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ABSTRACT

A three-box model of haline and thermal mode overturning is developed to study thermohaline oscillations
found in a number of ocean general circulation models and that might have occurred in warm equable paleo-
climates. By including convective adjustment modified to represent the localized nature of deep convection, the
box model shows that a steady haline mode circulation is unstable. For certain ranges of freshwater forcing/
vertical diffusivity, a self-sustained oscillatory circulation is found in which haline–thermal mode switching
occurs with a period of centuries to millennia. It is found that mode switching is most likely to occur in warm
periods of earth’s history with, relative to the present climate, a reduced Pole–equator temperature gradient, an
enhanced hydrological cycle, and somewhat smaller values of oceanic diffusivities.

1. Introduction

In past climates the thermohaline circulation (THC)
of the ocean may have been quite different from that of
today. Paleoclimatic records (e.g., Railsback et al. 1990)
suggest that in warm periods of earth’s history the abys-
sal ocean was very much warmer than that of today. A
recurring theme of the paleoclimatic literature is the
speculation that in these warm climates ocean deep wa-
ter formation could have been triggered by evaporation
from the subtropics resulting in a ‘‘haline mode’’ ac-
counting for abnormal warmth in the subsurface ocean
(e.g., Brass et al. 1982). This is very different from
today’s climate in which deep water formation at high
latitudes brings cold water to depth in a ‘‘thermal
mode.’’ Such extremes of ocean circulations have very
different implications for climate and biogeochemical
cycles [see, e.g., Zhang et al. (2001)].

In certain parameter regimes, ocean general circula-
tion models (OGCMs) exhibit ‘‘mode switching’’ in
which the meridional overturning circulation (MOC)
switches between thermal and haline modes. Self-sus-
tained thermohaline oscillations have been found in sev-
eral OGCM studies using an idealized single basin con-
figuration (Marotzke 1989; Wright and Stocker 1991;
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Weaver and Sarachik 1991a,b; Weaver et al. 1993; Win-
ton and Sarachik 1993; Huang 1994). In a study of
possible modes of the late Permian ocean circulation
with a coarse-resolution OGCM (Zhang et al. 2001), we
found that the haline mode (HM) was inherently unsta-
ble for fixed external forcing, periodically switching in
to a transient thermal mode (TM) in which deep water
formed in polar regions (‘‘flushing events’’; Marotzke
1989), and gradually returning to the HM to close the
limit cycle. Such internal thermohaline oscillations
might have significant implications for understanding
the paleoclimatic record, such as the centuries to mil-
lennia oscillations during glacial periods (Johnson et al.
1992). Such oscillations do not appear to occur in the
modern ocean, because, apparently, the surface fresh-
water forcing is not strong enough. Mode switching is
more likely to occur, perhaps, during glacial periods in
which the freshwater forcing due to ice melting at polar
regions is much stronger, or during warm equable pa-
leoclimates such as the late Permian, or mid-Cretaceous
in which the buoyancy forcing due to freshwater flux
may have been stronger than the air–sea heat flux.

The physical mechanism underlying such thermo-
haline oscillations has yet to be clearly articulated.
Stommel (1961) first showed, using a highly idealized
box model, that the THC can have multiple steady states
when the freshwater forcing is strong enough: he found
a strong stable TM circulation, a weak unstable TM
circulation, and a stable HM circulation. Since Stom-
mel’s (1961) pioneering work, many box models have
been constructed to study the multiple steady solutions
of the THC (e.g., Rooth 1982; Huang et al. 1992). With-
out convective adjustment, Stommel-type box models



1 AUGUST 2002 2057Z H A N G E T A L .

cannot support self-sustained oscillations (Ruddick and
Zhang 1996). Welander (1982) proposed a heat–salt os-
cillator using a model with convective adjustment be-
tween the surface and deep ocean whose temperature
and salinity were fixed. It exhibits self-sustained oscil-
lations only when warm salty water convects over cold
freshwater. This kind of convection is likely to happen
in low latitudes, but not in polar regions. Winton (1993)
modified this model by fixing the surface temperature
but allowing deep ocean temperature to vary. He ob-
tained a self-sustained oscillation with polar convection
when a nonlinear equation of state for seawater was
used. Pierce et al. (1995) also obtained a self-sustained
oscillation by modifying Welander’s convection model
to allow both surface and deep ocean temperatures and
salinity to vary, and again using a nonlinear equation
of state for density.

In this study, we construct a simple box model with
convective adjustment and assume a linear equation of
state. It combines the Stommel-type box model with the
Welander-type convection model. The model captures
the main character and essential physics of the ther-
mohaline oscillation and instability exhibited in our
model of the late Permian ocean circulation. When com-
bined with our OGCM studies we are able to explain
why the steady HM becomes unstable in a certain range
of freshwater forcing and vertical diffusivity amplitude.
We then go on to use the box model as an economical
tool to explore parameter space, identify regimes and
their stability, and the dependence of oscillation period
to freshwater flux forcing and vertical diffusivity.

In section 2, we describe in detail the millennial ther-
mohaline oscillation in a global OGCM configured with
late Permian bathymetry. In section 3, we discuss the
mechanism of such oscillations using a simple three-
box model.

2. Self-sustained thermohaline oscillation in an
OGCM of late Permian ocean

We briefly review thermohaline mode switching ob-
served in certain parameter regimes of a global, coarse-
resolution OGCM (Marshall et al. 1997a,b) configured
for late Permian bathymetry (Fig. 1a; see appendix A;
Zhang et al. 2001). The late Permian (about 250 million
years ago) is thought to have been a period of warm
equable climate (Taylor et al. 1992). In our model a
quasi-steady HM circulation occurred with enhanced
(relative to the modern) freshwater flux forcing [a max-
imum evaporation 2 precipitation (E 2 P) of 1.3 m
yr21 compared to 0.6 m yr21 in the present climate] and
a relatively weak background vertical mixing in the
ocean of magnitude M̂ 5 3 3 1025 m2 s21. This should
be compared to the canonical, global average value of
about 5 3 1025 m2 s21, required to bring into consis-
tency deep water formation rates and the mean tem-
perature structure of the modern ocean in OGCMs. In
reality, oceanic diapycnal mixing is thought to be spa-

tially inhomogeneous becoming larger near boundaries
where tidally induced mixing processes may dominate
(Toole et al. 1994; Marotzke 1997; Munk and Wunsch
1998).

Figure 1b shows the meridional overturning circu-
lation of the model during the quasi-steady HM. As
described in appendix A, mixed boundary conditions
and a full nonlinear equation of state are used. The
overturning is weak and shallow; warm, salty inter-
mediate water is formed in the subtropics, then returns
to the surface in polar regions and the Tropics. Figure
1c illustrates the meridional overturning circulation dur-
ing a transient TM (a ‘‘flushing’’ event), which is strong
and deep; deep water formed in the southern polar re-
gion upwells in the Tropics and Northern Hemisphere.
Here the transient TM circulation shows strong hemi-
spheric asymmetry, that is, a relative warm SST in
southern high latitudes is associated with strong deep
convection there and coexists with a relatively cool SST
in the northern high latitudes where deep convection is
absent. This result is very similar to the recent study by
Haupt and Seidov (2001), in which for asymmetric sur-
face thermal forcing, a strong asymmetric ocean cir-
culation can sustain a warm abyss through deep con-
vection while keeping the other Pole cool. Since here
we have symmetric surface forcing, the asymmetric cir-
culation obtained is a consequence of the asymmetric
distribution of land and sea. Both studies show that the
thermal mode overturning circulation is sensitive to the
high-latitude freshwater flux and that a symmetric cir-
culation with deep convection in both hemispheres is
difficult to sustain.

