a length scale for the waves. In the tropics the fitted wave-
length is close to both the Rhines scale and previously
observed SSH scales. Outside the tropics, it is either impos-
sible to match the observed phase speeds with Rossby wave
speeds at any wavelength (probably because linear theory is
inadequate) or the fitted wavelength lies near the deformation
scale. Using surface drifter data to estimate the eddy time-
scale and energy level, we show that at high latitudes the
turbulent timescale is faster than the Rossby wave timescale,
so turbulence dominates, but at low latitudes the Rossby wave
and turbulent timescales overlap, enabling the excitation of
waves by turbulence.
[9] In section 2 we compare first baroclinic Rossby wave

phase speeds calculated by G. Forget (Mapping observa-
tions in a dynamical framework: A 2004–2006 ocean atlas,
submitted to Journal of Physical Oceanography, 2008;
essentially, a mapping of Argo and satellite altimetric
data using interpolation by the MITgcm) with observed
altimetric phase speeds provided by C. Hughes (personal
communication, 2006). Following on from Chelton and
Schlax [1996] and Killworth and Blundell [2005] we include
mean flow and stratification, and topographic slopes, but
under quasi-geostrophic dynamics. We arrive at a conclusion
consistent with Chelton et al. [2007]: in low to midlatitudes,
phase speeds predicted by long-wave linear theory are typi-
cally faster than observed phase speeds. In section 3, where
possible, we fit the phase speeds predicted by the linear
model to observed phase speeds by adjusting the horizontal
scale of the waves. We obtain a marked meridional variation
in the scale of the fitted waves: equatorward of ±30� the fitted
scale is large and gradually decreases with latitude, having
an implied Rhines wavelength of about 600 km. Poleward of
±30� the linear fit begins to fail, and eventually fitted scales
match the deformation scale. In section 4 we interpret our
result via a comparison of turbulent and wave timescales.
Finally, we estimate the critical latitude at which waves give
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way to turbulence by making use of surface eddy velocities
from drifter data, provided by N. Maximenko (personal com-
munication, 2006). In section 5 we conclude.

2. Linear Rossby Waves

[10] Rossby waves result from the material conservation
of potential vorticity (PV) in the presence of a mean gradient.
As a parcel moves up or down the background mean PV
gradient, its own PVmust compensate, generating a restoring
force toward the initial position. The result is a slow, large-
scale westward propagating undulation of mean PV contours.
Mean currents change the structure of the waves in two ways:
by altering the background PV gradient (sometimes so much
so that b is negligible), and by Doppler shifting the signal. A
number of authors [Killworth et al., 1997;Dewar andMorris,
2000; Killworth and Blundell, 2005; Maharaj et al., 2007]
have shown that the straightforward inclusion of the mean
thermal wind currents in the linear Rossby wave problem
leads to a much closer agreement between the observed phase
speeds and theory. Here we take an approach closest to
Killworth and Blundell [2007] [see also Smith, 2007] and
compute phase speeds in the local quasi-geostrophic approx-
imation, using the full background shear and stratification
in a global hydrographic data set. Our focus, however, is on
attempting to fit the linear results to the satellite data and
thereby determining the limitations of linear wave theory
when mean effects are fully included, and characterizing the
scale of the waves that are consistent with the observed phase
speeds. We now briefly outline the approach, relegating
details to Appendix A.
[11] We assume, away from coasts, that Rossby wave and

eddy dynamics are approximately local, and determined by
the quasi-geostrophic equations, linearized about local verti-
cal profiles of the mean velocity U(z) = U(z)x̂ + V(z)ŷ and
squared buoyancy frequency N2(z) = �(g/r0)dr/dz. Specif-
ically, following Pedlosky [1984], we assume the mean
velocity and stratification to be slowly varying functions of
horizontal location. In other words, after using horizontal
derivatives of the mean buoyancy field to compute the ther-
mal wind velocities of the mean state, we consider the eddy
and wave statistics over a box of, say, a few degrees in
horizontal extent to be independent of horizontal position,
except due to implicit slow changes in the local mean velocity
and stratification. Importantly, in the local approximation,
U(z) needs to be a solution to the quasi-geostrophic equation
[Pedlosky, 1984].
[12] Denoting the slowly varying mean quantities with

upper case letters, and the eddy perturbations with lower
case, the linear QG potential vorticity equation is

