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ABSTRACT 

Berry, P. and Marshall, J., 1989. Ocean modelling studies in support of altimetry. Dyn. 
Atmos. Oceans, 13:269-300 

Simulation studies are presented that consider the degree to which baroclinic ocean 
circulation models are constrained by observations of the surface pressure field on space and 
time-scales possible with future satellite-borne altimeters. Two- and three-layer eddy resolv- 
ing quasi-geostrophic models are used to simulate and assimilate altimetric observations. 

For synoptic mapping of the oceanic eddy field on the scale of an ocean basin, a satellite 
orbit repeat time of 14 days is found to be optimum. Our studies suggest that altimetric 
observations will provide strong constraints on the surface flow of such models and, if used in 
conjunction with them, may be used to infer the deep flows. 

1. INTRODUCTION 

Satelli te a l t imet ry  offers  the p rospec t  of  global  coverage  of  surface geo- 
s t rophic  cur ren ts  on  synopt ic  t ime-scales,  and  as such could  p lay  a cent ra l  
role  in fu ture  oceanograph ic  observing  campaigns .  Perhaps  the only  way  of  
ma k ing  sense of  the i n f o r m a t i o n  p rov ided  by  a l t imeters  and  b lend ing  it in a 
dynamica l ly  cons is ten t  way  wi th  o ther  types  of  data ,  is b y  ass imila t ion in to  
dynamica l  ocean  mode ls  in m u c h  the same way as meteoro logis t s  f o rm  their  
analyses.  

Ass imi la t ion  of  global  da t a  sets in to  global  ocean  models  is no t  a realistic 
possibi l i ty  at present .  F o r  the immed ia t e  fu ture  we mus t  p roceed  in stages 
invest igat ing regional  p rob lems  with ocean  models  ta i lored to the prevai l ing 
local  dynamics .  In  the presen t  con t r i bu t i on  some aspects  of  synopt ic  map-  
p ing  of  geos t rophic  eddies  f r om a l t imet ry  are cons ide red  b y  ass imila t ion 
in to  a mul t i - layer  quas i -geos t rophic  ocean  model .  

0377-0265/89/$03.50 © 1989 Elsevier Science Publishers B.V. 
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A synoptic description of the oceanic geostrophic eddy field has as its aim 
a sequence of instantaneous maps at high spatial (10-100 km) and temporal 
(weeks-months) resolution. The altimeter has the potential to provide an 
appropriate data set for mapping the surface signature of the oceanic eddy 
field. This particular application of altimetry is considered here because we 
believe it to be a feasible one, rather than because it should necessarily be 
regarded as having a high scientific priority. The geostrophic eddy field has 
a strong surface-height signal and is of small horizontal scale and so is 

/ 

associated with pronounced sea-surface tilts. Systematic long wavelength 
uncertainties in tides and satellite orbits, which may compromise our ability 
to monitor the gyre-scale circulation, may not be limiting on the 
synoptic-scale. Further, detailed gravimetric geoids exist for the western 
North Atlantic whose errors do not appear to swamp the oceanographic 
signal, suggesting that absolute velocity determination may be a possibility 
(see Cheney and Marsh, 1981). Finally, since the geostrophic eddy field is a 
dynamical instability of the larger scale flow, and is rather well described by 
the conservation of potential vorticity on synoptic time-scales, our dynami- 
cal understanding is arguably sufficient to contemplate the use of numerical 
models to assimilate the height-field data. 

A less ambitious, but nevertheless valuable application of models lies in 
observing system simulation studies where they can be used to optimize the 
deployment of observing platforms. For example, in altimetry there needs to 
be a compromise between spatial and temporal coverage. Models can help 
us arrive at opt imum specifications for, say, synoptic mapping of Gulf 
Stream variability. 

Our investigation assesses the degree to which observations of the surface 
pressure field on the space and time-scales possible with a satellite-borne 
radar altimeter are useful in constraining eddy resolving, basin-scale ocean 
circulation models. Our study is the first, we believe, to contemplate 
assimilation into basin-scale models that simultaneously resolve the synoptic 
eddy field. Observing system simulation studies are presented which suggest 
that such data will provide strong constraints on the surface flow in a 
baroclinic model, and allow us to infer the deep flow. 

In section 2 the rationale for using dynamical models as a vehicle for 
blending diverse data types is set out, stressing the importance of the model 
as a source of a priori information. The objective analysis technique em- 
ployed to blend model and data is introduced. In section 3 an ocean model 
is briefly described and in section 4 observing system simulation studies with 
two and three-layer versions of the model are presented. A mechanism by 
which information at the surface is projected vertically is proposed and 
provides the dynamical background used to interpret the data assimilation 
experiments. 
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2. THE USE OF MODELS IN THE ANALYSIS OF DATA 

Oceanographic data are of many types, of varying quality and is irregu- 
larly distributed in space and time. The observing system is improving but  it 
will always be incomplete and subject to errors, much more so than the 
meteorological network, for in the ocean there are almost insurmountable 
sampling problems. From these observations a best estimate of the true state 
of the ocean is to be constructed. Because of the sparcity of the data and 
their inaccuracy there are an infinite number  of ocean states consistent with 
the observations and so there is no alternative but  to rely heavily on a priori 
information in deciding which ocean state is most likely. Minimum variance 
estimation, a tried and tested method of optimally combining observations 
with a priori information, is now outlined in a context that is familiar to 
oceanographers and in a manner which makes transparent the use of prior 
knowledge (for a very useful introduction to the theory see Ghil et. al. 
(1981)). The technique will be employed to blend model and data in our 
simulation studies of sections 3 and 4. 

2.1. Minimum variance estimation 

Suppose u are variables representing the state of the ocean on a regular 
grid (dimension n) and there are incomplete and regularly spaced observa- 
tions of u, z (dimension - -p ,  p < n), contaminated by  errors 

z = A u  + c (1 )  

where A is a matrix representing the process of taking an observation and 
is the error in that observation. The z could be expendable bathythermo- 
graph measurements of temperature and salinity, velocities measured by  
current meters, satellite observations of the ocean topography and wind-stress 
curl, etc. 

For  example, in Fig. I (showing the upper layer stream function from an 
eddy-resolving model), the u would correspond to the values of the stream- 
function at the grid points in each layer of the numerical model  and z would 
correspond to the (simulated) satellite observations of the upper  layer along 
the selected tracks indicated by  the criss-crossing black lines. Since some 
function of the variable may be observed rather than the analysis variable 
itself, the entries of A need not be 0 or 1. However,  in our simple case A is 
made up of only 0s and l s  and has a particularly simple form reflecting the 
regular spatial pat tern of the (repeated) satellite tracks. From these observa- 
tions, z, our object is to make the best estimate of u, fl. 

