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Or. the Time-Averaged Flow of Quasi-Geostrophic Wind-Driven Gyres 
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Space and Atmospheric Phllsics Group, Department of Philsics, Imperial College, London 

The time-averaged flow of a three-layer eddy-resolving quasi-geostrophic ocean model is con- 
sidered in the lighg of two analytical models of wind-driven gyres, in which the vertical structure 
of the gyre is set by assuming that potential vortlcity is uniform beneath layers exposed to forc- 
ing. The first, due to Young and P•nes (1982), supposes thai; the depth-integrated meridlonal 
transport is set by the imposed wind-stress curl. In contrast, in the baroclinic Fofonoff gyres of 
Marshall and Nurser (1986, 1988), inertial aspects of the flow are emphasized without imposing 
a Sverch'up constraint. The mean fields from the model are seen to lie between the two extremes 
represented by these analytical solutions. In the interior of the gyre away from inertial boundary 
currents and jets, the Sverdrup constraint is obeyed, and the mean flows resemble the Young 
and •h/nes solution. However, the essential character of the overspun recirculation, including the 
weakly depth-dependent nature of the currents ill its return flow, seem to be well captured in the 
inertial limit considered by Marshall and Nurser. 

1. INTRODUCTION 

The canonical studies of Storereel [1948] and Fofonoff 
[1954] provided firm reference points for subsequent nu- 
merical studies based on the barotropic vorticity equation 
[Bryan, 1963; Vetohis, 1966]. In the present article we 
point out that logical extensions to a baroclinic ocean of 
the Stommel and Fofonoff barotropic solutions are provided 
by, respectively, the Young and Rhines [1982] and Marshall 
and Nurser [1986, 1988] studies (hereinafter YR and MN re- 
spectively). These analytical solutions represent useful limit 
cases from which to contemplate the mean flows found in 
baroclinic eddy-resolving quasi-geostrophic numerical mod- 
els. 

YR consider the limit in which the depth-integrated trans- 
port is set by the imposed wind stress curl. Below the 
surface layers it is supposed (following Rhines and Young 
[1982]) that in regions shielded from forcing in which there 
is motion, the potential vorticity becomes homogenized to 
a uniform value. Instead, MN exploit this idea in the in- 
ertial limit and obtain baroclinic Fofonoff gyres which are 
not constrained by Sverdrup balance. Our purpose here is 
to demonstrate, by direct comparison with a numerical inte- 
gration, that the models (and by implication, perhaps, the 
ocean) lie somewhere between the limit cases represented by 
these analytical theories. In section 2, time-averaged fields 
from a wind-driven three-layer quasi-geostrophic numerical 
model are presented. These mean flows are considered in 
the light of the YB. solution (section 3) and the MN solution 
(section 4). 

2. THE TIME-AVERAgED FIELDS 

Figure 1 shows the time-average (a S-year time-average of 
the statistically steady state) streamfunction and potential 
vorticity from a three-layer quasi-geostrophic eddy-resolving 
model driven by an antisymmetric wind stress curl and re- 
tarded by bottom friction. Details of the model can be found 
in the appendix. 
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The upper level flow (Figure 1 a) shows a familiar double 
gyre: a concentrated jet penetrates halfway across the basin 
along the zero wind stress curl line and diminishes to join 
on to the Sverdrupian interior. The mean gyres strongly 
deform the potential vorticity (q) field. Associated with the 
interior jet there is a strong front in the q field, (Figure 1 d), 
where relative vorticity makes an important contribution. 
Away from the jet vortex, stretching allows the q contours 
to fan out; some turn back on themselves and close off, and 
others attach themselves at their reference latitudes on the 

eastern coast. 