@tqþ U � rqþ u � rQ ¼ 0; �H < z < 0; ð1Þ

where q = r2y + ( f 2/N2yz)z is the eddy quasi-geostrophic
potential vorticity (QGPV), y is the eddy stream function,
u = �yyx̂+yxŷ is the eddy velocity, f is the local Coriolis
parameter, and H is the local depth of the ocean. The mean
QGPV gradient, determined from the mean velocity and strat-
ification, is

rQ ¼ f 2

N2
Vz

� �
z

� �
x̂þ b � f 2

N 2
Uz

� �
z

� �
ŷ: ð2Þ

Neglecting surface height deviations, the linearized upper
boundary buoyancy equation is

@tbþ U � rbþ u � rB ¼ 0; z ¼ 0; ð3Þ

where the buoyancy anomaly is defined as b = fyz = �gr/r0,
the mean buoyancy is B = �gr/r0, so the mean buoyancy
gradient, via thermal wind balance, is rB = fVz x̂ � fUzŷ.
Slowly varying bottom topography is included from the
Smith and Sandwell [1997] global seafloor topography data
set, using the approach of Smith [2007]. See Appendix A for
details.
[13] Assuming a wave solution for the eddy components,

y(x, y, z, t) =<{ŷ(z) exp [i(kx + ‘y�w t)]}, and likewise for q
and b, one obtains the linear eigenvalue problem,

K � U� wnð Þb̂n ¼ ‘Bx � kBy

� �
ŷn; z ¼ 0; ð4aÞ

K � U� wnð Þq̂n ¼ ‘Qx � kQy

� �
ŷn; �H < z < 0; ð4bÞ

where K = (k, ‘), and ŷn is the nth eigenvector, sometimes
called a ‘‘vertical shear mode’’, and q̂n and b̂n are linear
functions of ŷn. (The hat notation implies dependence on
the wave number K, which is suppressed for clarity.) The
eigenvalueswn are the frequencies of thewave solutions, with
the real part resulting in phase propagation and imaginary
parts, if they exist, producing growth or decay of the wave.
The problem is discretized in the vertical using a layered
formulation; in the discretized case, there are as many shear
modes as there are layers. The expressions for the discrete
surface buoyancy b̂ and q̂ in terms of ŷ, and other details of
the discretization can be found in Appendix A and are given
by Smith [2007].
[14] Equations (4a) and (4b) are solved by first considering

the neutral modes, which diagonalize the vertical derivatives
in the stratification operator as follows. For a resting ocean
(U = 0, implying Bx = By =Qx = 0 andQy = b), equations (4a)
and (4b) reduce to the standard Rossby wave dispersion
relation

wm ¼ �kb
K2 þ K2

m

; ð5Þ

where K = jKj and Km is the mth deformation wave number,
which is given by the following Sturm Liouville problem

d

dz

f 2

N2

dFm

dz

� �
¼ �K2

mFm;
dFm

dz

����
z¼0;�H

¼ 0: ð6Þ

The eigenfunctions Fm are often called the ‘‘neutral modes’’;
they form an orthonormal basis of the vertical structure in a
resting ocean.
[15] The mean velocity and buoyancy fields are computed

from Forget (submitted manuscsript, 2008), as described in
Appendix A, and these are used to construct the mean
buoyancy and PV gradients. At each lateral position in the
ocean, we then compute the neutral modes and their defor-
mation scales from equation (6), as well aswn and ŷn from the
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complete dispersion relations (4a) and (4b). We denote the
zonal phase speed of this mode as

cR ¼ wn

k
:

2.1. Observations of Phase Propagation FromAltimetry

[16] In the long-wave resting ocean limit the dominant
first baroclinic mode has a westward phase speed given by
equation (5) with K = 0, so cR = �b/K1