The onset of the flushing event is triggered by intense
local convection in the southern polar region, induced
by meridional transports of warm salty surface water by
a large eddy. Figure 2 shows the sea surface temperature
(SST) and salinity at year 4155, just before the switch
from HM to transient TM. A large-scale eddy, warmer
and saltier than the ambient polar surface water, is
formed near the western boundary of the superocean in
the southern polar region, just where strong local con-
vection occurs. The eddy propagates toward the eastern
boundary of the superocean at the latitude of strong deep
convection in the TM and, we believe, plays a role in
flipping the circulation into a strong transient TM. When
the convection region becomes less dense due to pre-
cipitation, convection ceases and the circulation returns
to the HM.

The transient TM is asymmetric, with deep convec-
tion occurring at southern high latitudes. Hence, we
focus our diagnostics on the southern ocean of the mod-
el. We divide the southern ocean into three distinct re-
gions over which we consider time series of average
properties. These regions are low-latitude surface (148–
36.68S, 0–50 m), high-latitude surface (36.68–70.38S,
0–50 m), and deep ocean (148–70.38S, 50–4000 m). In
section 3 we will describe a simple three-box model
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FIG. 1. OGCM studies of the late Permian: (a) late Permian bathymetry (ocean depth in km), (b) overturning streamfunction of HM at
year 3975, (c) overturning streamfunction of the transient TM at year 4275. Contour interval is in Sverdrups (Sv; where 1Sv [ 106 m3 s21),
positive contour means counterclockwise flow, negative contour means clockwise flow.

inspired by the diagnosis of these three regions in the
OGCM.

Figure 3 shows the time series of mean temperature
T̂i, and salinity Ŝi[i 5 l, h, d; l, low-latitude surface; h,
high-latitude surface; d, deep ocean; and the caret () is
a dimensional quantity] in the OGCM over a period of
8000 yr. The period of oscillation is about 3300 yr and
two cycles are captured. Note that T̂d increases during
the persistent, quasi-steady HM; T̂d falls with the onset
of deep convection at high southern latitudes. The cycle
is asymmetric; the quasi-steady HM lasts much longer
than the transient TM period.

Figure 4 shows the time series of the nondimensional
(without a caret) vertical density difference between sur-
face regions and deep ocean

r̂ 2 r̂ r̂ 2 r̂l d h dDr 5 , Dr 5 ,ld hdˆ ˆr̂ aDT r̂ aDT0 A 0 A

based on a linear equation of state for density. Here
i(i 5 l, h, d) is the density of each region, 0 is ther̂ r̂

mean ocean density, DT̂A 5 T̂Al 2 T̂Ah is the polar–
equator surface air temperature difference, and a is the
thermal expansion coefficient. During the unsteady HM,
the mean trend of Drhd increases gradually (Fig. 4b),
that is, d(Drhd)/dt . 0, until Drhd reaches the thresh-
old—which we call «—for the onset of polar convec-
tion, that is, Drhd 5 « ø 21.1. Then, suddenly, strong
polar convection begins, Drhd jumps to a very high val-
ue, and the circulation switches to the transient TM.
Polar convection begins even though the zonal mean
density structure is still statically stable (Drhd 5 « ,
0), because, as discussed above, convection only occurs
in a localized, statically unstable region (Fig. 2). The
warm, salty surface eddy (Fig. 2) is cooled quickly,
locally destabilizing the water column. As the abyssal
temperature increases, the deep ocean density d de-r̂
creases until it becomes almost the same as the density
of the large-scale eddy eddy in the high-latitude surface.r̂
Thus when Drhd reaches «, convection occurs, and « ø
( h 2 eddy)/( 0aDT̂A) , 0.r̂ r̂ r̂
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FIG. 2. SST and salinity during the switch from the HM to the TM in our simulation of the
late Permian ocean circulation: (a) SST at year 4155 and (b) sea surface salinity (SSS) at year
4155.

During the switch from HM to TM, the mean polar
surface temperature and salinity (Figs. 3c,d) increase
significantly due to strong mixing and horizontal ad-
vection from low to high latitudes. During the transient
TM, the mean trend of Drhd (Fig. 4b) decreases grad-
ually [d(Drhd)/dt , 0], because the deep ocean density
increases due to polar convection. Finally, when the
freshwater forcing becomes dominant again, the density
of the surface convective region becomes less than that
of the deep ocean, that is, Drhd reaches the threshold
for the termination of polar convection: Drhd 5 hh ø
20.3 (Fig. 4b), convection ceases and Drhd drops sharp-
ly.

3. Self-sustained thermohaline oscillation in a
simple box model

a. Box model description

To better understand the mechanism of the thermo-
haline switching reviewed in section 2, we developed
a simple three-box model inspired by study of the
OGCM results. For simplicity the three-box model only
represents a single hemisphere and combines the Stom-

mel-type box model (Fig. 5a) with the Welander-type
convection model (Fig. 5b). It includes a low-latitude
surface box (from latitude 128 to 358), a high-latitude
surface box (from latitude 358 to 708), and a deep ocean
box (Fig. 5c). The horizontal diffusivity between surface
boxes is K̂, which represents lateral eddy mixing. The
vertical diffusivities between the surface and deep ocean
in low and high latitudes are, respectively, M̂l and M̂h,
and are functions of the vertical density difference.

Let T̂l, T̂h, T̂d be the mean temperature of the low-
latitude surface box, high-latitude surface box, and deep
ocean box, respectively; and let Ŝl, Ŝh, Ŝd be the mean
salinity of the low-latitude surface box, high-latitude
surface box, and deep ocean box, respectively. At the
air–sea surface, there is a net mean freshwater flux F
into the high-latitude box, transported from the low-
latitude box. The sea surface temperature T̂l, T̂h is re-
stored to the air temperature T̂Al, T̂Ah at rate constant l,
of a form similar to the boundary conditions used in
the OGCM. Let h be the depth of the surface box; H
be the depth of the deep ocean box; Vl, Vh, and Vd be
the volume of each box, (here, for the given latitude
range of our chosen surface boxes, we have Vl 5 Vh 5
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FIG. 3. Time series of mean temperature and salinity in each diagnosed region of the OGCM: (a) T̂d, (b)
Ŝd, (c) T̂h, (d) Ŝh, (e) T̂l, and (f ) Ŝl. The total salinity of the chosen regions is not conserved. To compare
with the three-box model (described in section 3) in which the total salinity is conserved, the mean salinity
anomaly of the three regions is subtracted from the salinity of each region.

FIG. 4. Time series of mean surface and deep ocean nondimensional
density difference of the OGCM: (a) Drld and (b) Drhd.

V); and L be the horizontal distance between the center
of the surface boxes (Fig. 5c). Notice that F is the net
mean freshwater flux in each box, so it is about half of
the peak of the zonal mean latitude-dependent fresh-
water flux E 2 P. For example, the modern zonal mean
E 2 P profile that has a maximum of about 0.6 m yr21,
corresponds to F ø 0.3 m yr21.