In the middle layer (Figure le), we see the homogenized 
pool of potential vorticity which is so characteristic of this 
genre of model. In contrast to the upper level where an 
antlsymmetric wind stress curl maintains a front in the q 
field along the zero-curl line, in the middle layer (shielded 
from external forcing) the q contours have been expelled to 
the north and south. Rhines and Young [1982] attribute this 
plateau in the q field to the effect of the eddy field smoothing 
out q gradients. Strong flow in the layer is confined to this 
homogenized region: despite the uniformity of q the flow 
here is strongly constrained by the pattern of upper layer 
flow. It again exhibits an inertial character with a narrow 
jet at mid-basin recirculating to the north and south (Figure 
•). 

In the third layer, bottom friction prevents the complete 
smoothing of the q field, but again, gradients of q are less 
marked in the regions of strong flow (Figure If). Flow is con- 
fined to a region of restricted meridional extent and exhibits 
two counter-rotating gyres close to the axis of the free jet 
at midbasin (Figure lc). Here, where flow extends through 
the whole depth of the ocean, there is a barotropic (depth- 
independent) component confined to the recirculation on ei- 
ther side of the eastward flowing jet: the flow in layer three 
is the slgnature of this depth-independent component. 

The general characteristics exhibited in Figure I are found 
over a wide range of model parameters, and so can be consid- 
ered to be rather robust features of this wind-driven model. 

Comparison of such models with observations reported by 
Schmitz and Holland [1986], suggests that gross features of 
the recirculation, both in its mean and eddy statistics, are 
represented. However, the degree of to which advection con- 
trols the character of the circulation is sensitive to model pa- 
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Fig. 1. The time-mean fields (nondimensionalized) from the three-layer integration described in the appendix for 
streamfunction (a) •bl, (b) •b2, (c) •b3 and potential vorticity (d) ql, (e) 

rameters: the penetration scale of the jet is a complicated 
function of the (mixed) instability of the free jet which is 
sensitive to explicit diffusion, vertical resolution, layer depth 
and stratification [see Holland and Schmitz, 1985]. The iner- 
tial limit, in which the jet penetrates all the way across the 
basin along the zero-curl llne, is difficult to achieve owing to 
the instability of the free jet. However, the mean flow of Fig- 
ure 1 is substantially greater than the Sverdrup transport 
with the jet penetrating almost halfway across the basin; 
the transport streamfunction plotted in Figure 2 shows that 
the circulation of the gyre exceeds the Sverdrup transport 
by a factor of about 2.5, with a substantial fraction being 
associated with the weakly depth-dependent recirculation of 
which the lower layer flow is a signature; compare Figure 1 c 
with Figure 2. This weakly depth-dependent return flow is 
also a feature of the observations [see Schmitz, 1980]. 

3. THE YR MODEL 

YI• considered a two-layer extension of the Storereel 
[1948] model; here a straightforward development to three 
layers is presented for comparison with the numerical model 
of section 2. The details of the frictional boundary layers are 
considered by lerle!/and Young [1983] but are not studied 
here. 

It is supposed that the depth-integrated flow is in Sver- 
drup balance (all symbols are defined in the appendix) 

•PB = Wo dz = (1 - z) sin 2•r!• (!) 
=1 

where 

is the barotropic streamfunction and equation (AS) has been 
used. 

The balance of terms in the potential vorticity equation 
for each of the layers is assumed to be (away from frictional 
boundary layers) 

J(l, ql)-- Wo/l (2.) 
: 0 (2b) 

7(a,qa) = 0 

where the values of q are given by (A2) and (A3)in the 
appendix but with the relative vorticity neglected. 