Accordingly we look for an estimator H which operates on the data 

,~ = l-lz (2) 
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to give an estimate of u, h. To derive an opt imum H (in the sense of least 
squares) we form the covariance of the estimated error (from eqns. (1) and 
(2)) and choose the one that minimizes its trace. This opt imum H is (see, for 
example, Rodgers (1976) or Ghil et al. (1981) and references therein) 

H = (ATCZ'A + Cu-')-IATc~ - '  (3) 

the well known min imum variance estimator, where C, is the covariance of 
u, and C c is the covariance of the observing errors. 

Of all the linear estimators, eqn. (3) is the best in the sense of least 
squares. Substituting eqn. (3) into eqn. (2), gives an estimate 

fl = C, AT(AC, A T + C~)- lz  

= (ATC~-'A + Cul)-IATc(-lz (4) 

with an expected error 

C a _ , =  (ATC~-'A + C=a) -1 (5) 

Equation (4) is useful if we are willing to make a priori assertions 
concerning the spatial correlations and amplitude of the field u (i.e., if there 
is a priori knowledge of Cu), for it describes how to weight the observations 
in an opt imum way. How good the best estimate is depends on our ability to 
make useful statements about the statistics of u and the observational errors 
(within the limitations of the data). 

If, however, we are not prepared to make any statements about the 
solution covariance at all, but  have information only about the statistics of 
the observational errors (C, is assumed known) then eqn. (4) reduces to (as 
Cu--, o0) 

fl = (ATC(- aA) - 1ATC2 lz (6) 

Equation (6) will be useful in section 2.2, when a priori information, for 
example as provided by an ocean model, is treated as data. 

In most situations, though, the minimum of information solution (eqn. 6)) 
can be improved because there is a priori information about the variance 
and spatial correlation of z. This comes from past observations and dynami-  
cal understanding and can be used to make useful statements about C, 
enabling our estimate to proceed via eqn. (4). 

In the present context our object is to synoptically map the geostrophic 
eddy field exploiting altimetry and an ocean model. On synoptic time-scales 
the dynamics is governed by the close conservation of potential vorticity (see 
section 3). The preferred scale of ocean eddies is on the Rossby radius of 
deformation,  L = NHe/f, where H e is the equivalent depth of a vertical 
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mode  (first baroclinic, say), N is a measure of the stratification and f is the 
Coriolis parameter.  Even though our knowledge of geostrophic eddy dy- 
namics may be incomplete and our statements therefore not very precise, it 
is nevertheless useful information with which to guide our choice of C u. In 
this way, prior knowledge of ocean dynamics is brought to bear in the 
analysis of the observations, constraining the number  of possible solutions. 

For  instance, a particularly simple, yet useful, form of the correlation is 
the Gaussian covariance structure function 

F ( ~ )  = e-'2~/b)2 

where F(~) = ~ [ u ( r ) -  fi][u(r + ~ ) - f i ] )  and fi is the mean. F(~)  is the 
average over all r of two values of u separated by a distance ~. The 
correlation scale, b, is set by the spatial scale of the field u, of the order of 
the Rossby  radius for the oceanic synoptic scale. 

It is important  that the covariance structure function be chosen carefully, 
since it determines the scales in the data that are enhanced in the estimate, 
and also how the information is interpolated between data points. The way 
in which the estimator H weights the various scales in the data can be made 
transparent by looking at the eigenvectors and eigenvalues of Cu; this is 
discussed further in, for example, Rodgers (1976), Hollingsworth (1984) and, 
in the present context, by  Marshall (1985a). Using such techniques, it can be 
shown that if a Gaussian covariance is chosen for C~, and this is combined 
with a diagonal covariance C, = o 21 for random, uncorrelated error, H will 
always smooth the data, the extent to which it does so being dependent  
on b. 

2.2. Models as a source of a priori information 

The minimum variance estimator (eqn. (4)) is very useful if our a priori 
information is only of a statistical nature, but  a potentially more powerful 
and direct use of our dynamical  understanding would be to use a dynamical 
model  to provide a priori information about  the field, u, in addition to its 
statistics, i.e., to use it as a 'first guess'. This will be of particular value in the 
oceanographic context because the interpolation problems are so acute that 
all our prior knowledge of ocean dynamics must be brought to bear in the 
interpolation procedure to make the best use of the data available. Since the 
ocean model is the most  concise statement of this knowledge, it seems 
natural to use it as an analysis tool. In such an approach the ocean model  
provides a first guess of  u, which we will call fJ( - ), adopting the notation of 
Ghil et al. (1981). It is enlightening to regard the first guess as a 'vir tual  
observation'  that is of the same nature as the field observations, but  which 
differs only in its error characteristics; for a more detailed discussion from 



275 

this perspective see Marshall  (1985a). Virtual observations can be treated 
explicitly as data  by augment ing  the data  eqn. (1) thus 

f J ( - )  = Iu + ¢~ (7) 

Here the ocean model  is being used as a measuring ins t rument  providing a 
first guess of u, with an error % that  is assumed independent  of the 
observations.  When  observations z of u become available they are combined  
with a first guess to form a better estimate of u, fi( + ). So eqns. (1) and (7) 
are combined  to give (following Jackson, 1979) 

z ,  = A , u  + ¢ ,  (8) 

where 

z , =  f l ( - )  ; A . =  

and 

The  covariance of data  errors Ce. = E(ccT,) is 

C ' * = (  C~O U0) 

where U = E(%¢ T) is the covariance of the ocean model  errors and C, = 
E(¢¢ T) is the covariance of errors in the observations. 

Equat ion (8) demonstra tes  clearly how the use of a priori informat ion has 
changed the original underdc te rmined  problem, eqn. (1), into an overde- 
termined problem (n + p > n) with a unique solution. Because our a priori 
informat ion  has been treated as data, eqn. (8) can be solved using eqn. (6) to 
give a new, improved estimate 

fl( + ) =  (ATC~- aA + U-a)-I[ATC~-az + U - I l l ( - ) ]  (9a) 

with expected error 

U + =  (ATC~-IA + U - a )  -a (9b) 

This is the most  general form of m i n i m u m  variance estimator. Equat ion  
(5) is a special case of eqn. (9) with fl( - ) = 0. 

Before proceeding further it should be emphasized that  all a priori 
informat ion can be treated as virtual observations (dynamical  constraints,  
smoothness  criteria, climatology, etc.) by writing it in the form (8). This is an 
enlightening perspective f rom which to view a priori information.  In eqn. (5) 
the 'v i r tual  observation'  was f l ( - ) =  0 and the expected error in this 
observat ion was U. 
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Although at first sight eqn. (9) looks rather complicated, it is nothing 
more than a straightforward generalization of the well-known scalar formula 

Y'. (observation/error in observation) 
estimate = 

Y] (1/error)  

Not  surprisingly the best estimate weights the observations (real and 
virtual) with respect to their error covariances. 