The overturning streamfunction q (unit: Sv [ 106 m3

s21) is assumed to be linearly proportional to the surface
density gradient, as in Stommel’s model

q 5 m (r̂ 2 r̂ ),q h l (1)
where q . 0 indicates a TM circulation (polar sinking),
q , 0 indicates an HM circulation (subtropical sinking),
and mq is the constant of proportionality.

We use a linear equation of state for seawater
ˆ ˆ ˆ ˆr̂ 5 r̂ [1 2 a(T 2 T ) 1 b(S 2 S )],i 0 i r i r (2)

where 0, T̂r, Ŝr are the reference density, temperature,r̂
and salinity; and a, b are the thermal and saline ex-
pansion coefficients, respectively.

The dimensional dynamic equations for T̂, Ŝ in each
box are based on an upstream differencing scheme. For
example, the high-latitude surface temperature T̂ h

evolves due to air–sea heat flux, advection by over-
turning circulation, and mixing by horizontal diffusion
and vertical diffusion.

For the TM (q . 0), we have
ˆ ˆdT q Kh ˆ ˆ ˆ ˆ ˆ ˆ5 l(T 2 T ) 1 (T 2 T ) 1 (T 2 T )Ah h l h l h2dt V Lh

M̂h ˆ ˆ1 (T 2 T ). (3)d hh 1 H
h

2
For the HM (q , 0), we have
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FIG. 5. (a) Schematic diagram of the Stommel-type box model. (b)
Schematic diagram of Welander-type convection model. (c) Sche-
matic diagram of the three-box model. The horizontal diffusivity
between surface boxes is K; Ml, Mh are the vertical diffusivities be-
tween surface and deep ocean in low and high latitude, respectively.
Net mean freshwater flux F entering the high-latitude surface box is
balanced by outflux from the low-latitude surface box. The SST T̂l,
T̂h is restored to the air temperature T̂Al, T̂Ah with restoration rate l.
The overturning strength is q. The surface box has depth h; the deep
box has depth H.

ˆ ˆdT q Kh ˆ ˆ ˆ ˆ ˆ ˆ5 l(T 2 T ) 2 (T 2 T ) 1 (T 2 T )Ah h d h l h2dt V Lh

M̂h ˆ ˆ1 (T 2 T ). (4)d hh 1 H
h

2

We can write the above two equations in a form suit-
able for both the TM (q . 0) and HM (q , 0), thus,

ˆdT qh ˆ ˆ ˆ ˆ5 l(T 2 T ) 1 (T 2 T )Ah h l ddt 2Vh

ˆ|q | Kˆ ˆ ˆ ˆ ˆ1 (T 1 T 2 2T ) 1 (T 2 T )l d h l h22V Lh

M̂h ˆ ˆ1 (T 2 T ). (5)d hh 1 H
h

2

The complete dimensional equations for T̂, Ŝ in each
box are written out in detail in appendix B.

1) NONDIMENSIONAL EQUATIONS

To nondimensionalize, let DT̂A 5 T̂Al 2 T̂Ah (polar–
equator surface air temperature difference) and 5T̂A

(T̂Al 1 T̂Ah)/2 (mean surface air temperature). The con-
trolling nondimensional parameters can then be iden-
tified as

ˆDTAg 5 (pole–equator air temperature
T̂A difference),

2F
c 5 (freshwater flux),

lh

ˆ2K
K 5 (horizontal diffusivity),

2L l

M̂lM 5 (vertical diffusivity in low latitudes),l h 1 H
hl

2

M̂
M 5 (vertical diffusivity in high latitudes),h h 1 H

hl
2

and
ˆ ˆm r̂ aT h bSq 0 A 0m 5 , d 5 , R 5 .f ˆlV H aDTA

The nondimensional dynamical variables are
ˆ ˆ ˆ ˆ ˆT 2 T T 1 T Tl h l h dDT 5 , T 5 , T 5 ,dˆ ˆ ˆDT 2T TA A A

ˆ ˆ ˆ ˆS 2 S S 1 S Sl h l h dDS 5 , S 5 , S 5 .dˆ ˆ ˆS 2S S0 0 0

The nondimensional overturning streamfunction is f 5
q/(glV), and Eq. (1) becomes

f 5 m (DT 2 RDS).f (6)

Based on the dimensional equations written out in
full in appendix B, we write the nondimensional equa-
tions in terms of the nondimensional variables DT, ,T
Td, DS, , Sd for both TM ( f . 0) and HM ( f , 0)S
circulation. They are (where t9 5 lt is nondimensional
time)
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dDT 3
5 1 2 DT 1 f (T 2 T ) 2 | f |gDT 2 KDTddt9 2

1 DT
1 M (T 2 T ) 2l d[ ]g 2

1 DT
2 M (T 2 T ) 1 , (7)h d[ ]g 2

2dT g g
5 1 2 T 1 | f |(T 2 T ) 1 f DTddt9 2 4

M gDTl1 T 2 T 2d1 22 2

M gDTh1 T 2 T 1 , (8)d1 22 2

2dT g gd 5 2d | f |(T 2 T ) 1 f DTd[dt9 2 4

M gDTl1 T 2 T 2d1 22 2

M gDTh1 T 2 T 1 , (9)d1 2]2 2

dDS 3
5 c 1 f g(S 2 S ) 2 | f |gDS 2 KDSddt9 2

DS
1 M S 2 S 2l d1 22

DS
2 M S 2 S 1 , (10)h d1 22

dS g g
5 | f |(S 2 S ) 1 f DSddt9 2 4

M DSl1 S 2 S 2d1 22 2

M DSh1 S 2 S 1 , (11)d1 22 2

dS dSd 5 2d . (12)
dt9 dt9

We will examine both steady and time-dependent so-
lutions of these equations, respectively.

2) REPRESENTATION OF CONVECTION

The nondimensional vertical diffusivities Ml, Mh in
the above equations depend on the ocean state due to
convective process. We make the values of Ml and Mh

functions of the nondimensional mean vertical density
difference between the surface box and deep ocean box

Dri(i 5 ld, hd) as discussed in section 2. If no con-
vection occurs at low or high latitudes, then Ml 5 M
or Mh 5 M, where M 5 2M̂/[(h 1 H)hl] is the non-
dimensional background vertical diffusivity (M̂ is the
dimensional background vertical diffusivity). When the
density difference is conducive to convection at low
(high) latitude, Ml(Mh) becomes much larger than M.

Based on the diagnosis of the OGCM in section 2,
we represent the effect of local polar convection in our
three-box model by introducing a threshold, «, for the
onset of polar convection. Here the physical meaning
of « is the same as found in the OGCM (see section 2
and Fig. 4b): during the unsteady HM [d(Drhd)/dt . 0],
when the mean nondimensional density difference be-
tween the polar surface and deep ocean reaches this
threshold, that is, Drhd 5 «, polar convection starts. If
it does not reach this threshold, that is, Drhd , «, polar
convection can never occur. Here « , 0 represents the
effect of localized polar convection discussed in section
2. Similarly, when the system is in its polar convection
phase, we introduce a threshold, hh, for the termination
of polar convection (see section 2 and Fig. 4b): when
Drhd , hh during the transient TM [d(Drhd)/dt , 0],
polar convection terminates. During the polar convec-
tive phase, the high-latitude surface density is spatially
more homogeneous than that in the nonconvective
phase, so hh . « and hh is set to be close to zero in
the box model.