2. A zonal average of
the long-wave phase speed is computed over the central
pacific (170�W to 120�W), and plotted against latitude in
Figure 1. Also plotted are phase propagation observations
provided by C. Hughes (personal communication, 2007),
zonally averaged over the same range. Speeds at latitudes
20�S and 20�N are well captured by the classic long Rossby
wave solution. However departures are observed at both low
latitudes and high latitudes. Observed speeds reach a maxi-
mum near ±5�. Poleward of 20� the Rossby wave solution
diverges from the observations, reaching roughly a factor of
two [Chelton and Schlax, 1996], and eastward propagation in
the ACC region is also not captured. Figure 2 shows global
maps of phase speed, ‘‘wavelikeness’’ and amplitude from
Hughes’ data set. (The observed propagation speeds were
calculated by Hughes from SSH observations in the fol-
lowing way. First, thin longitude (5 degrees) and tall time
(11.5 years) strips are band-passed filtered in time from 5 to
57 weeks, then zonally averaged (at each time) and the
annual and semiannual cycles are removed. A Radon trans-
form was then performed by shifting each longitude such
that signals traveling at a speed c line up horizontally,
summing over longitude and taking the standard deviation
in time. A wavelikeness parameter is also computed as the
peak value of the Radon transform divided by its mean. On
the basis of advice from Hughes we have filtered out
observations with wavelikeness less than 1.5. Figure 2
shows global maps of the observed phase speed, wavelike-

ness (with white contour at 1.5), and the root mean square of
the SSH amplitude.) Wavelikeness measures the precision of
the distribution of phase speeds computed via the Radon
transform at a given latitude, so one can already see from
Figure 2 that low latitudes propagate mostly at coherent
phase speeds while high latitudes exhibit a larger spread of
propagation speeds, likely indicating a more turbulent flow.
[17] A global map of the deformation radii used to calcu-

late the theoretical long-wave phase speeds in Figure 1 is
shown in Figure 3, and was obtained using Forget (submitted
manuscript, 2008). The vertical structure of the first baro-
clinic normal mode is plotted on the right for selected lati-
tudes at 150�Win the Pacific Ocean, color-coded by the color
of the crosses and using solid (dashed) lines in the South-
ern (Northern) Hemisphere respectively. The stratification
tends to be more surface intensified at lower latitudes, where
F1(z = 0) tends toward values near 4, and less surface inten-
sified at high latitudes, where F1(z = 0) is between 2 and 3.

Figure 1. Westward phase speed estimated from Hughes’
data averaged from 170�W to 120�W (black crosses) plotted
against the standard linear, first baroclinic, long Rossby wave
phase speed (solid line) computed from Forget (submitted
manuscript, 2008).

Figure 2. Hughes’ analysis of surface altimetric data. (top)
Phase speed, with a white contour at 0, to differentiate west-
ward and eastward propagating regions, (middle) wavelike-
ness (see text for details), with a contour at 1.5 to differentiate
regions that are wavelike and not wavelike, and (bottom) a
measure of amplitude.
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Note that the color map saturates near the equator as defor-
mation radii tend toward infinity.

2.2. Observations of Oceanic Currents
and QGPV Gradients

[18] Figure 4 shows zonal averages of mean geostrophic
zonal velocity and the meridional QGPV gradient Qy from
Forget (2008), with a black contour marking zero. Note that
the QGPV gradient is nondimensionalized by the value of
the planetary vorticity gradient at 30�, and that colors are
saturated in the Qy plot. The region above the dashed line
indicates the layers from z = 0 to z = �h that were averaged
over in order to compute the upper PV sheet f 2Uz(z0)/N

2,
as described in Appendix A. The important point to note is
that rQ is clearly not well approximated by b. The salient
features of the Qy plot include (1) the zero crossing at 1 km
depth in the ACC, just below the zonal jet which is respon-
sible for significant baroclinically unstable growth and a
steering level at depth, as reported by Smith and Marshall
[2009], (2) the near-surface zero crossings at low latitudes
may contain baroclinic Charney instabilities, (3) the western
boundary currents near 40�N (and the zero crossings below
them), and (4) the convectively unstable regions in high
latitudes where bottom water formation occurs.

2.3. Applicability of Linear Theory

[19] We now consider the effects of including mean flow
(U and rQ), estimated from Forget (2008), by using the
dispersion relationship (4a) and (4b) then setting K = 0 (i.e.,
the long-wave approximation). For each location we choose
the vertical shear mode ŷn whose real part projects the most
onto the first neutral mode Fz(z) after its mean is subtracted
and it is normalized. Specifically, we choose ŷn such that the
following expression is maximized over n.

max
n

Z
F1 ŷn � ŷn

	 

dz=

Z
ŷn � ŷn

	 
2
dz:

The zonally averaged (from 170�W to 120�W) phase speeds
are represented by the solid gray line in Figure 5. The ob-
served central Pacific phase speeds from Figure 1 are also

replotted for comparison. The long-wave limit predicts
speeds which are too fast in low latitudes and typically (but
not always) too slow in high latitudes. It is pleasing, however,
to now observe eastward propagation in the ACC, a conse-
quence of downstream advection by the mean current.
[20] The assumed spatial scale of the waves also affects the

predicted phase speeds. The same computation described
above, but with deformation-scale waves (K =K1x̂), gives the
dashed gray line in Figure 5. Assuming the deformation scale
as a lower limit for the wavelength of the observed waves, the
solid and dashed lines in Figure 5 bracket the range of val-
ues one can obtain for the phase speed from linear theory.
We address this range of possibilities more fully in the next
section.