2.3. Optimum interpolation 

Equation (9) involves the inversion of large (n x n) matrices and so is of 
limited practical use. However it can be written in a less computationally 
taxing form thus (see, for example, Rodgers (1976)) 

f i (+)  = f i ( - )  + K [ z -  Aft(-)]  (lOa) 

where 

K =  UAT(AUA T + C,) -~ (10b) 

is a matrix of weighting coefficients. Unlike eqn. (9), eqn. (10) only involves 
the inversion of ( p  Xp)  matrices, where p is the number of observations. It 
relates the correction to the first guess to observed deviations from it, 
through the matrix K. Information about the geometrical configuration of 
the observation and estimation points is contained in the covariances, and 
our choice of U determines how the data are interpolated spatially. Equation 
(10) has been derived on numerous occasions and applied in many diverse 
fields. It is the inverse method used by Wunsch (1978) to determine the 
ocean circulation from hydrographic sections. Equation (10) is the general 
form in which linear estimation is applied in meteorological interpolation, 
where it is known as objective analysis. It was first introduced into the 
meteorological literature by Eliassen (1954) and later developed by Gandin 
(1965). The most systematic and concerted effort to apply objective tech- 
niques combining dynamical models and data in an oceanic context is that 
due to Robinson and collaborators (see Robinson (1986) for a review). 

Equation (10) sets out a general procedure to combine observations and a 
priori constraints optimally. We now describe in more detail how the 
formalism could be used to blend observations of ocean topography from 
altimetry with virtual observations provided by an eddy resolving model to 
synoptically map the geostrophic eddy field. As in the meteorological 
application of eqn. (10), instead of adopting climatology as a first guess, a 
model is used to provide a short-range forecast interpolating information in 
space and time. In this way the forecast provides information about the 



277 

field, and so can be regarded as a measuring instrument just  like the 
altimeter. The philosophy behind the use of a dynamical  model in this way 
is based on the assumption that the information provided by it is close in 
some sense to the truth (i.e., the model has some skill). It is then reasonable 
to linearize the inversion about the first guess as assumed in eqn. (10a). 

3. OBSERVING SYSTEM SIMULATION STUDIES 

3.1. The ocean model 

We briefly describe an eddy-resolving circulation model of the Gulf  
Stream and its recirculation, which is used to establish a ' t ruth '  or ' refer- 
ence' circulation. This is sampled to simulate an altimetric data  set and a 
degraded version of the model is subsequently employed to assimilate the 
data. 

The ocean is an N layer quasi-geostrophic model confined to a rectangu- 
lar basin on a #-plane, and governed by the quasi-geostrophic potential 
vorticity equation. Data  assimilation experiments have been carried out with 
two- and three-layer versions of the model. The circulation is driven by an 
imposed wind-stress curl and frictionally retarded 

0q 
- -  + J ( + ,  q)  = G (11) 
0t 

where q is the quasi-geostrophic potential vorticity, ~b is the streamfunction, 
and G are potential vorticity sources and sinks. 

A finite-difference version of eqn. (11) is stepped forward from a known 
initial state in a double gyre configuration 

O < _ x < L  

- 0 . 5 L _ < y _ <  0 .5L 

with 

~7 A(wind stress) = T o sin(2~ry/L) 

to generate a reference 6-month sequence of 'synoptic '  maps of the Gulf  
Stream and its recirculation. Details of the numerical implementat ion can be 
found in Brugge et al. (1987). Model parameters are given in the Appendix. 

Figure 1 shows the streamfunction (a) and potential vorticity (b) in the 
uppermost  layer of a two-layer integration in a 3000 x 3000 km basin. An 
unstable internal jet  flows eastward parallel to the front in the potential 
vorticity field, separating subpolar and subtropical gyres. The scale of the 
eddying motion is set by the Rossby radius of deformation ( -  48 km); the 
eddies have a strong pressure signal and so are associated with pronounced 
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sea-surface slopes. In Fig. 1 the sea-surface drops by about 1 m, moving 
northwards across the eastward flowing Gulf Stream. The time-scale of the 
eddying motion is of the order of weeks and months; cut-off warm and cold 
rings with closed potential vorticity contours (indicating material transfer of 
fluid across the front) are particularly long lived. Inspection of grey-scale 
movie sequences of the potential vorticity field reveals a wealth of dynamical 
activity: there is evidence of Rossby wave radiation from the meandering 
Gulf Stream, Rossby wave breaking, ring formation, spontaneous generation 
of vortex pairs, etc. In common with all quasi-geostrophic models there is 
perhaps less of a proclivity for loops to pinch-off from the Stream: as can be 
seen in Fig. lb the internal jet remains rather contiguous. Furthermore, in 
this two-layer integration the eddy activity tends to be concentrated in the 
region of the internal jet and is not prevalent in the interior of the gyre. 
However, in the experiments presented in section 4.5, with a three-layer 
model, the interior of the gyre is also explicitly unstable and the eddy 
activity more uniformly distributed over the basin. 

Despite the limitations of the quasi-geostrophic formulation, it has several 
advantages over other perhaps more realistic models with more degrees of 
freedom. If it is assumed (consistently with the layered formulation) that the 
horizontal velocity does not vary with depth within the layer, then the upper 
layer streamfunction can be interpreted in terms of the ocean topography, 
the deviation of the sea surface from the gravimetric geoid h = ( f / g ) + ,  
where f is the Coriolis parameter and g is the acceleration due to gravity. 
Thus the model can assimilate height field data in an obvious way. Further- 
more, because it is a filtered model, it does not suffer from initialization 
problems associated with spurious gravity wave activity generated by noisy 
data. Finally, the model has space and time-scales in common with the 
oceanic synoptic scale; the flow depicted in Fig. 1 has many realistic features 
both in the mean and eddy characteristics. 

3.2. Sampling strategy 

On reaching a statistically steady state, the model is integrated forward to 
generate a reference 6-month sequence of 'synoptic' maps of the eddying 
Gulf Stream and its recirculation. This is our ' truth'  circulation, which is 
then sampled to simulate the altimetric data set. 

The ' truth'  circulation is sampled, simulating the spatial density and 
temporal frequency of the tracks laid down by a satellite in an exactly 
repeating orbit. For such an orbit, with period ~'rev and repeat time T, there 
are T/'rre v revolutions per repeat cycle, giving a track spacing at the Equator 
of 

360 
d - - -  (degrees) 

T/~rev 



TABLE I 

Repeat times and track spacings for a satellite in an 800-km-altitude orbit 
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Repeat time Track separation at 45 o North d / 2 b  a 

(days) (d (km)) 

10 200 1.3 
14 140 0.9 
30 63 0.4 

a b is the correlation scale (78 km) used in the simulation experiments. 

Thus the temporal and spatial resolutions are limited by 

d x T--- 360~'re v 

For SEASAT, which flew at an altitude of 800 km, ~'rev = 0.0698 days, 
yielding the following approximate relationship between repeat-time and 
track spacing 

repeat time x spacing between tracks at equator - 24 (12) 
(days) (degrees) 

The spacing between the tracks decreases with the cosine of the latitude. 
In our simulation studies the satellite is constrained to pass over columns 

and rows of the finite-difference grid, giving an independent measurement at 
each grid point along the track. To give an impression of the spatial 
resolution possible, simulated tracks on a 14-day repeat over the 3000 x 3000 
km basin are shown in Fig. 1. Table I gives chosen track separations, d, as a 
function of repeat time. The satellite is flown over this grid, laying down its 
tracks in a pre-determined order; subsequent experiments were found to be 
insensitive to the details of this ordering. 