To summarize, we can write the following simplified
rules for convective adjustment that include the effect
of local convection in the three-box model.

At high latitudes,

if Drhd , «, then Mh 5 M (no convection);
if Drhd $ «, and d(Drhd)/dt . 0, then Mh 5 Msc (strong

convection);
if Drhd $ «, and d(Drhd)/dt # 0, then

if Drhd , hh, then Mh 5 M (no convection);
if Drhd $ hh, then Mh 5 Msc (strong convection).

Here Msc k M, indicating that vertical mixing of cold
fresh surface water in high latitudes is strong and deep.

At low latitudes,

if Drld , hl, then Ml 5 M (no convection);
if Drld $ hl, then Ml 5 Mwc (weak convection).

Here Msc . Mwc k M, indicating that vertical mixing
of warm salty surface water in low latitudes is weak
and shallow compared to strong, deep convection in
high latitudes. Because the density distribution in low
latitudes is horizontally more homogeneous than in high
latitudes, we use the same threshold, hl, close to zero,
for the onset and termination of convection in low lat-
itudes. Note that hl and hh are chosen to be slightly
nonzero to avoid false numerical oscillations caused by
the discontinuity in Ml (as discussed in Welander 1982).

We note that the above convective adjustment at high
latitudes also depends upon the time rate of change of
the stratification, that is, d(Drhd)/dt. This is because we
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wish the box model to represent essential physics; the
zonal mean stratification thresholds for the onset («) and
the termination (hh) of polar convection are different.
During the quasi-steady HM, the polar surface density
is highly inhomogeneous and the onset of the polar con-
vection is triggered by localized convection even though
the zonal mean stratification is still quite stable; during
the transient TM, the zonal mean stratification is sig-
nificantly smaller and the polar surface density is more
homogeneous (Fig. 4b). Thus we make hh . «. The
box model has to judge whether it is facing the onset
or the termination of polar convection and uses a mean
stratification threshold dependent on the current state of
the system as reflected in the sign of d(Drhd)/dt. When
the system evolves from the quasi-steady HM toward

the transient TM, d(Drhd)/dt . 0 just before and during
the onset of polar convection; when the system evolves
from the transient TM toward the quasi-steady HM,
d(Drhd)/dt , 0 just before and during the termination
of polar convection. Thus given the sign of d(Drhd)/dt,
the box model can judge which stratification threshold—
whether it be « or hh—to use.

b. Steady solutions of the three-box model

Let us first look at the steady solutions of Eqs. (7)–
(12). They can be found by setting the rhs to zero,
expressing DT, , Td, DS, , Sd in terms of f , andT S
substituting the expressions for DT, DS into Eq. (6) to
yield a fifth-order equation in f :

2m (M 1 M 1 | f |g)f l h
f 5

2 2(M 1 M 1 2| f |g) 2 (M 2 M ) 1 2(K 1 1)(M 1 M 1 | f |g)l h h l l h

2m (M 1 M 1 | f |g)Rcf l h
2 . (13)

2 2(M 1 M 1 2| f |g) 2 (M 2 M ) 1 2K(M 1 M 1 | f |g)l h h l l h

FIG. 6. Bifurcation diagram on the f–c plane of the three-box model:
stable TM (thin solid line), unstable TM (dashed line), unstable HM
(dot–dashed line), stable HM (thin solid line). Region I (c # cr1): a
globally stable steady TM exists. Region II (cr1 , c , cr2): a local
stable steady TM and a locally stable limit cycle exist, depending on
initial conditions. Region III (cr2 # c # cr3): a globally stable limit
cycle exists. Region IV (cr3 , c): a globally stable HM exists.

Only the real roots of this equation are physically
possible solutions. Substituting the appropriate vertical
diffusivities Ml, Mh for the corresponding convective/
nonconvective states (discussed in appendix C) into Eq.
(13), we can obtain the steady TM ( f . 0) and HM ( f
, 0) for given parameters.

1) REGIONS ON THE BIFURCATION DIAGRAM

Figure 6 shows the bifurcation diagram on the f–c
(nondimensional overturning-freshwater flux) plane.
The steady TM and HM overturning streamfunction f ,
as a function of the freshwater forcing c, are obtained
by solving the real roots of Eq. (13) with other param-
eters fixed. The constants of the three-box model are
summarized in Table 1. The fixed parameters for the
bifurcation diagram are listed in Table 2 (here mf is
chosen in accord with modern ocean overturning
strength and surface density gradient). As in Stommel’s
box model (1961), there are three branches of steady
solution on the f–c plane (Fig. 6). The upper branch
(thin solid line) is the stronger stable steady TM ( f .
0); the middle branch (dashed line) is the weaker un-
stable steady TM ( f . 0), both obtained with Ml 5 M,
Mh 5 Msc (polar convection); the lower branch is the
steady HM ( f , 0) obtained with Ml 5 Mwc, Mh 5 M
(subtropical convection).

In the case of convective adjustment, when « 5 0,
the steady HM will always be stable as in Stommel’s
box model (1961); but if « , 0 (allowing localized polar
convection), the steady HM can be unstable and there
are four different regions on the bifurcation diagram

(Fig. 6), separated by three critical values of freshwater
flux (cr1 , cr2 , cr3).

Region I (c # cr1): Only the globally stable steady
TM exists.

Region II (cr1 , c , cr2): Both the locally stable
steady TM and the locally stable limit cycle exists,
depending on initial conditions.
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TABLE 1. The three-box model constants.

Constant Value

a (K21)
b (psu21)
L (km)
V (m3)
l (day21)
Ŝ0 (psu21)
K̂ (m2 s)
Msc

Mwc

h (m)
H (m)
d

2 3 1024

7 3 1024

3190
3.265 3 1015

1/90
35
1 3 104

0.2
0.1

50
4000

1/80

Table 2. Parameters for the bifurcation diagram on f–c plane.

Parameter Value

ˆDT (K)A 14

T̂ (K)A 291

ˆDTAg 5
T̂A

0.0481

ˆbS0R 5 ˆaDTA

8.75

ˆm r̂ aTg 0 A
m 5f lV

1.5

h 1 HˆM 5 M hl@1 22
0.0025

Table 3. Conversion between dimensional and nondimensional
variables of the bifurcation diagrams using constants in Tables 1
and 2.

Nondimensional variable Dimensional variable

c (freshwater forcing)
lh

21F (m yr ) 5 c ø 100c
2

M (background vertical dif-
fusivity)

h 1 H
2 21M̂ (m s ) 5 hlM ø 0.013M

2
f (overturning stream func-

tion)
q̂ (Sv) 5 glVf ø 21 f

Region III (cr2 # c # cr3): Only the globally stable
limit cycle exists.

Region IV (cr3 , c): Only the globally stable steady
HM exists.

The stability of the steady solutions were studied us-
ing linear analysis. The stability of the limit cycle was
addressed numerically. We now discuss the regions in
details.

On the f–c plane in Fig. 6, cr0, cr2 are the two bi-
furcation points. When cr0 , c , cr2, all three steady
solutions (two TM, one HM) exist; when c , cr0 only
a steady TM exists; when c . cr2 only a steady HM
exists. Here cr2 ø 0.0047 for the given parameters in
Table 2 and conversion from c to dimensional freshwater
fluxes F is outlined in Table 3.