3. Fitting Linear Model Phase Speeds
to Observations

[21] Traditionally, the long-wave approximation has been
used when interpreting altimetric signals in terms of Rossby
wave theory. The influence of horizontal scale on Rossby
wave speed has largely been neglected, except for calcula-
tions assuming uniform wavelengths of 500 km and 200 km
reported by Killworth and Blundell [2005]. Chelton et al.
[2007] argue that the propagation of the observed SSH
variability is due to eddies rather than Rossby waves, and
remark that, equatorward of 25�, eddy speeds are slower than
the zonal phase speeds of nondispersive baroclinic Rossby
waves predicted by the long-wave theory. Here we show,
however, that such a difference in speed can be accounted for
by linear Rossby waves when their wavelengths are chosen
appropriately.
[22] Using equations (4a) and (4b) in its most general form,

including bottom topography, Figure 6 shows both the best
fit phase speeds (left) and the wavelengths associated with
those phase speeds (right) for a zonal average from 170�W
to 120�W in the Pacific (top) and a global zonal average
(bottom). We have assumed that the fitted waves have an
east–west orientation (‘ = 0). Setting k = ‘ makes little
difference in the fitted wavelength, which is consistent with
the finding by Killworth and Blundell [2005] of a weak

Figure 3. (left) Map of first internal deformation radius and (right) vertical structure of the first baroclinic
mode, F1(z), at the positions marked with colored crosses (at latitudes 60.5�S, 45.5�S, 30.5�S, 15.5�S,
14.5�N, 29.5�N, and 44.5�N, and longitude 150�W). The lines are color-coded with dashed lines indicating
the Northern Hemisphere, and solid lines indicating the Southern Hemisphere.
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dependence of phase velocity on orientation. In the fitted
wavelengths plots, the black crosses correspond to individual
latitudes, the solid gray curve is a smoother version of the
black crosses, and the thin black line is the first deformation
wavelength. (The fitted wavelengths are smoothed across
latitudes using a 1-1-1 smoother defined by:

l0
i ¼ li�1 þ li þ lIþ1ð Þ=3;

where li is the wavelength at latitude i and l
0
i is the smoothed

value.) The fitted wavelengths typically lie between 600 km
and 800 km in the tropics out to about 30�, with little or no
dependence on the deformation wavelength. Note that the
baroclinic Rhines scale (not shown) is roughly constant in
the tropics, with a wavelength between 500 km and 700 km,

and diverges to infinity when the turbulent velocity surpasses
the long-wave resting phase speed near ±20� (see below).
However, poleward of ±30� it is more difficult to fit linear
theory to the observations. There is a gap in fitted wavelength
around ±40� where the linear theory fails to capture the
observed phase speeds. At high latitudes, the best fit is ob-
tained assuming scales near the deformation scale. The inabil-
ity to fit the phase speeds at higher latitudes is suggestive that
the ‘‘wave’’ signal is not linear in those regions. Clearly,
though, the inclusion of wavelengths that result from a best
fit of theoretical to observed phase speeds results in a greatly
improved prediction.
[23] Figure 7 shows the importance of the planetary vor-

ticity gradient b relative to the effect of mean flow U on the
mean QGPV gradientrQ. Using the length scales computed
by the best fit algorithm, we plot the phase speeds that result
from setting b = 0 while keeping the observed U (thick dash-
dotted line), as well as the phase speeds that result from
setting U = 0 and rQ = b ŷ (thin dashed line). (The solid
gray line and black crosses are the same as those plotted in
Figure 6a.) The planetary gradient b is crucial in the tropics,
while in the subtropics, U becomes increasingly important,
particularly from 35�S to 20�S, where the mean shear
accounts for much of the factor-of-two phase speed error
discussed byChelton and Schlax [1996]. At high latitudes the
Doppler shift caused by U is crucial in capturing the down-
stream propagation in the ACC. Also note that the most
unstable baroclinic modes have horizontal scales (not shown)
of order of the deformation scale poleward of about 40� and
do not increase toward the equator. Similarly the maximum
baroclinic growth rates, and growth rates at our inferred
scales, are significantly larger at high latitudes than low
latitudes. See Smith [2007] for details of the linear instabil-
ities. Figure 7 also shows the effect of bottom topography on
phase speed. Killworth and Blundell [2003] and Maharaj
et al. [2007] showed that topography is only important in the
presence of a mean flow. Here the best fit phase speeds with
mean flow and a flat bottom (thin black line) are compared