It is assumed that after the required corrections (due to sea-state bias, 
atmospheric water vapour, atmospheric loading, ionospheric effects, etc.) 
have been made, there remains an irreducible random error, c, in the 
sea-surface height measurement. It is supposed that errors due to orbital 
uncertainties and tides have sufficiently long wavelengths relative to the 
synoptic scale that they result in a systematic error along the track that can 
be eliminated. It should be emphasized that this is perhaps a rather optimis- 
tic assumption on the scale of the gyre since long-wavelength tracking errors 
may be difficult to separate from the mean circulation on scales of 3000-4000 
km. Furthermore, no attempt is made to simulate the error in the gravimet- 
ric geoid, but we acknowledge that it is this spatially correlated error (of 
uncertain amplitude and scale), rather than the random errors, which will 
ultimately limit the potential of altimetry in ocean circulation studies. The 
combined problem of determining the ocean circulation whilst improving 
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the geoid, using ocean models in conjunction with altimetry, is discussed by 
Marshall (1985a). 

Thus, our simulated observations of the deviation of the sea surface from 
the gravimetric geoid along a track are 

Z = g track -[- ~ (13) 

where h t rack is taken from the ' t ruth '  circulation and c is the random error 
component  taken from a normal distribution with zero mean and standard 
deviation o 0 

Expectation E(ccT) = o2I } (14) 

and E(c)  = 0 

Although eqn. (14) is a gross oversimplification of the expected errors 
(principally geoid and tracking) of the altimetric system, and will lead to 
over-optimistic results, it seems sensible here to adopt the simplest possible 
error structure to provide a base-line for future reference. For  example it is 
by no means clear, a priori, that perfect observations of the surface pressure 
field on the space and time scales possible with a satellite-borne altimeter 
can constrain a highly non-linear eddy-resolving ocean circulation model 
such as the one employed here. 

3.3. Analysis procedure 

We now consider the problem of forming an estimate ]1 over the entire 
I × J grid from simulated observations repeated along selected tracks. As 
stressed in section 2 this is an underdetermined problem and so heavy 
reliance must be placed on a priori information. 

A climatological field at the resolution of the grid could be chosen as a 
first guess together with an estimate of its error. But this is an understate- 
ment  of our a priori knowledge because there is dynamical  information that 
can be brought to bear in forming the best estimate. Having simulated the 
data  by sampling an evolving flow governed by eqn. (11), it would be 
sensible to assimilate the observations into the same model. The model can 
then be employed to advect information between the repeated satellite 
tracks, thus projecting past information into the future. One should be wary, 
though, of only assimilating data into a perfect model. In reality there are 
many  dynamical  and physical processes that are not  adequately described by 
an ocean model, and so there is a danger of over-optimistic results if the 
model  that simulated the data is also used to assimilate it. To represent this 
model imperfection crudely, in section 4.4 degraded versions of eqn. (11) are 
also used to assimilate the data. 
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Thus the observations are augmented with an a priori estimate of h that 
would have been made in the absence of altimetry 

z.--  h( - )  

As discussed in section 2, the 'first guess' and the observations are optimally 
combined applying the least-squares procedures eqn. (10) (weighting with 
respect to error covariances of z and h ( -  )). 

The following continuous updating strategy is employed: 
(1) starting from a prescribed climatological initial state; 
(2) the model is integrated forward in time providing an estimate of the 

ocean topography h ( - ) ,  which is in error because of inadequacies in the 
model physics and the imperfectly known initial state; 

(3) when the satellite flies overhead the observations z along a particular 
track are optimally combined with the estimate of the ocean topography 
currently carried by the model, h ( - ) ,  to provide a (hopefully) better 
estimate of the true state of the ocean, h( +) ;  

(4) the model is then integrated forward until the next observation time, 
when it again provides the first guess in step 3. 

In this way, the model is used to extrapolate the information provided by 
the altimeter forward in time, whilst our objective mapping techniques 
interpolate between the tracks. The relative merits of various updating and 
observing strategies can be measured with reference to the truth circulation 
by, for example as chosen here, computing the root-mean-square-error 

^ 

(r.m.s.e.) between h and h. Other objective measures can be chosen (see, for 
example, Rienecker et al. (1987)) but would not lead to qualitatively differ- 
ent conclusions. 

Because the model is continuously updated and the satellite tracks are 
straight, the analysis problem eqn. (10) reduces to a series of one-dimen- 
sional ones. Each time the satellite passes overhead, estimates along and 
either side of the track are made. Fifteen data points equally spaced every 15 
km along the track (at the resolution of the numerical model) are used to 
analyse for the ocean topography. The radius of influence of the data is 
determined by the correlation scale of the covariance matrix of the model 
first guess errors, chosen to be a Gaussian covariance structure function (see 
section 2). At distances from the track much greater than the correlation 
scale b, the analysis tends to the first guess, h (+ ) - - ,  h ( - ) .  We choose to 
update the model fields on either side of the track out to a distance of 2b. 

The performance of the analysis is rather sensitive to the choice of 
correlation scale. If b is too large, the analysed fields are too smooth and fail 
to capture the details of rings and eddies and frontal structures. Alterna- 
tively, if the correlation scale is too small, the impact of data insertion can 
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be detrimental since spurious, small-scale features are introduced into the 
analysis, which very rapidly approaches the first guess on either side of the 
satellite track. In our studies the opt imum b was found empirically to be 78 
km, somewhat less than twice the Rossby radius. This correlation scale was 
kept fixed and applied over the whole basin and at all times. It is doubtful 
that this assumption of stationary error covariance structure function is 
strictly valid in such a non-linear, non-stationary eddy field. More com- 
plicated (and realistic) error models could have been constructed, but the 
added computational  effort involved in the implementation of such a 
scheme would not, in our opinion, have led to substantially improved 
results. 

4. A L T 1 M E T R I C  D A T A  AS A C O N S T R A I N T  ON B A R O C L I N I C  C I R C U L A T I O N  
M O D E L S  

4.1. Repeat-time strategies 

Figure 2 shows the r.m.s.e, between h and tl as a function of time for 
various repeat-time strategies in the two-layer integration from which Fig. 1 
is taken. For clarity only the upper layer curves are displayed. The impact of 
data  on lower layers is considered in section 4.3. Such r.m.s.e, curves are 
often normalized with respect to the climatological variability. Here, how- 
ever, it was thought that more information was conveyed by presenting the 
errors in absolute units: to normalize they should be compared with the 
no-data integration (curve A) which gives a measure of the natural variabil- 
ity. For each repeat-time the same amount  of data (in toto) are supplied, 
only its spatial and temporal frequency differs (see eqn. (12)). Data were 
assimilated into the model (an identical twin, or perfect model) starting from 
a 'climatological'  initial state, taken to be a linear Stommel (1948) solution 
in the upper layer of the model, with no flow beneath. Our results are not 
sensitive to our choice of initial conditions. 