For the steady HM ( f , 0), the nondimensional mean
density difference between high-latitude surface and
deep ocean boxes, Drhd, can be obtained from Eqs. (7)–
(12) and (6):

f M 2 g flDr 5 . (14)hd m M 1 M 2 g ff l h

There is a critical value of freshwater forcing cr3 de-
termined by setting Drhd 5 « (threshold for the onset
of polar convection) and Ml 5 Mwc, Mh 5 M (subtropical
convection) in Eq. (14):

f (c ) M 2 g f (c )r3 wc r3Dr 5 5 «. (15)hd m M 1 M 2 g f (c )f wc r3

When c . cr3, we have Drhd , « and the steady HM
is stable (thin solid line). When c # cr3, we have Drhd

$ «, and the steady HM is unstable (dot–dashed line)
in the sense that small perturbations lead to d(Drhd)/dt
. 0 triggering polar convection (Mh 5 Msc), making
the system suddenly jump away from the steady HM to
a transient TM. It never returns to the steady HM.

In region III (cr2 # c # cr3), no stable steady solution
exists and the system must oscillate. Because the steady
HM is the only stable solution without convective ad-
justment, the system will evolve toward it, that is,
d(Drhd)/dt . 0 in the absence of polar convection if
Drhd , « initially. But when the condition Drhd 5 « is

satisfied, polar convection begins. The system jumps
away before reaching the steady HM, strong convection
increases the polar surface density significantly and in-
duces the circulation to switch to the transient nonsteady
TM [d(Drhd)/dt . 0, f . 0]. Since a steady TM does
not exist, freshwater forcing gradually becomes domi-
nant again and Drhd continues to decrease until it be-
comes less than hh. Polar convection terminates, the
system switches back to the quasi-steady HM ( f , 0)
and once again evolves toward the steady HM, com-
pleting the limit cycle. This is a globally stable limit
cycle; small perturbations will not destroy it and it can
be reached from any initial condition.

In region IV (cr3 , c), the steady HM always satisfies
Drhd , «, and so it is globally stable and no limit cycles
exist.

In region I (c # cr1), when c , cr0, only one globally
stable steady TM exists; when cr0 # c # cr1, the basin
of attraction of the stable steady TM is sufficiently large
that when the unstable HM switches to the transient TM
due to polar convection, it will be ultimately attracted
by the globally stable steady TM and stay there forever.
There are thus no limit cycles; only one globally stable
steady TM exists, no matter what the initial conditions.

In region II (cr1 , c , cr2), the basin of attraction
of the stable steady TM is small enough that the whole
limit cycle is outside this basin of attraction. Oscillations
can still exist depending on the initial conditions: if the
initial state in phase space is close to the stable steady
TM, then it will evolve until it reaches the locally stable
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FIG. 7. Bifurcation diagram on the f –M plane of the three-box
model: Stable TM (thin solid line), unstable TM (dashed line), un-
stable HM (dot–dashed line). Region I (Mr2 # M): a globally stable
steady TM exists. Region II (Mr1 , M , Mr2): a locally stable steady
TM and a locally stable limit cycle exist, depending on initial con-
ditions. Region III (M # Mr1): a globally stable limit cycle exists.

FIG. 8. Bifurcation diagram on the f –c plane for different values
of the Pole–equator temperature gradient, g (g 5 DT̂A/ , 5 291ˆ ˆT TA A

K), other parameters are as in Fig. 6.

TABLE 4. Variations of critical freshwater forcing at the bifurcation point with polar–equator surface air temperature difference.

DT̂A (air temperature difference, K)
g (nondimensional)
Fr2 (critical freshwater forcing, m yr21)
cr2 (nondimensional)

20
0.0687
0.85
0.0085

15
0.0515
0.53
0.0053

10
0.0344
0.27
0.0027

steady TM; if the initial state is close to the steady HM,
then it will evolve until it reaches the locally stable limit
cycle and keep oscillating. Since the system’s phase
space is five-dimensional it is very difficult to find the
value of cr1 analytically—we can only obtain its value
by numerical methods (discussed in section 3c). We find
that cr1 ø 0.0043 for the given parameters (Table 2).

Thermohaline oscillations are only possible in the
window of the freshwater forcing in regions II and III.
This is consistent with the 2D OGCM results found by
Winton and Sarachik (1993). They found that such os-
cillations exist for certain ranges of freshwater forcing,
but when the freshwater forcing is very large, only a
stable steady HM exists.

Similarly we can plot the bifurcation diagram on the
f–M (nondimensional overturning-vertical diffusivity)
plane (Fig. 7), with other parameters (except M) fixed
as in Table 2, with c 5 0.0065 (F ø 0.65 m yr21, see
Table 3). We see two critical values Mr1 ø 0.0199 (bi-
furcation point), Mr2 ø 0.0209, and three regions of
physically possible solutions on the f–M plane.

Region I (Mr2 # M): Only the globally stable steady
TM exists.

Region II (Mr1 , M , Mr2): Both the locally stable
steady TM and the locally stable limit cycle exist,
depending on initial conditions.

Region III (M # Mr1): Only the globally stable limit
cycle exists.

Thermohaline oscillations are possible only in the
window of the vertical diffusivity in regions II and III.
Here we do not find a fourth region in which only the
stable steady HM exists. However, for much larger val-
ues of c, a region IV on the f–M plane is also possible.

As both bifurcation diagrams are shown with non-
dimensional variables, f , c, and M, we summarize the
numerical conversion between dimensional and nondi-
mensional variables of the bifurcation diagrams in Table
3 to estimate the physical quantities.

The region of the bifurcation diagram corresponding
to the present climate is confined by c , cr2; we observe
a stable steady TM circulation and it is difficult to en-
visage moving from our present rather cold climate into
region III. However, cr2, the critical freshwater forcing
at the bifurcation point beyond which there is no steady
TM solutions, is also sensitive to the parameter g
(polar–equator surface air temperature difference) and
decreases with it (Fig. 8 and Table 4, where is fixedT̂A

as 291 K. For warm equable climates, g is smaller due
to smaller DT̂A. Thus cr2 will be smaller and it should
be easier to reach the oscillatory solutions in region III
during warm equable climates.
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FIG. 9. Time series of temperature and salinity in each box of the three-box model: (a) T̂d, (b) Ŝd, (c) T̂h,
(d) Ŝh, (e) T̂l, and (f ) Ŝl.

2) WHAT SETS THE CONVECTION SWITCH, «, AND

THE FRESHWATER BOUNDARY SEPARATING

STABLE/UNSTABLE STEADY HM?