Equations (2b) and (2c) imply that q is constant along 
streamlines. Rhines and Young [1982], in an application 
of the Prandtl-Batchelor theorem (see also Niiler [19661) , 
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Fig. 2. The time-mean depth-integrated streamfunction from the 
three-layer integration described in the appendix, •B = 61•bl '•- 
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Fig. 3. Scatter diagrams of q against •b. (a) Layer 1 over the 
subtropical recirculation (excluding boundary currents) 0.0t5 < 
a: < 0.5, -0.5 • St • -0.15. (b) Layer 2 over the homogenized 
pool 0.05 • •e • 0.5, -0.115 < St • 0.15. (c) Layer 3 over the deep 
recirculating gyres 0.05 • a• • 0.3, -0.05 • St < 0.05. 

duce that if the eddies are strong, dqz/d•l,: approaches zero 
from below whereas dqs/d•,s approaches zero from above 
[see MN, 1988]. Supporting evidence from the numerical 
model can be found in the scatter diagrams of q against • 
plotted for each layer in Figure 3. In layers 2 and 3, shielded 
from surface forcing, flow is confined to regions in which the 
q gradients are small; outside these regions q contours in- 
tersect the boundary, and so in the absence of forcing, the 
mean flow is weak and • is approximately constant. 

In the YR model a flow regime as sketched in Figure 4 can 
be expected; in region I only the upper layer is in motion, 
and in region II only layers 1 and 2 are in motion, whereas 
in region III all three layers are in motion. 

In region I the Sverdrup transport must be carried entirely 
by the upper layer and so 

• - •/• 
- (4) 

The boundary between regions I and II is found by noting 
that the potential vorticity q: in the second layer is constant 
and equal to zero along this boundary (its value at y = 0). 

Thus the boundary curve is given by 

=0 

In region II, where •'3 = 0 the Sverdrup transport is 
shared between layers 1 and 2, 

The partition of the transports betwen the layers can be 
found by noting that the potential vorticity in the second 
layer in region II is constant and equal to zero: thus 

(6b) 

Combining (6a) and (6b)leads to 

•3 = 0 

Given the solution in region II the boundary between II 
and III can be found since qs is constant and equal to zero 
along this interface. The boundary curve is defined by 

invoke integral balances between potential vorticity sources 
and sinks to constrain the œunctional relationship between q 
and •: they deduce that 

dq,,, - f G,, dA = (3) 

where G,• is the potential vorticity forcing for the mean flow 
in each layer, K• is a (positive) eddy transfer coefficient 
which parametrizes the transfer properties of the geostrophic 
eddy field, and U,• is the velocity around the circuit dl coin- 
cident with closed streamlines. Equation (3) assumes that 
over each gyre the lateral transfer by the geostrophic eddy 
field balances potential vorticity sources and sinks in each 
layer. Application of (3) to layers 2 and 3 allows one to de- 
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Fig. 4. Flow regime diagram for the YR model. In region I, only 
the upper layer is in motion; in region II, layers I and 2 are in 
motion, and in region III, all layers are in motion. 



15,430 MA•.S}tAI•I• gT AI•.: TIMW.-Avw. RAOgO FI•OW or WIND-D•Jvw. N GY•.w.s 

0.5 El ( ' 

y o1' . øl y 

-0.5 

0 0.5 1.0 0 0'.5 
x x 

b 0.5 

yo 

-0.5 , 

1.0 0 015 ' 
x 

1.0 

0.5 

yO 

d 0.5 

yo 

0.5 

yo 

0.4 

0.3 

0.2 

o. 1 

o.o 

-0.1 

-0.2 

-0.3 

-0.4 

-0.5 , , -0.5 -0.5 t o ols o o.s o o'.s ' 
x x x 

1.0 

Fig. 5. The YR solution plotted from (4, $, 7, 8 and 10) for the constants (A6) used in the numerical integration 
for streamfunction (a) •t, (b) •2, (c) •3 and potential vorticity (d) qt, (e) q2, (f) q3. 

where •p: is given by (7b). In region III, where all layers are 
in motion, 

q2 • • • •21 •1 -- •22•2 • •23•3 • 0 (9) 
q• = • + S•2g• - &•g• = Csg• 

where Cs is the positive constant dqs/dgs which can be 
deduced empirically from Figure 3c. 