When no data are inser ted,  curve A, the r.m.s.e, between h and ]l remains 
fairly steady at 8 cm. This is a useful reference since it is a measure of the 
variability of the model about climatology. It should be remembered that 
this is a basin-scale measure: the variance is concentrated in the region of 
the separated jet  where it rises to as high as 30 cm r.m.s.. 

Assimilation of perfect data into the model on 10-, 14- and 30-day repeat 
cycles reduces the r.m.s.e, to about one-third of the natural variability about 
climatology. This in itself is a significant result since it demonstrates that 
observations from a single (albeit perfect) altimetric system are capable of 
constraining a two-layer eddy resolving basin-scale ocean circulation model. 
Although data are assimilated by the model continuously, the repeat fre- 
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Fig. 2. (a) Roo t -mean-square  error (r.m.s.e) be tween the t ru th  and  assimilat ion model  ocean 
topographies  f rom a two-layer model  initialized with a Stommel  solution in the upper  layer 
an d  no  mot ion  benea th :  Curve A, no  data  assimilated; curve B, data  assimilated f rom a 
10-day repeat  orbit ;  curve C, data  assimilated from a 14-day repeat  orbit ;  curve D, data  
assimilated f rom a 30-day repeat  orbit .  Curve A is a measure of the variabil i ty of the model  
abou t  the l inear  solution. (b) Analysis  of upper  layer s t reamfunct ion  (14-day repeat)  on  day 

108; CI = 5 cm of ocean topography.  
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quencies can be seen in the r.m.s.e, curves. This is because the error falls 
dramatically as the satellite flies over the model Gulf  Stream where most of 
the variance is concentrated. Data in the quiescent interior region reduce the 
r.m.s.e, locally, but have only a small impact on the error in toto. Such 
considerations explain why, with a 30-day repeat (curve D), the error 
undergoes large fluctuations during its cycle. The satellite spends too much 
of its time in regions where the variance is small, allowing the model to 
deviate further from the truth. 

A useful way of rationalizing the trade-off between space and time 
resolution is to consider the ratio d/2b, where d is the track separation, and 
b is the correlation scale of the signal (see Table 1). Our experiments suggest 
that an opt imum sampling strategy would make this ratio d/2b - 1. Indeed 
the r.m.s.e, is reduced to a minimum for a repeat-time of 14 days (curve C in 
Fig. 2) implying a track separation of 140 km, almost exactly twice the 
correlation scale b. This result was obtained earlier by Marshall (1985b), but 
by using a barotropically unstable one-layer ocean circulation model in a 
miniature ocean basin. 

To give a visual impression of the success of the assimilation procedure 
the analysis of the upper layer streamfunction on day 108 of the assimilation 
using data from a 14-day repeat orbit is shown in Fig. 2b. A comparison 
with the truth for the same time (Fig. la) shows that the major features of 
the circulation are reproduced rather effectively in the analysis, and the 
upper layer flow is well constrained by data from one altimeter. Evidently, 

no noise 

~ 4  
E 
o 

~ 2  rr 

284 

-9 

6 

E 
o 
o 
o 
x 

3 tJ 69 

0 20 40 60 80 100 120 
TIME (days)  

Fig. 3. E r ro r  curves  for  the ocean t o p o g r a p h y  ob ta ined  by  ass imi la t ing da ta  wi th  vary ing  

noise levels on a 14-day repeat into a two-layer model initialized as described in Fig. 2. 
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in a 30-day repeat-cycle, the satellite over-samples in space (d/2b = 0.4) at 
the expense of temporal resolution; the converse is true in a 10-day repeat 
orbit (d/2b = 1.6). 

4.2. Impact of random data errors 

Figure 3 demonstrates the insensitivity of the analysis error to (reasona- 
ble) random errors in the observations. In each case the repeat time is 14 
days. A random error of 8 cm (r.m.s.) (a signal to noise ratio of unity) does 
not cause a significant deterioration in the analysis, since a Gaussian 
covariance results in a very effective smoothing weights matrix K. It should 
be no surprise that the analysis error can be less than the random error in 
each independent measurement because the interpolation procedure tends to 
average the observations over a correlation scale. Further, a wealth of a 
priori information is being brought to bear on the analysis through the use 
of eqn. (11), which encapsulates our dynamical understanding of the field. 

4.3. Extrapolation of single-level data in the vertical 

Given that remotely sensed data can only give direct information about 
properties of the ocean surface, one of the most important  objectives of our 
study is to ascertain to what extent a dynamical  model can be used in 
conjunction with altimetry to infer the subsurface flow. Aspects of this 
problem have been considered by Hurlbert (1985) in a limited-area model of 
the Gulf  of Mexico. 

Figure 4 presents the r.m.s.e, between the truth and analysis ~k2 fields 
obtained by assimilating perfect data on a 14-day repeat into a two-layer 
perfect model initialized as described in section 4.1. Note that now, for this 
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Fig. 4. Lower layer r.m.s.e, curves for the two-layer integration in Fig. 2. Curve A, r.m.s.e, in 
~b z when no data are assimilated; curve B, r.m.s.e, in q~2 when perfect data are assimilated on 
a 14-day repeat; curve C, Aq~2exp[-- c(t -- to)]: t o =14 days, and hq,2(to) is the r.m.s.e, in 4'2 
at t o . 
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subsurface layer, the vertical scale is expressed in dimensional streamfunc- 
tion units of m 2 s - ' .  No vertical extrapolation procedures are employed: 
rather the lower layer flow is allowed to evolve freely, adjusting to the 
continually updated surface flow. The lower layer r.m.s.e, is markedly 
reduced over a period of 100 days or so; inspection of the instantaneous 
flow patterns reveals that the position and scale of the eddy field is 
reproduced with some skill (see Fig. 5, which presents the lower layer truth 
and analysed fields after 60 days). 

A plausible dynamical mechanism that accounts for the success repre- 
sented by the curve in Fig. 4 is now emerging. 

Energetic eddies in the upper layer (in and above the main thermocline) 
drive the deep flow through vertical motions, which act like 'plungers'  
rippling the interface on the scale of 100-200 km, generating Rossby waves 
in the lower layer (see, for example, Rhines and Holland (1979) or Haidvo- 
gel and Rhines (1983)). The lower layer of the two-layer model is deep and 
the currents weak and so non-linear processes do not dominate. 