In our OGCM, we estimate that the threshold for polar
convection is « ø 21.1 (Fig. 4b). Given the bathymetry
we used for the late Permian ocean, salt is transported
from the surface of the narrow Tethys Sea into the deep
ocean, because the Tethys Sea is isolated from the open
ocean and surface evaporation there is strong. This
makes the mean deep ocean salinity much higher than
normal. To conserve the total salinity, the mean surface
polar salinity Ŝhpgcm has to be very low, around 28 psu
during the quasi-steady HM. In our three-box model the
typical value for Ŝhpbox during the quasi-steady HM with
similar parameters as the OGCM (i.e., F 5 0.65 m yr21,
M̂ 5 3.33 3 1025 m2 s21) is higher, about 30.8 psu. As
discussed in section 2, « ø ( h 2 eddy)/( 0aDT̂A), andr̂ r̂ r̂
assuming eddy and T̂h in the quasi-steady HM for bothr̂
the OGCM and the three-box model are similar, we
estimate

ˆ ˆ(r̂ 2 r̂ ) b(S 2 S )hpgcm hpbox hpgcm hpboxø ø 20.7. (16)ˆ ˆ(r̂ aDT ) (aDT )0 A A

This gives us a rough guide to the difference between
« in the OGCM and « in the box model due to the
salinity difference and the effect of the Tethys sea.
Choosing « ø 20.4 in our three-box model (in reality
« may depend on c, Ml, Mh, etc.) and substituting it into

the relation Drhd 5 « [Eq. (15)], we obtain the critical
value of the freshwater forcing separating stable and
unstable steady HM. It is cr3 ø 0.0119, which corre-
sponds to a mean freshwater forcing F ø 1.19 m yr21.

c. Time-dependent solutions: Explicit oscillations

We now discuss the time-dependent solutions of the
three-box model obtained numerically. Equations (7)–
(12) are integrated forward using a Runge–Kutta meth-
od and convective adjustment employed at each time
step. By choosing c 5 0.0065 (F ø 0.65 m yr21), M
5 0.0025 (M̂ ø 3.3 3 1025 m2 s21), similar to that used
in the OGCM with other parameters fixed at values in
Table 2, the system is within the window on the f–c
plane in which oscillations are possible. Indeed we ob-
tain oscillatory solutions with a period of about 3000
yr. Figures 9–10 shows the time series of temperature
T̂i and salinity Ŝi(i 5 l, h, d) in each box and the non-
dimensional vertical density difference between the sur-
face box and deep ocean box Dri(i 5 ld, hd), respec-
tively. Comparing the three-box model results (Figs. 9,
10) with the OGCM (Figs. 3, 4), we see that they are
very similar. Figure 11 shows the time series of the
nondimensional overturning circulation f of the three-
box model. The system resides for a long period in the
quasi-steady HM (q ø 27.4 Sv), until it suddenly jumps
to the transient TM (q ø 15.5 Sv), then quickly returns
to the HM. In the three-box model, the strength of the
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FIG. 10. Time series of surface and deep ocean nondimensional
density difference of the three-box model: (a) Drld and (b) Drhd. FIG. 11. Time series of the nondimensional overturning circulation

of the three-box model.

transient TM is much smaller than that in the OGCM.
This may be, for example, because the simple assump-
tion [Eq. (1)] used in the box model does not capture
the details of the dynamics of the overturning strength
in the ocean. Figure 12 is the projection of the phase
portrait of the limit cycle onto the T̂d–Ŝd plane for the
OGCM and the three-box model. Both exhibit a loop
with two fast branches (the onset and the termination
of polar convection) and two slow branches. In the
three-box model, there are small noisy oscillations dur-
ing the transient TM before the termination of polar
convection (Figs. 9–11). This is due to convection in
low latitudes: when Drld $ h l, convection occurs in low
latitudes, and convective mixing Ml 5 Mwc gradually
decreases Drld until Drld , hl, then convection ceases
and we have Ml 5 M. The surface freshwater forcing
ensures that Drld $ hl once more and convection re-
sumes with Ml 5 Mwc. This kind of low-amplitude, high-
frequency oscillation is similar to the heat–salt oscillator
of Welander’s convection model (Welander 1982). It
does not affect the existence of the low-frequency lower-
amplitude oscillation induced by polar convection. Here
we have set hl 5 20.05, hh 5 0.02: they are not exactly
zero so as to avoid spurious numerical oscillations that
occur when Ml is discontinuous during the transient TM.
In our OGCM (Fig. 4a), we always have Drld , hl due
to higher levels of deep ocean salinity, and we do not
observe this kind of high-frequency oscillation.

By decreasing c from cr2 5 0.0047 and experimenting
with different initial conditions, we found that when c
# 0.0043, the solution always ends up in the stable
steady TM, no matter what the initial conditions. When
c . 0.0043, both the stable steady TM and oscillatory
solution are possible depending on initial conditions,
suggesting that cr1 ø 0.0043. Similarly we deduce that
Mr2 ø 0.0209 (Fig. 7) by experimenting with different
initial conditions. Again, to convert to dimensional pa-
rameters, see Table 3.

DEPENDENCE OF OSCILLATION PERIOD ON

FRESHWATER FLUX/VERTICAL DIFFUSIVITIES

If we vary c in region II, III on the f–c plane and
choose appropriate initial conditions when in region II,
we can study the relation of the oscillation period to the
amplitude of freshwater forcing. Figure 13 plots the total
oscillation period (tos, line with circles), the duration of
the quasi-steady HM (tHM, line with dots), and the du-
ration of the transient TM (tTM, line with stars) from
one cycle of the oscillation, as a function of c in the
oscillatory window of the f–c plane (all other param-
eters are the same as in Fig. 6). The total oscillation
period tos is dominated by the duration of the quasi-
steady HM tHM. When freshwater forcing c is small,
tHM decreases as c increases; when c is large, tHM in-
creases as c increases.

If we vary M (background mixing rate) in region II,
III on the f–M plane and choose appropriate initial con-
ditions when in region II, we can also illustrate the
relation of oscillation period to background vertical dif-
fusivity. Figure 14 shows tos (line with circles), tHM (line
with dots), and tTM (line with star) as a function of M
in the oscillatory window of the f–M plane, other pa-
rameters are the same as in Fig. 7. The duration of the
HM, tHM, always decreases as background mixing rate
M increases because the larger M becomes, the faster
the deep ocean temperature increases due to vertical
diffusion, and the earlier polar convection starts.

4. Summary and Discussion

a. Haline–thermal mode switching mechanism

The underlying mechanism of haline–thermal mode
switching was studied in an OGCM of the late Permian
ocean circulation and a box model was constructed to
study the stability properties of the steady states and
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FIG. 12. Projection of the phase portrait of the limit cycle on T̂d–Ŝd plane: (a) OGCM and
(b) three-box model.

FIG. 13. Oscillation periods as a function of freshwater forcing c.
The total oscillation period (line with circles), the period of HM
during one cycle of the oscillation (line with triangles), and the period
of TM during one cycle of the oscillation (line with stars).

FIG. 14. Oscillation periods as a function of background vertical
diffusivity M. The total oscillation period (line with circles), the pe-
riod of HM during one cycle of the oscillation (line with triangles),
and the period of TM during one cycle of the oscillation (line with
star).

transitions between them. Within certain parameter re-
gimes of forcing, mixing, and Pole–equator temperature
gradient—which in the context of the box model can
be precisely determined (see below)—a quasi-steady
HM evolves toward a steady HM. Polar stratification
decreases due to the increase in abyssal ocean temper-
atures of the HM. Eventually an unstable stratification
occurs associated with the formation of warm, salty,
large-scale eddies in the polar surface region that act as
‘‘preconditioning’’ centers for polar deep convective ac-
tivity. Thus before reaching the steady HM attractor, the
system jumps away to a transient, nonsteady TM; strong
convection increases the polar surface density signifi-
cantly and induces a mode switch. Since a steady TM
does not exist, freshwater forcing gradually becomes
dominant again and the density stratification continues
to increase until polar convection terminates and the
cycle repeats itself.