Figure 4. (top) Mean zonal velocity U, zonally averaged
from 170�W to 120�W in the Pacific, and (bottom) merid-
ional QGPV gradient zonally averaged over the same region.
The PV gradient is normalized by the value of the planetary
vorticity gradient, b, at 30 degrees. Note that the zero contour
is indicated by black contours and that the color axis is sat-
urated. The regions above the horizontal dashed line indicate
the PV sheet layer.

Figure 5. Hughes’ phase speed observations (black crosses)
compared to linear theory in the presence of a mean current:
long waves (gray solid line) and deformation scale waves
(gray dashed line).
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with the best fit speeds with topography (thick gray line). The
fit is slightly better from 40� to 50� but the addition of topog-
raphy is still not enough to completely fit the observations.

4. Wavelike and Turbulent Regimes in the Ocean

[24] A plausible interpretation of the results presented in
Section 3 is that in low latitudes, baroclinic eddies give their
energy to linear Rossby waves, whereas at high latitudes,
Rossby waves are less easily generated, and the SSH field
remains dominated by eddies. This can be understood in
terms of a matching, or not, of turbulent and wave timescales,
as discussed in the barotropic context by Rhines [1975] and
Vallis and Maltrud [1993], and in a (first-mode) baroclinic
context applied to the gas planets by Theiss [2004], Smith
[2004], and Theiss [2006]. The central idea of the Rhines
effect is that, as eddies grow in the inverse cascade, their
timescale slows, and when this timescale matches the fre-
quency of Rossby waves with the same spatial scale, tur-
bulent energy may be converted into waves, and the cascade
will slow tremendously. When this idea is applied to a puta-

tive interaction with baroclinic Rossby waves, there is the
added complication that frequencies tend toward 0 at large
scale (see Figure 8). In this case, only sufficiently weak eddies
have timescales, at any wavelength, that intersect the Rossby
wave dispersion curve.
[25] For illustrative purposes, one can estimate the wave

number at which the intersection occurs by assuming a tur-
bulent dispersion relationship of the form wt = kut, where ut is
the turbulent velocity scale (the square root of the appropriate
eddy kinetic energy). Setting this equal to the absolute value
of the approximate Rossby wave frequency (wR ’ �kQy/

(K2 + K1
2) assuming that Qx is small and U is either small or

constant in z), we have (dividing by k)

ut �
Qy

K2
1 þ K2

: ð7Þ

Solving for K gives the relationship K2 = Qy/ut � K1
2, for

which there is a real solution only if Qy/ut > K1
2. At fixed Qy

and K1, the implication is that waves can be generated (and
the cascade inhibited) only when the turbulent energy is suf-

Figure 6. (a) Phase speeds according to linear theory (solid gray line) adjusted to give the best match
to Hughes’ data (black crosses). The fit is done for a zonal average over 170�W to 120�W in the Pacific.
(b) Fitted wavelengths at each latitude (black crosses, gray line is a smoothed version) along with the
deformation scale (thin solid line). (c) and (d) As in the top panels but zonally averaged across all oceans.
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ficiently small. On the other hand, assuming a constant ut,
and noting that Qy (through its dependence on b) and K1