Accordingly, suppose that the lower layer vorticity equation can be 
linearized thus 

3 
262 + -~x62 = -¢x7 262 + 3W12 (15) 0t V 

where ~1 is the fractional upper layer depth and E is the coefficient of 
bot tom friction, then wl2, the vertical velocity at the interface acts as a 
'wave-maker'  associated with the baroclinic instability of the model Gulf 
Stream and recirculation. The forcing field w12 is a strongly varying func- 
tion of space and time consequent on the rapidly evolving, highly non-linear 
eddies in the upper layer. It can be expressed in terms of an 'omega' 
equation thus 

2w12- H*w 2 = + - ( a , -  G)  

+ -~x (~b, - ~b2) (16) 

where R is a Rossby number of the vorticity equation, R = Us/~L 2, (Us is a 
characteristic horizontal velocity, and L is the basin width, see Appendix), 
H* = H2/H1H2 and -y = L J L  where Lp = (g'H1H2/fo2H) 1/2 is the Rossby 
radius and g '  is the reduced gravity. However, because the deep flow is 
weak, the right-hand side of eqn. (16) does not depend strongly on ~b 2. 
Given a good analysis of the upper level synoptic-scale pressure field 
(proportional to ~bl) the spatial and temporal variation of the vertical 
velocity can be deduced from eqn. (16) with imperfect knowledge of the qJ2 
field. 
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Equation (15) suggests that, given 14212 from the 'omega'  equation, the 
error in the lower layer streamfunction will propagate as a damped Rossby 
w a v e  

a a 
- - V  2 A•2 -~- - - A + 2  = - - c V  2 A+2  (17) 
at ax 

where Aq, 2 = ~pv z - -+~,  the truth minus the analysis streamfunctions. Equa- 
tion (17) has solutions 

A~ba(t  ) ---- A ~ 2 ( t 0 )  e - ' ( t - '°)  (18) 

Thus any error in the initial conditions will decay with an e-folding time of 
1 / c - - 5 5  days, for the bot tom friction coefficient used in our two-layer 
integration. The dashed line in Fig. 4 is the curve  A + z ( t  ) = A~bz(t0)e -~(t- '°)  
where t o = day 14 of the assimilation. By this time, after one repeat cycle, 
the error in the upper level streamfunction has dropped significantly, and so 
the w12 forcing the lower layer is quite close to the truth. The falling 
exponential curve models the decrease in the r.m.s.e, rather well, showing 
that the error in the lower layer streamfunction is well represented by a 
superposition of damped linear Rossby waves. 

In order to further test our hypothesis, the effects of incomplete observa- 
tions were eliminated by initializing the lower layer with no flow, as in Fig. 
4, but replacing the upper layer streamfunction with the truth at all times 
over the whole basin ( ' infinite altimetry'). As shown in Fig. 6. the decrease 
in the lower layer r.m.s.e, is then given almost exactly by eqn. (18), this time 
with t o = 0. 

4.4. Degraded models 

Here a degraded model is used to assimilate our altimeter data. Two 
degradations will be considered, representing uncertainties in -f and R. We 
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Fig. 6. Lower layer r.m.s.e, in a two-layer integration, initialized as in Fig. 2, in which the 
upper layer is replaced by the truth at all times over the whole grid (' infinite altimetry'). The 
crosses are values of the function A~2(t  = 0) e x p ( -  ct). 
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Fig.  7. Er ro r  curves  for  the  ocean  t o p o g r a p h y  (in cm) and  ~b 2 (in m 2 s - 1 )  o b t a i n e d  w h e n  
pe r f ec t  d a t a  f rom an  o p t i m u m  orb i t  repea t  cycle (14 days)  is ass imi la ted  in to  a two- layer  

m o d e l  in w h i c h  the  s t ra t i f ica t ion  is in error ;  g' = 2gttruth ( in i t ia l izat ion as in Fig.  2). 

will see that their impact on the assimilation process as a constraint on the 
surface flow, and the ability of the model to interpolate vertically, can be 
understood in terms of the mechanism of transfer of information into the 
lower layer presented in the previous section. The degraded two-layer 
models were initialized with a Stommel solution in the upper layer, and zero 
motion beneath, and altimeter data from a satellite in an opt imum orbit 
(repeat time 14 days, track spacing 140 km) assimilated as described 
previously. The resulting r.m.s.e, curves can therefore be compared directly 
with those in Fig. 2 (curve C) and Fig. 4, where a perfect model was used. 

In the first degraded model, the density jump between the two layers has 
been doubled, giving g ' =  4 × 10 -2, increasing the Rossby radius Lp and 
hence 7 by a factor of 212; one might expect the assimilating model to 
produce anomalously large eddies. If altimetry is to constrain the upper 
layer circulation, then data must be supplied at a sufficiently high rate to 
compensate for this tendency. 

The r.m.s.e, curves between the truth and degraded assimilation models 
shown in Fig. 7. for both upper and lower layer flows. They do not depart 
far from the r.m.s.e, curves shown in Fig. 2, indicating that our ability to 
deduce the surface flow from altimetry has not been significantly impaired 
when assimilating into a model whose stratification is in error. Thus it 
appears that if data are supplied on a 14-day repeat strategy, the rate of 
supply of information is sufficiently high to offset this particular model 
degradation. 
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A change in the stratification of the magnitude considered here has only a 
marginal impact on the ability of the model to interpolate vertically; the 
lower layer curve in Fig. 7. shows a slight increase in the r.m.s.e, over that 
obtained with a perfect model (cf. Fig. 4, curve B). This is consistent with 
our 'omega' eqn. (16). If Wlz(k  ) and F(k) are the amplitudes of w12 and the 
right-hand side of eqn. (16) at wavenumber k, respectively, eqn. (16) can be 
written 

kZy2w12(k)+ H * w , z ( k ) = r ( k  ) 

The magnitude of w12 at wavenumber k is thus 

F(k) 
w , 2 ( k )  = 

kZy2 + H * 

At long wavelengths, an increase in k will not change w12 significantly, 
whereas at shorter scales it will be reduced more noticeably: for k -  1/100 
km, doubling g '  results in w l z ( k  ) falling by 16%. The w12 forcing of the 
lower layer is less if y is increased, and the effect is greatest on smaller 
scales (where altimetry is most effective). Thus in this example, where the 
stratification of the assimilating model is overestimated, the transfer of 
information into the subsurface layer is expected to be slower than for a 
perfect model, and the magnitude of the small-scale features underestimated. 

Fig. 8. The lower layer streamfunction (CI =1500 m 2 S - 1  ) o n  day 108 of the two-layer 
integration in Fig. 7. 
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Fig. 9. Ocean topography (in cm) and ~2 (in m 2 s - 1 )  obtained when perfect data on an 
optimum orbit repeat cycle are assimilated into a two-layer model in which the non-dimen- 
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sional parameter R has been increased to (2~Rt~th) (initialized as in Fig. 2). 

Figure 7 indeed shows that after about  70 days the degraded model  
becomes less efficient than the perfect model at transferring information 
vertically; by this time the major features in the lower layer have been spun 
up, but  errors in their magnitude are now noticeable. The lower layer 
streamfunction after 108 days of assimilation, shown in Fig. 8, is similar to 
the truth (Fig. 5a) except that the eddies are less intense; on scales of 100 km 
or so, magnitudes are reduced by about  20%. This is consistent with our 
mechanism for vertical interpolation discussed earlier. 