Finally, solving (9) for •, •, •s gives 

(10a) 

(10c) 

where 

D = (Ca + Saa )(6t S:: + 6:$:t ) + Sa:(&a $2t - it S:a) 
The streamfunction and potential vorticity are plotted 

in Figure S for the YR solution (equation., (4), (5), (?), 

tegration (see appendix, equation (A6)). Comparison with 
the numerical model (Figure 1) shows that this simple solu- 
tion captures many of the broad features of the model mean 
fields. A particularly interesting aspect of the solution is 
the sweeping around of the q contours by the upper level 
flow in the westward return flow (Figures 5a and 5d). Al- 
though the upper layer is being directly driven by the wind, 

even here there is a tendency for the flow to align the •b 
and q contours. This cannot occur in barotropic studies in 
which vortex stretching plays no role in contributing to the 
potential vorticity. 

The horizontal extent of the region of homogenized q in 
the second layer is well captured in the YR solution, (Figure 
5e). A closer inspection, however, reveals several deficien- 
cies of the solution which can be traced back to the neglect 
of relative vorticity. In the upper layer (Figures 5a and 
5d), eastward flow occurs in a broad current rather than as 
an intense jet. In fact, in the YR solution the maximum 
streamfunction occurs in the southern half of the subtrop- 
ical gyre rather than in the northwestern corner as in the 
model. This absence of an inertial character is also evident 
in the q field: compare Figures 5d and l d. Rather than 
bunching together along the zero wind stress curl line as in 
the numerical model, the q contours are widely spaced and 
lack a frontal structure. 

The departure of the model from the YR solution is even 
more evident in the second and third layers. The YR so- 
lution (Figure 5b) grossly underestimates the transport in 
layer 2 and predicts no flow at all in the bottom layer; (8) 
cannot be satisfied. The depth-integrated circulation is lim- 
ited by the Sverdrup constraint. In both of these layers of 
the numerical model; however, eastward flow occurs in iner- 
tial jets and recirculates to the north and south in the uni- 
form pools of potential vorticity: the transport is not limited 
by the Sverdrup constraint. In fact, the depth-integrated 
circulation is overspun by a factor of 2.4 times the Sver- 
drup transport, with a significant fraction recirculating in a 
weakly depth-dependent return flow on either flank of the 
stream (see Figure 2). 
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4. Ta• MN MoI)z• 

An extension of Fofonoffs [1954] solution to a layered 
ocean governed by quasi-geostrophic dynamics is considered 
in Marshall and Nurser [1986, 1988]. Detailed calculations 
can be found in MN and will not be repeated here. However, 
an indication of how the calculation proceeds will be given. 

Unlike the YR calculation, MN emphasize the homoge- 
neous comoonent of the ttow which satisfies the unforced, 

undamped equations of motion; thus in place of (2) we have 

a(•, •)=0 (•) 

that is, q can be any constant value along streamlines. 
Again, following Niiler [1966] and Rhines and Young [1982], 
the ambiguities of the inviscid theory are removed by invok- 
ing integral balances between forcing and dissipation (the 
small terms that have been neglected on the right hand side 
of (11)) which serve to constrain the functional relationship 
as in (a). 

where 

Thus we have 

ql '- G'• • + q• 0 (12a) 
q• = c• (•2•) 
q• = c• • (•2•) 

q•0 = 0.5, v > 0 (•2d) 
q•0 -- -0.5 y ( 0 (12e) 

is chosen to represent the sharp gradient in the q field at 
y - 0, and the C values are deduced from (3). It is this front 
in the upper layer q field which induces the gyres in the MN 
model. In the numerical model this frontal structure (Figure 
ld) is a complicated function of the upper layer forcing and 
the instability of the eastward flowing jet. However, for 
analytical tractability, MN assume that q•0 is independent 
of z, and so the solutions they obtain are of Fofonoff form 
and fill the gyre in the east-west direction. Other more 
realistic forms for q•0 can be considered, but then solutions 
can be obtained only numerically. 