The idealized box model was used to elucidate this
underlying mechanism which, in certain parameter re-

gimes, is a property of ocean circulation models and
perhaps the real climate system. The box model illus-
trates the inherent instability of the HM and the im-
portance of polar convection in the flushing mechanism.
A key property of our box model is the manner in which
deep convection is parameterized. Motivated by our
OGCM results, we employ a stratification threshold «,
so that polar convection can occur even though the
large-scale, mean density structure is statically stable—
see Marshall and Schott (1999) for a discussion of the
observed patchiness of deep convective process in the
current ocean.

b. Stability analysis of the box model

Using steady solutions, and time-dependent integra-
tions of the box model, we are able to fully explore the
circulation and stability properties of the system over a
wide range of parameter space. On the bifurcation di-
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agram of overturning strength and freshwater forcing,
there is a window in which the steady HM is unstable
and thermohaline oscillations are possible. When the
freshwater forcing exceeds an upper limit, only stable
HMs exist. For the freshwater forcing below a lower
limit, only stable TMs exist. But within a broad window
of freshwater forcing the HM oscillates and the oscil-
lation period exhibits a minimum.

Similarly, on the bifurcation diagram of overturning
strength and background vertical diffusivity, there is a
window where the steady HM is unstable, and ther-
mohaline oscillations are possible. When the back-
ground vertical diffusivity exceeds an upper limit, only
stable TMs exist. Below that limit thermohaline oscil-
lations are possible, and the oscillation period decreases
monotonically as the vertical diffusivity increases.

The box model also shows that, in a warm equable
climate with, presumably, a smaller Pole–equator sur-
face temperature gradient, a smaller critical intensity of
freshwater flux E 2 P is required to induce an HM.

c. Implications for paleoclimate and biogeochemical
cycles

Global mode switching of the thermohaline circula-
tion is a hypothesis which, on the basis of the work
presented here and elsewhere—see, especially Marotzke
(1989); Wright and Stocker (1991); Weaver and Sara-
chik (1991a,b); Weaver et al. (1993); Winton and Sar-
achik (1993); Huang (1994)—should be taken seriously.
Our box model suggests that it may have been much
easier to switch into an unstable HM with thermohaline
oscillations, during warm equable paleoclimates such as
the mid-Cretaceous and late Permian. During glacial
periods, the meridional temperature gradient is stronger
and the amplitude of freshwater forcing beyond which
no steady TM exists would be larger. On the other hand,
the freshwater forcing can be significantly enhanced in
cold climates by ice melt and a related oscillation may
be a possibility.

In our OGCM of the late Permian ocean and the time-
dependent solutions of three-box models, a thermoha-
line oscillation is obtained when the amplitude of the
freshwater flux, E 2 P, increased to about 1.3 m yr21,
twice the value of the present climate. Is this a possi-
bility in warm climates? Manabe and Stouffer (1994)
showed in a CO2 quadrupling experiment that the in-
tensity of E 2 P increased to about 1.5 that of present
levels. In the late Permian, the P level could haveCO2

been very much higher than that of today (Budyko and
Ronov 1979). Moreover, increased dust and sulfate aero-
sol due to stronger volcanic activity during the late
Permian could also induce stronger freshwater flux (Ko-
zur 1998). Here in our OGCM study, we assumed that
the spatial distribution of E 2 P is similar to that of
the modern climate. However, little is known about the
actual distribution of E 2 P in the late Permian. Even
if each component—evaporation and precipitation—

were not very different from today, a change in the
spatial distribution of either could have induced signif-
icant change in ocean circulation.

In our OGCM of the late Permian ocean and the time-
dependent solutions of the three-box model, the ther-
mohaline oscillation is obtained with a vertical diffu-
sivity of M̂ ; 3 3 1025 m2 s21. The physics that control
the level of diapycnal mixing in the ocean remain un-
certain even for the modern ocean. Measurements of the
vertical spread of deliberate tracer releases in the main
thermocline (Ledwell et al. 1993) yield 1.1 3 1025 m2

s21, in the lower range of that which is assumed in large-
scale ocean circulation models and adopted in our mod-
el. The somewhat reduced vertical diffusivity employed
in our simulations of the HM is nevertheless within the
observed range of mixing in the modern ocean and does
not imply that we think the late Permian ocean mixing
rate was necessarily weaker than today’s.

Thermohaline oscillations can have important impli-
cations for ocean biogeochemical cycles. During the
sustained HM (between flushing events), the overturn-
ing circulation is weak and shallow, and deep ocean
transport is dominated by weak, small-scale mixing pro-
cesses. In this situation abyssal oxygen concentrations
can gradually become significantly depleted (Zhang et
al. 2001). During the transient TM, however, strong deep
convection occurs in the polar region and deep ocean
oxygen is replenished. Hence, oscillatory overturning
circulation could lead to deep ocean anoxic–oxic cycles
with periods ranging between a few hundred and a few
thousand years. Unfortunately, the resolution of most
geological records for such warm paleoclimates cannot
resolve centuries–millennial timescales, and the long pe-
riods of HM circulation might dominate the sedimentary
record. Indeed it would be very difficult to observe such
short periods in the paleorecord even if the mode switch-
ing had occurred. Thus signatures of the haline–thermal
mode switching in the paleorecord must be studied fur-
ther, particularly at high temporal resolution.

The haline–thermal mode switching mechanism may
also be sensitive to the land–sea distribution. The critical
parameters separating different regimes on the bifur-
cation diagrams may be changed by the land–sea dis-
tribution. Thus the impact on the mode switching mech-
anism of various land–sea distributions at different geo-
logical periods during earth’s history would be of in-
terest to study.

d. Future work

The three-box model explored here represents only
one hemisphere since this is the simplest system with
which we can illustrate the underlying physical mech-
anism of mode switching. The transient TM circulation
found in OGCM simulations is, on the other hand, high-
ly asymmetric about the equator. However, during the
transient TM, deep downwelling only occurs in one
hemisphere, and most of the upwelling occurs within
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the same hemisphere. Thus in the OGCM deep ocean
temperatures covary with polar SST in the same hemi-
sphere with the other hemisphere playing a passive role.
Thus a single-hemisphere box model can catch, we be-
lieve, the essential physical mechanism of the thermo-
haline oscillation. Nevertheless studies with interhemi-
spheric box models are called for and may have wider
application than the one studied here.

A previous GCM study of high CO2 climates (Manabe
and Bryan 1985), using a nonlinear equation of state,
showed that the overturning circulation strength might
not be as sensitive to surface polar–equator temperature
gradients as found in our study of a box model with a
linear equation of state. However, Manabe and Bryan
(1985) employed a low spatial resolution OGCM with
weak vertical diffusivity—0.31 cm2 s21, and found very
sluggish ocean overturning circulation and unrealisti-
cally small poleward heat transport in the ‘‘normal’’
CO2 experiment. Studies with the same Geophysical
Fluid Dynamics Laboratory (GFDL) OGCM, at similar
horizontal resolution but at much higher vertical dif-
fusivity—1 cm2 s21 (Weaver et al. 1993; Hotinski et al.
2001) showed that the overturning circulation decreased
significantly or even switched into the HM, with smaller
surface polar–equator temperature gradients. So the sen-
sitivity of overturning circulation strength to surface
polar–equator temperature gradients deserves further
study with a nonlinear equation of state.