In our second example, the assimilating model is degraded by increasing 
R by  a factor of 2 '2. Thus the magnitude of the advection terms and the 
width of the inertial boundary  current (which scales as R 1/2) is increased. 
One might expect that an advective velocity that is in error is likely to 
compromise severely the ability of the model to extrapolate information 
forward in time. 

Figure 9 shows the r.m.s.e, between the truth and degraded model 
assimilation streamfunctions. The upper layer r.m.s.e, is consistently higher 
than when a perfect model is used (compare with Fig. 2a, curve C), and 
indeed after 80 days, altimetry is no longer able to constrain even the surface 
flow. The ampli tude of the short period oscillations in the r.m.s.e, curve are 
a measure of how far the model deviates from truth in active areas between 
passes, and this increases as time goes on, indicating that the model is 
incapable of projecting data between repeat times, and is no longer provid- 
ing useful first guess information. 
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The lower layer r.m.s.e, shown in Fig. 9 indicates that following an initial 
rapid transfer of information downward from the surface, accuracy is also 
lost in the deep flow. Figure 10 shows ~2 at 108 days and confirms that the 
subsurface flow cannot be successfully inferred by assimilating data at the 
surface of this degraded model. Once again, eqn. (16) provides the clue. The 
dominant  term on the right-hand side (on eddy scales) is RJ (+1, V2~bl), 
and so the lower layer will be forced by a Wa2 that is in error even if +1 is 
perfectly specified. 

These results emphasize the importance of the accurate representation of 
non-linear processes when assimilating into wind-driven models, especially if 
they are to be used to infer the deep flow. The effects of both model 
degradations discussed here are consistent with the mechanism for vertical 
interpolation formulated in the previous section, suggesting that the impact 
of other model degradations could be assessed by recourse to this theory. 

4. 5. Assimilation into multi-layer models 

Having enquired into the behaviour of a two-layer model assimilating 
altimeter data at the surface, we now go on to consider whether a model of 
higher vertical resolution may be similarly constrained. The three-layer 
simulation of idealized ocean gyres studied by Marshall et al. (1988) is taken 
as our reference ocean. The model parameters, presented in the Appendix, 
were chosen to ensure that the internal jet has a realistic penetration scale. 
The upper layer (from which the altimeter data are taken, and into which 
they are assimilated) is 500 m deep, the middle 1000 m, whilst the deep flow 
is represented by a third layer 3500 m deep. The circulation is driven by a 
wind-stress curl of the same magnitude and form as in the two-layer 
integration. However, the higher vertical resolution of the model and the 
thinner upper layer results in a circulation which is unstable not only in the 
region of the jet but also in the interior. Figure 11 shows instantaneous 
streamfunction plots in each of the three layers (from the truth circulation at 
day 108). 

In section 4.4, we described how, in a two-layer model, the deep flow 
comprises a superposition of essentially linear Rossby waves excited by the 
interracial vertical velocity, which is controlled almost entirely by the upper 
layer flow. Errors in the initial conditions in the deep flow propagate as 
Rossby waves, damped by the Ekman friction on an e-folding time-scale of 
1/c.  In the three-layer case, the deep third layer will respond to forcing by 
the interracial velocity between it and the second layer in much the same 
way. We must first, however, consider the reduction of errors in the initial 
conditions of the second layer. The surface flow will drive the middle layer 
through vortex stretching but now the interfacial velocity w12 will depend on 
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(b) (c) 
Fig. 11. (a) Upper (b) middle and (c) bottom layer streamfunctions from the truth three-layer 
model on day 108; CI =4  cm (of ocean topography), 4200 m 2 s -1 and 2100 m 2 s 1 
respectively. 

the flow in bo th  layers,  and  will not  be con t ro l led  (as in the two- layer  case) 
by  ~b 1. In fact  er rors  in the second layer  m a y  well adverse ly  affect  f low in the 
surface  layer.  F u r t h e r m o r e ,  since the only  dissipat ive process  in the second 
layer  is a highly scale-selective b i -ha rmon ic  fr ict ion,  on ly  errors  on  the small 
(grid) scale will be  d a m p e d  rapidly.  

Ass imi la t ion  of  da t a  in to  the three- layer  model  on a 14-day repeat  
( op t imum )  orb i t  is not  suff icient  to cons t ra in  the model :  t ru th  and  analysis 
diverge. Thus ,  in o rde r  to s tudy  the mechan i sm of  vert ical  in t e rpo la t ion  in 
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Fig. 12. Error curves (in m 2 s-1) obtained from a three-layer model that has been initialized 
with the 8-month truth climatology. Curve A is the variance of the truth about climatology, 
and curve B shows the r.m.s.e, between the model and truth streamfunctions where 'infinite 
altimetry' has been applied. (a) Second (middle) layer; (b) third (bottom) layer. 

this three-layer case, results are presented from an assimilation experiment 
in which the surface layer is fully constrained by  infinite altimetry; the 
upper  layer streamfunction is replaced at all grid points and time steps by its 
truth value. The model  was initialized from the (truth) 8-month time mean 
climatology. The r.m.s.e, curves (in m 2 s -1) between the streamfunction 
fields in layers two and three and the truth are shown in Fig. 12, together 
with the analysis streamfunction fields after 180 days of assimilation in Fig. 
13. Note  the difference in the vertical scale of Fig. 12(b) and that of Fig. 4 
for the two-layer model; the basin-averaged variability in the three-layer 
model  is much greater than in the two-layer case because now the abyssal 
eddy field almost fills the basin (cf. Fig. l l ( c )  with Fig. 5(a)). From Fig. 12, 
it can be seen that there has been some reduction in the error in both  +2 and 
+3, although the fall is not nearly so rapid as in the two-layer case. After 180 
days, the r.m.s.e, in the second layer has fallen to 50% of its initial value (the 
e-folding time is approximately 150 days). The deep flow r.m.s.e, falls to 
40% of its original value, with an e-folding time of 110 days. In this 
integration, 1/~ = 74 days, so our model  of error reduction as a damped 
linear Rossby  wave does not seem to be appropriate here. Evidently non-lin- 
earities in the second layer severely inhibit the vertical transfer of informa- 
tion from the surface to the deep layer. However,  it should be stressed that 
there is still some error reduction: many of the features in both  subsurface 
layers have been inferred correctly, as can be seen by comparing Fig. 13 with 
Fig. 11. 

It can be concluded, then, that if surface pressure data are assimilated 
into models with more than two layers the ability of the model to spin up 
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Fig.  13. Second  and  th i rd  layer  s t r e a m f u n c t i o n  p lo ts  on  day  108 wi th  ' i n f in i t e  a l t imet ry '  for 
the  th ree- layer  mode l  o f  Fig.  11; CI  = 4200 m 2 s - l  and  2100 m 2 s -1 respect ively.  

the deep layers is severely diminished. In the absence of further information 
a single altimeter cannot constrain a multi-layer model, even when flown in 
an optimum repeat orbit. It should be emphasized, however, that here no 
attempt has been made to use statistical techniques (for example vertical 
structure functions) to extrapolate surface information into deeper layers or 
dynamical methods (for example, projecting onto vertical modes as pro- 
posed by Webb and Moore (1986)). Neither has the use of subsurface in situ 

observations been considered in conjunction with altimetry. Each of these 
possibilities deserves further work. 