As before, application of the circulation integral to each 
of the layers allows one to deduce that Cx is negative and Ga 
is positive, consistent with the scatter plots Figure 3. For 
analytical convenience we assume that G2 = 0, i.e. that the 
q in the second layer is perfectly homogenized. 

If (11) were satisfied exactly, then the points on the scat- 
ter plots (Figure 3) would collapse onto a line. That they do 
not implies that the advection terms do not vanish but bal- 
ance sources and sinks. The degree of scatter is a measure 
of the magnitude of the advection terms or, alternatively, a 
measure of the coincidence of the q and • contours. In the 
upper layer, exposed to wind stress curl forcing, the points 
show considerable scatter although even here advective ef- 
fects tend to align the q and • contours (compare Figures 
la and ld). An estimate of the angle between between the 
q and • contours can be made from the scatter plots as 
follows. 

Since 

Iv.o.Vql - IV•l [Vql sin 0 

the average angle 0 over the gyre is given by 

• fv•.VqdA (13) sin0 - A•bAq 

0.5 
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o 0.5 1 .o 

Fig. 6. Flow regime diagram for the MN solution. 

where Aq, A•b denotes the maximum range of q and • values 
in the scatter plot and, as was shown by Read et al. [1986], 
the integral is the area enclosed by the spread of points in 
the scatter diagram. MN use this angle as a small parameter 
in which to expand about the free solution, (equation (11)). 
Evaluation of the integral from Figure • gives a mean angle 
of only 15 ø in the upper layer. 

In the MN model, C• and Gs are assumed to be constants 
(i.e. the slopes of the q/q• plots in Figure 3 are taken to be 
constant), and so the solutions found are generalizations of 
Fofonoff's solution. Away from boundary currents the/low 
must then be along latitude circles; the regime diagram has 
the form shown in Figure 6. The calculation proceeds as in 
section 2. 

In region I, only the upper layer is in motion and away 
from the inertial boundary currents the solution is given by 

q,, = (• - q,o) / (c, + s,,) (z4) • = • = 0 

As in section 2. the boundary between regions I and II is 
found by noting that the potential vorticity in the second 
layer is zero at this boundary. This, together with (14), 
enables one to deduce that these boundaries are at latitudes 

y = -Fl2, where 

S21q10 (15) l• = Cx +Sxx +S•x 
In region II, only the lower layer is at rest. It is straight- 

forward to show that 

(16a) 

Given the solution in region II, equation (16), the latitudes 
y = -Flz separating II from III can be calculated, since the 
potential vorticity in the third layer must be zero at this 
boundary. It may be deduced that 

13 --' S52 S21 q10 (17) 
In region Ill all three layers are in motion but note that la 

itself does not depend on the details of the motion in region 
IIh in particular, it is independent of Ca. 

It should be noted that the prediction (17) for the merid- 
ional extent of the recirculatory flow in the third layer as- 
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Fig. ?. The MN solution plotted from equations (14, 15, 16, 17 and 18) for the constants (equation (A6)) used 
in the numerical model for stream/unction (a) •1, (b) •k2, (c) •a and potential vorticity 
The functional relationships between q and • have been obtained by inspection of Figure 3 (C1 = -4x10 -•, Ca -- 
1.2x10-2). 

sumes continuity of the potential vorticity and hence vanish- 
ing of the relative vorticity at the edge of the deep gyre. This 
slippery boundary condition should be contrasted with the 
no-slip boundary condition applied by C'essi et al. [1987] in 
their barotropic inertial theory. Inspection of the mean fields 
from the numerical model (see Figure 1) strongly supports 
the slippery condition used by MN: the vorticity is zero, and 
the velocity is a maximum at the edge of the recirculating 
gyre in the lower layer. The relevance of the slippery bound- 
ary condition is also supported by the meridional sections 
which will be presented in section 5. 