(which is proportional to f) are dependent on latitude, the
relationship (7) implies the existence of a critical latitude,
poleward of which no intersection is possible.
[26] Let us now see what the data suggests about a rela-

tionship like (7). We replace the approximate Rossby wave
dispersion relation with the frequencies from (4a) and (4b),
using the fitted Rossby wave scales described in the previous
section. The idea is illustrated in Figure 8, which shows
zonally averaged Rossby wave frequency curves wR(k), plot-
ted against zonal wavelength, at three latitudes in the tropical
Pacific Ocean. Two hypothetical eddy frequency curves wt =
kut (dashed lines) are added for comparison, with ut = 10 cm
s�1 and ut = 5 cm s�1. At 10�S the eddy frequency curves
intersect the Rossby wave frequencies at relatively small
wavelengths, indicating that observed tropical SSH length
scales are certainly in the wave region. On the other hand,
at 30�S even the 5 cm s�1 curve fails to intersect wR(k). We
thus expect little wavelike activity outside the tropics.
[27] We can improve the frequency comparison test further

by using observations of surface drifter speeds to obtain
estimates of ut. A global map of the root mean square (rms) of
the surface drifter data

urms 0ð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ju0drifter z ¼ 0ð Þj2

q

(courtesy of N. Maximenko) is shown in Figure 9, with its
zonal average over 170�W to 120�W (the region within the
rectangle) plotted in Figure 9 (right). The zonal average is
strongly peaked at the equator, and more constant at extra-
tropical latitudes. However, this may not be indicative of the
distribution of total eddy kinetic energy, since the surface

velocity gives no information about the vertical structure of
eddying motion. Additional assumptions are necessary to
extract the relevant eddy velocity scale.
[28] Wunsch [1997] showed that, away from the equator,

eddy velocities are primarily first baroclinic, with a smaller
projection onto the barotropic mode, while nearer the equa-
tor, motions tend to have a more complex vertical structure,
projecting onto many higher modes, approaching equiparti-
tion. Expanding urms(z) in the neutral modes (6), we have

urms zð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNz

m¼0

�m zÞð um

 !2

þ
XNz

m¼0

�m zð Þum

 !2
vuut

Following Wunsch [1997], we extract the vertical structure
at each location by assuming that the rms velocity projects
entirely onto the first baroclinic mode, which gives ju1j =
urms(0)/jF1(0)j. Since we are considering first baroclinic
Rossby waves, the projection u1 is the relevant eddy velocity
scale, which is also the root vertical mean square velocity
(if the flow is entirely first baroclinic), thus

ut ¼
1

H

Z 0

�H

urms zð Þ2dz
� �1=2

¼ urms 0ð Þ=F1 0ð Þ

where we have used the orthonormality of the neutral modes.
(Suppose, instead of assuming that all the energy was in the
first baroclinic mode, we imagined thatU(z) projected equally
onto the barotropic and first baroclinic mode. Then

ut ¼
1

H

Z
urms zð Þ2dz

� �1=2

¼ urms 0ð Þ
1þ F1 0ð Þ

1

H

Z
1þ F1 zð Þð Þ2dz

� �1=2

¼
ffiffiffi
2

p
urms 0ð Þ

1þ F1 0ð Þ ;

Figure 7. Comparison of the effects of b, mean currents,
and topography. The crosses and thick gray solid line are
identical to those in Figure 6a (zonal average over the Pacific
region 170�W to 120�W). The thin black line shows the best
fit phase speed with nonzero U and b but no topography, the
thin dashed line corresponds to nonzero b, U = 0 and no
topography, and the thick dash-dotted line corresponds to
nonzero U, b = 0, and no topography. In all cases the best fit
horizontal scale of Figure 6 is used.

Figure 8. Dispersion relations for fitted phase speeds as a
function of zonal wavelength (with meridional wave num-
ber ‘ = 0) for latitudes in the South Pacific (10�S, 20�S and
30�S), compared with wt = kut with two values of ut: 5 and
10 cm s�1 (dashed lines).
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since the modes are orthonormal. In the world ocean 2 �
F1(0)� 4, so the ratio of this projected value to one which is
entirely first baroclinic, as assumed in the text, is 0.94 �ffiffiffi
2

p
F1(0)/[1 + F1(0)]� 1.13. An assumption of equipartition

among Nz vertical modes unambiguously reduces ut, roughly
by a factor of roughly

ffiffiffiffiffi
Nz

p
.) The scaling by the first baro-

clinic mode has the effect of reducing the estimated turbulent
velocity scale in regions of strongly surface intensified strat-
ification, such as near the equator. In these regions, the first
baroclinic mode itself is quite surface intensified, so F1(0)
can be considerably larger than one (see the modal structure
in Figure 3). Physically, if the first neutral mode, onto which
all the motion is assumed to project, is very surface intensi-
fied, then eddy velocities are weak at depth, so the total tur-
bulent velocity estimate is diminished.
[29] Figure 10 shows the eddy velocity scale ut and zonal