5. D I S C U S S I O N  

Our investigation is presented very much in the spirit of the early network 
studies directed at optimizing and evaluating the meteorological observing 
network. Rather than focusing on a limited geographical area (as for 
example in the work reviewed by Robinson (1986), or the study of De Mey 
and Robinson (1987)) we have considered assimilation into basin-scale 
models. It is only the advent of radar altimetry that makes this a tenable 
possibility. It is recognized that in order to obtain an altimetric measure- 
ment of the ocean topography that is sufficient to determine the mean 
circulation, a geoid vastly more accurate than is currently available is 
needed. However, the geoid is being continually refined (indeed, in regions 
where our knowledge of the ocean circulation is good, the latter can be used 
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in conjunction with altimetry to improve the geoid (see Thompson,  1986)). 
Here is has been assumed that the geoid is sufficiently well known to allow 
determination of the surface pressure field from altimetry. We have investi- 
gated the assimilation into a model of surface pressure field data on space 
and time-scales obtainable from a single radar altimeter, and assessed the 
degree to which such information may constrain that model. 

The following general conclusions can be drawn. 
(1) Observations of the surface pressure field on space and time-scales 

possible with a single satellite-borne radar altimeter provide strong con- 
straints on baroclinic, eddy resolving ocean circulation models, both at the 
surface and in deeper layers. 

(2) The skill of the surface is a strong function of the spatial and temporal 
frequency of the altimetric observations, and is only weakly dependent on 
the random error in the instrument (for reasonable levels of noise). For 
synoptic mapping on basin scales, an orbit repeat time of about 14 days is 
found to be optimum. 

(3) The dynamical mechanism by which information at the surface is 
extrapolated vertically, constraining abyssal flows, can be understood read- 
ily in two-layer models in which the deep flow is a superposition of damped 
linear Rossby waves forced by vortex stretching at the interface between the 
layers. Given a good analysis of the surface pressure field, the forcing of the 
lower layer can be determined, and so any initial error decays as a damped 
Rossby wave with an Ekman spin-down time-scale. However, in more 
realistic models, where many shallow layers are required to represent the 
strongly depth-dependent currents in the upper levels of the wind-driven 
gyre, they are less able to spin-up subsurface flows from information 
provided at the surface. 

Finally, it must be stressed that altimetry should be seen as only one, 
albeit central, component  of planned observing networks. Future studies 
should assess the impact of altimetry in conjunction with both complemen- 
tary in situ observations (for example, velocity observations at thermocline 
depth from neutrally buoyant floats) and other remotely sensed information, 
particularly sea-surface temperature and ocean colour sensors giving the 
positions of major fronts and eddies. 
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APPENDIX 

The potential vorticity equation (non-dimensionalized) 

1 3qn 
- - - -  +J(~Pn, qn) = Gn (A1) 
R 3t 
is integrated forward numerically (Brugge et al., 1987) for each layer (n = 1, 
2 or 3) on a finite-difference grid in a square domain, where qn is the 
quasi-geostrophic potential vorticity, ~Pn is the streamfunction, G n is the 
potential vorticity forcing function, J(a,  b) is the Jacobian of a and b, 
3a/Ox Ob/3y - 3b/Ox 3a/3y,  and x (0 < x < 1) is east, y ( - 0 . 5  < y  < 0.5) 
is nor th  and t is time. 

The potential vorticity is related to the streamfunction through 

q = Rx7 2~ + y _ Sxi, (A2) 

where 

/ q =  q2 ; 4 = ~2 
qa ~kl 

and S is the stretching matrix given by 

1 - 1  
0 

31A021 31Ao21 
RL 2 - 1 1 1 - 1 

- - + - -  (A3) 
S = ~ 32 A021 32 Ao.21 32 A032 32 A032 L r  

- 1  1 
0 

33Ao32 33 A0"32 

In Eqns. (A1)-(A3),  length has been non-dimensionalized with respect to 
L, where L is the nor th - sou th  extent of the basin; depth with respect to H 
the depth of the ocean; time with respect to (ilL) -1, where fl is the 
planetary vorticity gradient; ~p with respect to UsL, where U s is a character- 
istic velocity chosen to be the Sverdrup velocity U s = foWEK/flH and WEK is 
an Ekman pumping velocity; q with respect to ilL. fo is the reference 
Coriolis parameter.  

The coefficient R = Us~ilL 2 is a Rossby number  for the vorticity equa- 
tion; Lr=(gH/lOOOfo2)  1/2 is a pseudo-Rossby radius, A%+1, . = 
103Apn+l,n/po expresses the density jumps between the layers in o units 
where 

Apn+l,n = Pn + l - -  On 

and 3 n = H n / H  are the fractional layer depths. 
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T h e  G s  in  eqn .  (A1)  a r e  g i v e n  b y  

1 
= Wo - %1 

G 2 = -- t-'V 6~ 2 

G 3 = - VX7 6~3 --  C~  2~3 

w h e r e  W 0 is t he  ( n o n - d i m e n s i o n a l i z e d )  v e r t i c a l  v e l o c i t y  a t  t h e  b a s e  o f  t h e  

E k m a n  l a y e r  in  u n i t s  o f  WzK a n d  I4/0 is  c h o s e n  to  b e  

W 0 = s in  2 t ry  

d r i v i n g  t h e  m o d e l  in  a d o u b l e - g y r e  c o n f i g u r a t i o n .  T h e  c o e f f i c i e n t s  v a n d  c 

a r e  l a t e r a l  a n d  b o t t o m  d i f f u s i o n  c o n s t a n t s  r e s p e c t i v e l y .  

P a r a m e t e r s  

G e n e r a l :  

T w o - l a y e r :  

L = 3 × 10 6 m, 13 = 10 -11 m -1 s -1  

H 1 = 1000 m 

H 2 = 4000  m 

Ao12 = 2 
f0 = 7 .0  × 10 - 5  s -1  

= 55 d a y s  -1  

U s = 1.4 × 10 -3  m s  -1 

R = 1.6 × 1 0 - 5  

R o s s b y  r a d i u s  = 48 k m  

T h r e e - l a y e r :  H 1 = 500 m 

H 2 = 1000 m 

H 3 = 3500 m 

AO12 = 2 

Aa23 = 1 
f0 = 7.0 × 10 - 5  s - a  
e = 74 d a y s - 1  

U s = 1.4 × 10 -3  m s  -1 

R = 1.6 × 10 - 5  

R o s s b y  r a d i u s  = 48 a n d  18 k m  
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