In region III the solution to the flow is the sum of a par- 
ticular integral •I, the interior solution satisfying 

(8_8_ + C_C_)'I• I = b (18.) 

and a complementary function or boundary correction •B 
satisfying 

= 

where •B +•I = 0 at y = 0 and •B = 0 at y=+/s, again 
adopting a slippery boundary condition. 

In (18) s_S_ is the stretching matrix given by (A3), 

c• o o ) C = 0 C2 0 
o o C3 

is a diagonal matrix containing the functional relationships 
between q and • in each layer set by the circulation integrals 
(equation 3), and b is the source function 

Y--q10 ) b= •t 

The complementary function is required to satisfy the 
boundary condition that •b must be zero at y = O, along the 
zero stress curl line at midbasin. It should be emphubed 
that relative vorticity plays a crucial role in the structure of 
both the eastward flowing jet at y = 0 and its recirculation 
to the north and south between the latitudes//= :Els. 

Explicit solutions to (18) for simple choices of S_S_ and C__ 
are given by MN [1988]: here it is sufficient to note that 
it comprises a depth-independent component, consequent 
upon the bowl of the circulation striking the ocean floor, 
together with a depth-dependent component considered by 
MN [1986]. For comparison with our three-layer model in 
which S_S_ (equation (A3)) does not take a simple form, it was 
found convenient to solve (18) by numerical inversion. 

The streamfunction and potential vorticity are plotted for 
the MN solution (equations (14), (15), (16), (17) and (18)) 
in Figure 7. Because of our choice of q10 (equation (12b)) the 
gyres fill the basin from east to west. A more notable aspect 
of the solution is its strong north-south asymmetry which is 
the signature of inertial effects. All eastward flow now occurs 
in an inertial jet; the meridional extent of the broader return 
flows to the north and south becomes more restricted with 

depth; equations (15) and (17) give 12 = 0.23 and Is = 0.10 
for the constants of (A6) and C1 = -4 x 10 -2 estimated 
from the scatter plots. These are realistic estimates of the 
meridional extent of the homogenized pools in layers 2 and 
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Fig. 8. (Left) A meridional section at a• = 1/4 showing the contribution of planetary vorticity (dashed), relative 
vorticity (dotted) and stretching (dot-dash) to,the time-mean potential vorticity (solid line) of the numerical model 
fields. (Right) A meridional potential vorticity section for the model fields at ß = •/4. (a) Layer 1. (b) Layer 2. 
(c) Layer 3. 

3. The amplitude of the circulation is a strong function of 
C• and, for realistic values, is only weakly dependent upon 
cs. 

The eastward flowing .jet in the upper layer of the numer- 
ical model (Figure 1) is well captured but is overemphasized 
in the inertial limit: the fanning out of the q contours toward 
their reference latitudes at the east coast is not represented. 
However, the circulation in layers 2 and 3 is of realistic in- 
tensity and meridional scale. The Fofonovian character of 
the flow in the second and third layers of the numerical 
model can be seen in Figures 1 b and 1 c. Unlike the YP• so- 
lution, MN predicts flow in the third layer. This barotropic 