Rossby phase speed cR zonally averaged over 170�W to
120�Wand plotted against latitude. These are essentially the
left hand and equivalent right hand sides of equation (7). Our
Figure 10 is similar to Theiss [2006, Figure 3] for Jupiter,
except that here our dispersion relation is computed from the
full vertical structure of the mean flow, rather than just the
first baroclinic component (because of the dominance of
the first baroclinic mode, however, the first baroclinic calcu-
lation is rather similar; not shown). Note that ut is nearly
constant with latitude, varying between and 5 and 10 cm s�1;
the strong equatorial values have been reduced, through
projection onto the surface-intensified first baroclinic mode,
as explained above (if one assumed equipartition, the velocity
estimate in the equatorial region would be reduced even
further). In contrast, the (Doppler-shifted) Rossby wave
speed varies markedly, exceeding 20 cm s�1 in the tropics
and falling toward zero at higher latitudes (and even becom-
ing prograde in the ACC). The crossover between the two
curves occurs at a latitude of roughly ±25�. Note that since we
have assumed that the turbulent velocity scale ut is entirely in
the first baroclinic mode, the crossover latitudes should be
considered as lower bounds.
[30] Figure 10 (bottom) shows the ratio of linear phase

speeds cR to the eddy velocity scale ut, with dashed lines
denoting cR/ut = 2 and 1/2. Theiss [2006] shows that stormy
regions on Jupiter are highly correlated with regions where

this ratio is less than one. Notably, ±25� is also the crossover
latitude between linear wavelike behavior and nonlinear
eddies found by Chelton et al. [2007]. Outside this latitude
band, first-baroclinic Rossby wave timescales cannot match
the turbulent timescales implied by ut. Note that this would
not preclude the formation of the midlatitude zonal jets
observed by Maximenko et al. [2005] and Richards et al.
[2006]: since barotropic Rossbywaves are possible, turbulent
energy can still accumulate around the dumbbell of Vallis
and Maltrud [1993].
[31] Finally we return to a consideration of the spatial

scales obtained by fitting linear Rossby wave theory to ob-
served phase speeds, as in Figure 6. A global zonal average of
the fitted wavelengths is plotted against latitude in Figure 11.
Also plotted are both observed (black circles) and simulated

Figure 9. Root mean square eddying surface velocities (left) fromMaximenko et al.’s [2005] drifter data
and (right) zonal average thereof.

Figure 10. (top) Doppler shifted long-wave phase speed
(thin black line) versus the root mean square of the eddy
velocity ut (thick gray line) from Maximenko et al.’s [2005]
drifter data. It has been assumed that the eddy velocity is
entirely in the first baroclinic mode. (bottom) The ratio cR/ut
with dashed curves at ratios 1/2 and 2.
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(black crosses) eddy wavelengths in the North Atlantic from
Eden [2007], as well as globally observed wavelengths
(small circles with line) from Chelton et al. [2007]. (Chelton
provides eddy diameters, and here these are multiplied by
p to give wavelengths.) The deformation wavelength (thin
black line) is also plotted for reference. Note that the
baroclinic Rhines wavelength (not shown) is also of the order
of 600–700 km in the low latitudes, but diverges to infinity
near ±25�where cR = ut in Figure 10, so there is no baroclinic
Rhines scale outside of this latitude band. At low latitudes all
of the scales are in close agreement, while the fitted wave-
length diverges from the observed eddy scales at latitudes
poleward of about ±40�. This is also near the latitude where
Eden’s scales transition from a flatter Rhines scaling to a
steeper deformation scaling. In the Southern Ocean there is a
transition from westward propagation to eastward propaga-
tion upon entering the ACC region. Finally we note that, in
contrast to Eden [2007], Chelton’s data do not exhibit a clear
transitional latitude between Rhines scaling and deformation
scaling. The reasons for this remain unclear.