Localized deep convection in a (generally) stably
stratified ocean, which is a key component of these os-
cillations, is consistent with modern observations of the
convective process (Marshall and Schott 1999). In to-
day’s ocean, deep polar convection is only observed in
confined regions. The warm salty eddies that induce the
localized convection (described in section 2) are similar
to the convecting eddies found in a previous OGCM
study (Winton 1993). The eddies transport warm salty
water into the polar region and are important for the
onset of polar convection. The mechanism of formation
of these eddies is worthy of further investigation and is
clearly related to rotating baroclinic fluid dynamics with
baroclinic instability a likely candidate. The phenom-
enon is parameterized simply in the box model, which
does not explicitly account for rotational effects. Lo-
calized convective activity can also be found in 2D
OGCMs (Marotzke 1989) when the polar density dis-
tribution is not homogeneous for a particular freshwater
forcing profile.

Both the OGCM and box model studied in this paper
are forced with prescribed distributions of surface at-
mospheric temperature and freshwater fluxes. Do the
circulation regimes obtained exist in a more realistic,
dynamic, coupled atmosphere–ocean system? Since the
atmosphere provides negative feedback to the air–sea
heat flux, we believe that such oscillatory solutions do
exist in a coupled model. But this needs to be dem-
onstrated by further study.

Finally, it should be emphasized that our knowledge

of past ocean circulation emerges largely from the sed-
imentary record, through the preservation of isotopic
signatures or organic material. To connect our models
more closely to the data record, and in order to under-
stand the implications of these significant global climate
changes for the biogeochemical system, we are imple-
menting biogeochemical cycles (d13C, O2, etc.) into the
models reported here. The results will be addressed in
a forthcoming paper.
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APPENDIX A

OGCM Configuration

The late Permian land–sea distribution was quite dif-
ferent from that of today. The supercontinent Pangaea
extended from the North Pole to the South Pole, the
Panthalassic superocean covered nearly 70% of earth’s
surface and connected to the small, narrow Tethys sea.
A paleobathymetry was kindly provided by D. B. Row-
ley and used to configure our ocean circulation model
for the late Permian. Although epicontinental regions
are represented, the deep ocean is assumed to have a
flat bottom with a uniform depth of 4000 m due to lack
of other evidence. The ocean domain of the model ex-
tends from 708N to 708S. The surface forcing fields are
based on an atmospheric circulation model of the late
Permian (Kutzbach et al. 1989, 1990) and we enhanced
the amplitude of the freshwater flux E 2 P. All surface
forcing patterns were zonally averaged (Fig. A1), ad-
justed to be symmetric about the equator and then these
zonally averaged fields were used to drive the 3D cir-
culation. Mixed surface boundary conditions were em-
ployed—the sea surface temperature (SST) is relaxed
to a prescribed surface air temperature showed in Fig.
A1b (Haney 1971), but, to avoid spurious feedbacks
between the freshwater flux and local salinity, the effect
of precipitation is represented as a salinity flux, thus,
QS 5 Ŝo(E 2 P), where Ŝo is the mean surface salinity
of the ocean. The mean ocean salinity is 34.6 psu. The
relaxation timescale for SST in this simulation is about
160 days, and this damping strength is much weaker
than that used in previous OGCM simulations with
mixed boundary conditions (Weaver and Sarachik
1991b; Marotzke and Willebrand 1991). This corre-
sponds to a sensitivity of surface heat flux to changes
in SST of about 15.6 W m22 K21 for a 50-m-deep mixed
layer, which is close to the sensitivity for observed SST
anomalies of typical scales (Seager et al. 1995). This
weak damping prevents our simulations from excessive
variability (Zhang et al. 1993).
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FIG A1. Surface atmospheric forcing fields used to drive the
OGCM: (a) surface wind stress, (b) surface air temperature, (c) and
freshwater forcing E 2 P.

APPENDIX B

Dimensional Dynamic Equations for the
Three-Box Model

ˆdT ql ˆ ˆ ˆ ˆ5 l(T 2 T ) 1 (T 2 T )Al l d hdt 2Vl

ˆ|q | Kˆ ˆ ˆ ˆ ˆ1 (T 1 T 2 2T ) 1 (T 2 T )d h l h l22V Ll

M̂l ˆ ˆ1 (T 2 T ) (B1)d lh 1 H
h

2
ˆdT qh ˆ ˆ ˆ ˆ5 l(T 2 T ) 1 (T 2 T )Ah h l ddt 2Vh

ˆ|q | Kˆ ˆ ˆ ˆ ˆ1 (T 1 T 2 2T ) 1 (T 2 T )l d h l h22V Lh

M̂h ˆ ˆ1 (T 2 T ) (B2)d hh 1 H
h

2

ˆdT q |q |d ˆ ˆ ˆ ˆ ˆ5 (T 2 T ) 1 (T 1 T 2 2T )h l h l ddt 2V 2Vd d

M̂l ˆ ˆ1 (T 2 T )l dh 1 H
2H

2

M̂h ˆ ˆ1 (T 2 T ) (B3)h dh 1 H
2H

2
ˆ ˆdS FS q |q |l 0 ˆ ˆ ˆ ˆ ˆ5 1 (S 2 S ) 1 (S 1 S 2 2S )d h d h ldt h 2V 2Vl l

ˆ ˆK Mˆ ˆ ˆ ˆ1 (S 2 S ) 1 (S 2 S ) (B4)h l d l2L h 1 H
h

2
ˆ ˆdS FS qh 0 ˆ ˆ5 2 1 (S 2 S )l ddt h 2Vh

|q | ˆ ˆ ˆ1 (S 1 S 2 2S )l d h2Vh

ˆ ˆK Mhˆ ˆ ˆ ˆ1 (S 2 S ) 1 (S 2 S ) (B5)l h d h2L h 1 H
h

2

ˆdS q |q |d ˆ ˆ ˆ ˆ ˆ5 (S 2 S ) 1 (S 1 S 2 2S )h l h l ddt 2V 2Vd d

M̂l ˆ ˆ1 (S 2 S )l dh 1 H
2H

2

M̂h ˆ ˆ1 (S 2 S ). (B6)h dh 1 H
2H

2

Here Ŝ0 is mean salinity of the ocean. At the air–sea
surface there is no net salt flux so the total salinity of
the three boxes is conserved. Hence, there are only five
independent dynamic variables.

APPENDIX C

Properties of Steady-State Solutions

For steady TM ( f . 0), the nondimensional mean
density difference between surface and deep ocean box-
es can be obtained from Eqs. (7) to (12) and (6) as

f M 1 g fhDr 5 2 (C1)ld m M 1 M 1 g ff l h

f MlDr 5 . (C2)hd m M 1 M 1 g ff l h

From the above relations, we know that Drld , 0 and
Drhd . 0 since f . 0, that is, for steady TM ( f . 0)
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the low-latitude surface is always less dense than the
deep ocean, and the high surface is always denser than
the deep ocean. Combining with the rules of convective
adjustment, we can see that, for physically possible
steady TM ( f . 0), no convection occurs in low lati-
tudes (Ml 5 M) while strong convection happens in
polar regions (Mh 5 Msc). Substitute Ml 5 M, Mh 5
Msc into Eq. (13), we can obtain the steady TM solutions
for given parameters.
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