flow, although associated with rather small velocities (typ- 
ically one tenth of the Sverdrup velocity), extends through 
the whole depth of the ocean and is responsible for a depth- 
integrated transport over one half of the Sverdrup transport: 
0.56 compared to a Sverdrup transport of 1.0. The remain- 
ing 0.84 is carried by the baroclinic homogeneous solution: 
the baroclinlc "fringe" is not weak but carries a substan- 
tially greater fraction of the mass transport of the tyre than 
the barotropic core. The meridional structure of the tight 
recirculation evident in the barotroplc streamfunction com- 
puted from the numerical model (see Figure 2) seems to be 
rather well captured in the inertial theory. Potential vor- 
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Fig. 9. Meridional potential vorticity sections for the MN solution for (a) layer 1, (b) layer 2, and (c) layer 3. 
Notation is as in Figure s. 
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Fig. 10. MericUonal potential vorticity sections for the YR solution at (lea) z = 1/4 and (risht) z = a/4 for (a) 
layer 1, (b) layer 2, ana (c) layer a. Notation is as in Figure S. 
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ticity budgets described in section 5 show that the relative 
vorticity makes an important contribution to q in the upper 
reaches of this tight recirculating gyre. Indeed, it is only be- 
cause of the presence of inertial boundary layers in the MN 
model that flow is possible in the deep third layer: closed 
q contours occur in the third layer because the layer depth 
changes rapidly in the westerly shear of the Gulf Stream. 
This cannot happen in the YtL model because relative 
ticity is neglected and so flow cannot occur in jets. 

5. CONCLUSIONS 

We conclude our intercomparison of model and theory 
by presenting meridional sections from the numerical model 
and the YR and MN solutions. Figure 8 shows sections at 
z - 1/4 and z - 3/4 for the mean fields chosen to represent 
the incrtially controlled western and Sverdrupian eastern 
margin of the basin: q and its component parts, stretching, 
planetary vorticity and relative vorticity (equation (A2)) are 
plotted. 

In the west (z -- 1/4) the upper layer exhibits a frontal 
structure at •/-- 0: note how q decreases (increases) towards 
the center of the subtropical (subpolar) gyre, consistent with 
a negative dq/d• in the upper layer. Relative vorticlty is im- 
portant in the recirculation most strikingly in the eastward 
flowing jet at midbasin but also in its tight return flow. In 
the second layer, q2 is homogenized over a latitude range 
extending across both subtropical and subpolar gyres: the 
front in q evident in the upper layer has disappeared. Rel- 
ative vorticity again makes an important contribution to 
the vortlcity budget in the recirculation. In the deep third 
layer velocities are weaker, and flow is confined to a com- 
paratively narrow region about the separated jet at y - 0. 
There is no q front at y -- 0, but bottom friction prevents 
the complete homogenization of q. Relative vorticity is still 
important, even though the flow is weak. These characteris- 
tics are rather well captured by the MN solution (see Figure 
9). 

The meridionM sections shown in the left column of Fig- 
ure 8 seem to support the slippery boundary conditions 
adopted by the bin model: relative vorticity approaches 
zero and the potential vorticity is continuous across the edge 
of the deep recirculating gyre. 

The right side of Figure 8 shows a meridional section fur- 
ther east at z -- 3/4. The YR model (see Figure 10) seems 
to provide the more relevant reference solution here. At this 
longitude, inertial effects are less pronounced and gradients 
less concentrated at midbasin. However, there remains a 
remnant of the interior jet, but it is no longer intense enough 
to penetrate down into the lowest layer: q3 is given by the 
planetary vorticity as predicted by YR. 

Thus the model mean fields exhibit characteristics of both 

the YR and MN solutions. In the west, where the inertial 
boundary currents and jets shape the flow, the MN limit is 
approached; elsewhere, where the Sverdrup constraint holds, 
the YR solution is more relevant. The YP• and MN calcu- 

lations are best regarded as reference solutions representing 
analytically tractable and limiting cases which have trans- 
parent physics. The numerical model fields lie in between, 
tending to one or the other depending on model parame- 
ters. For example, just as in the barotropic calculations of 
Veronis [1966], a judicious choice of parameters makes it 
possible (although difficult) to arrange for the separated jet 

to pentrate right across the basin and approach the inertial 
limit of MN. Conversely, the separated boundary current 
can be dcstabilized by explicit instability and thus inertial 
effects restricted to a small region of the northwestern cor- 
ner of the subtropical gyre. In such cases the YR solution 
describes the flow over the greater part of the domain. Un- 
fortunately, the dependence of the penetration scale on the 
explicit lateral diffusion, bottom friction, boundary condi- 
tions, layer depths and stratification is complicated and not 
completely understood; see Holland and Schmitz[1985] for a 
model parameter study of the penetration scale of the inte- 
rior jet. Attempts to control the penetration scale by tuning 
the lateral friction alone have not been successful. 