5. Conclusions

[32] We have revisited the interpretation of altimetric phase
speed signals in terms of linear Rossby wave theory. Given
observations of the interior U and rQ fields (courtesy of
Forget (submitted manuscript, 2008)), and assuming quasi-
geostrophic theory, we adjusted the lateral scale of linear
waves to best fit altimetric observations of westward phase
propagation. We find that the implied scales have a well-
defined meridional structure. In low latitudes the waves have
a scale of 600 km or so, broadly consistent with an appro-

priately defined Rhines scale. In high latitudes it is more
difficult to fit linear theory to the observations, but our
attempts to do so imply a scale that is much smaller than in
the tropics, closer to the local Rossby deformation scale.
There is a rather abrupt transition from low-latitude to high-
latitude scaling at ±30�. These results are broadly consistent
with observed and modeled eddy scales, as reported by Eden
[2007].
[33] We put forward an interpretation of the reported

results in terms of the interaction between turbulence and
waves. Over vast regions of the ocean, at scales on or close to
the Rossby deformation scale, baroclinic instability converts
available potential energy to kinetic energy of turbulent
geostrophic motion. Nonlinear interactions result in an up-
scale energy transfer. At low latitudes, where we observe that
ut < jcRj, turbulent energy cascades upscale from below
readily excites Rossby waves. At higher latitudes, where
ut > jcRj, turbulence cannot readily excite waves because of
the weak overlap in timescales between turbulence and waves.
Making use of surface drifter observations, we estimate that
the latitude at which waves give way to turbulence coincides
with that at which ut � jcRj, and is found to be ±30� or
so, roughly consistent with the transition from waves to non-
linear eddies recently highlighted by Chelton et al. [2007].

Appendix A: Discretization of Linear Problem

[34] Forget (submitted manuscript, 2008) contains up to
50 layers (of thicknesses Dj) of potential temperature and
salinity data at each (latitude, longitude) coordinate. We first
compute annually averaged global potential temperature and
salinity fields, and from these compute a neutral density field
r using locally referenced pressure. Thermal wind balance is
then used to compute the mean velocity field U, assuming a
level of no motion at the bottom of the ocean [see Smith,
2007, appendix]. We define the top 5 layers, which are each
10 m thick, as a mixed layer of depth h � 50 m. The mean
buoyancy gradients rB = �(g/r0)r� at the surface are
averaged over the defined mixed layer, and then related to
vertical shears via thermal wind

Uz z0ð Þ ¼ � 1

fh

Z 0

�h

Bydz; Vz z0ð Þ ¼ 1

fh

Z 0

�h

Bxdz:

The surface velocities themselves are obtained by averaging
the velocities from the ocean atlas over h, viz.

U z0ð Þ ¼ 1

h

Z 0

�h

Udz; V z0ð Þ ¼ 1

h

Z 0

�h

Vdz: ðA1Þ

[35] The linear problem is discretized, at each lateral
location, onto the Nz discrete depths zj of the data computed
from Forget (submitted manuscript, 2008). The discrete
surface buoyancy is given by

b̂m z0ð Þ ¼ f
ŷm z0ð Þ � ŷm z1ð Þ

D0

:

Figure 11. Comparison of fittedwavelengths over the global
ocean (gray curve, taken from Figure 6d) against Eden’s
[2007] observed (black circles) and simulated (black crosses)
North Atlantic wavelengths (2p times the values given by
Eden [2007, Figure 7a]), Chelton et al.’s [2007] globally
observed wavelengths (p times eddy diameter, small black
circles with solid line), and the deformation wavelength (thin
black line). The Rhines wavelength, defined here as lR =
2p(2ut/b)

1/2, where ut is taken from Figure 10, is of order
600 km.
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and the discrete PV is

q̂m zj
� �

¼ f 2

Dj

ŷm zj�1

� �
� ŷm zj

� �
B zj�1

� �
� B zj

� �
"

�
ŷm zj
� �

� ŷm zjþ1

� �
B zj
� �

� B zjþ1

� �
#
� K2ŷm zj

� �
;

j ¼ 1::Nz � 1:

The mean QGPV gradients Qx(zj) and Qy(zj) are given by
equation (2), using the same vertical discretization, and sim-
ple horizontal finite differences to compute x and y deriva-
tives. At the bottom, topography is added using the Smith and
Sandwell [1997] global seafloor topography data set in the
same way as Smith [2007]. At each latitude, longitude loca-
tion in the calculation we linearly regress a best fit plane
of the form h(x, y) = h0 + axx + ayy using the surrounding
2�� 2� section of topography. The slopes ax and ay are then
added to the bottom (layer N ) QGPV gradient as

rQtopo ¼ f

DN

axx̂þ ayŷð Þ:

The discrete version of (4a) and (4b) is then solved as a single
matrix eigenvalue problem, using Matlab. As a simple test,
solutions were compared with examples given by Gill et al.
[1974].
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