The problem remains of how to meld the two solutions 
together. Analytical studies have been carried out which ad- 
dress aspects of this matching problem. For example, Niiler 
[1966] distorts a barotroplc Fofonoff gyre, and Nurser [1988] 
a baroclinic Fofonoff gyre by wind forcing, constraining the 
meridional transport to be in Sverdrup balance. Nurser in 
particular offers a plausible explanation of the origin of the 
'G' observed in the dynamic height reviewed by Reid [1982] 
and evident in our model fields (Figure 1). But how does 
an eastward flowing inertial boundary current diminish and 
join on to a Sverdrup interior? In our numerical model, eddy 
transfer is the agency allowing the • and q contours to cross 
as mean streamlines emerge from the jet to join onto the 
Sverdrup interior. But in the ocean other processes may also 
be important: see, for example, œuyte• et. al. [1987] who 
consider buoyancy losses. Such processes must undoubtedly 
be included in more complete theories. 

APPENDIX 

The potential vorticity equation (nondimensionalized) 

1 c•q, 
.... __ 

is integrated forward numerically [Brugge et al., 1987] for 
each level (n = 1, 2, or 3) on a finite-difference grid in a 
square domain, where q, is the quasi-geostrophic potential 
vorticity, • is the streamfunction, G= is the potential vor- 
ticity forcing function, J(a,b) is the JacobJan of a and b, 

(-0.5 • y • 0.5) is north and t is time. 
The potential vorticity is related to the streamfunction 

through 

q = RV • + y - • (A2) 

where 

and _S is the stretching matrix given by 

S • 

o 

O) 
(A3) 
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In (A1), (A2) and (AS), length has been nondimensional- 
ized with respect to/;, where/; is the north-south extent of 
the basin, depth with respect to ocean depth H; time with 
respect to (/•œ)-1 where/• is the planetary vorticity gradi- 
ent; • is with respect to [.rsI,, where Us = foWBZ•/l•H is 
a characteristic velocity chosen to be the Sverdrup velocity, 
•o is the reference Coriolis parameter, Ws• is an Ekman 
pumping velocity; and q with respect to •. 

The coefficient R = Us/• • is a Rossby number for the 
vorticity equation, •r = •gH/lOOOf• is a pseudo-Rossby 
radius, Aa,+l,• = 10aAp•+l,•/• expresses the density 
jumps between the layers in a units where 

and 6, = H•/H aze the fzaction• layez depths. 
The G values in (A1) are given by 

el = 6•Wo - • •l (A4a) 
G2 = -• V • •2 (A4b) 
ca = -.v (A4c) 

where Wo is the (nondimensionalized) vertical velocity at 
the base of the Ekman layer in units of 

Wo = sin 2• (As) 

The coefficients • and e are lateral and bottom diffusion 

constants respectively. 
The mean flows presented in Figure 1 were obtained by 

integrating the model from a state of rest and averaging the 
fields every 12 days over a 3-year period of the •tatistically 
steady state. The model parameters chosen for the integra- 
tion are 

Hi = 500m al = 27.0 (A6a) 

H2 = 1000 m a2 = 29.0 (A6b) 
H• = 3500m aa = 30.0 (A6c) 

L = 3x10 •m,• = 10 -llm -is -1, fo = 7x10 -*s -1, Us = 
2x10 -a ms -I giving R = 2x10 -• and L• = 70 km; and 
coemcients of the stretching matrix (equation (A3)) 0f mag- 
nitude 

0) • = --5 15 --10 x 10 -2 
0 --2.85 2.85 

The above imply internal Rossby radii of 48 and 18 km. 
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