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ABSTRACT

Height coordinate ocean models commonly represent topography as a ‘‘staircase’’ of discontinuous steps that
are fitted to the model grid. Here the ramifications of an alternative approach are studied in which ‘‘shaved
cells’’ are used to represent irregular topography. The problem is formulated using the finite-volume method
and care is taken to ensure that the discrete forms have appropriate conservation properties. Two representations
of topography, ‘‘partial step’’ and ‘‘piecewise linear,’’ are considered and compared with the staircase approach
in some standard problems such as the topographic b effect and flow over a Gaussian bump. It is shown that
shaved cells are clearly more accurate than the conventional staircase representation. The use of partial steps,
although not as accurate as the piecewise linear approach, is seen to be superior to the staircase approach.
Moreover, partial steps can be readily implemented in existing height coordinate models.

1. Introduction

Variations in the bottom relief of the atmosphere are
typically a fraction of the depth of the troposphere and
yet still influence the atmospheric circulation. Variations
in the depth of the ocean are of order 1 and hence have
a major control on the circulation. The accurate inclu-
sion of topography in ocean models is therefore a major
consideration. Topography is most commonly repre-
sented in height coordinate ocean models as ‘‘staircase’’
or ‘‘step’’ topography [used since Bryan (1969)], where
the steps are chosen to fit the model grid (see Fig. 1a).
As will be demonstrated later, this is a very crude ap-
proach that strictly only becomes reasonable in the limit
of very high vertical and horizontal resolution.

Terrain-following coordinates can be used to repre-
sent topography (Fig. 1b) and clearly recognize the im-
portance of the steering effect of topography on the
ocean circulation (see Haidvogel et al. 1991; Blumberg
and Mellor 1987). However, such models suffer from
problems of ‘‘hydrostatic consistency,’’ which can be
particularly troublesome above steep slopes (see Haney
1991; Mellor et al. 1994). Height coordinates, on the
other hand, recognize the overwhelming importance of
gravity in the open ocean (the pressure surfaces are
almost horizontal), but the crude ‘‘staircase’’ represen-
tation of topography leads to large errors.

The intent of this paper is to offer an alternative rep-
resentation for use in height coordinate models in which
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we ‘‘shave’’ model cells to fit the ocean’s topography
(see Fig. 1c). This is the opposite philosophy of the
‘‘step topography’’ method in which the topography is
fitted to the model grid. The ‘‘shaved cell’’ approach
offers, we believe, many of the advantages of both
height and terrain-following coordinates. We are able
to show that the ‘‘shaved cell’’ method is potentially
far superior to the ‘‘stepwise’’ representation in height
coordinate models and can approach the fidelity of ter-
rain-following coordinates without any of the hydro-
static consistency problems of the latter.

In order to introduce the discretization that allows the
shaving of model cells, we first describe the ‘‘finite vol-
ume’’ technique. For a comprehensive introduction to
the finite-volume method, we recommend Hirsch
(1990). This discretization method is very similar to,
but not the same as, the finite-differencing technique;
in the interior of the ocean, the finite-volume and
flux-form finite-difference discretizations are equiva-
lent. The advantage of the finite volume approach in
representing topography, however, is that the model
cells need not be regular boxes and can thus be shaped
to fit to the topography.

The paper is presented in three sections. Section 2
deals with the finite-volume formulation in general and
applies it to the continuity and tracer conservation equa-
tions. In section 3 we discuss some possible represen-
tations of topography within the finite-volume formu-
lation. We illustrate the clear advantages of ‘‘shaved
cells’’ over ‘‘step’’ topography when applied to a
two-dimensional passive tracer problem. The incom-
pressible Boussinesq equations are then considered in
section 4 and we present experiments of oceanographic
interest (using the numerical model of Marshall et al.
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FIG. 1. The representation of a smoothly varying bottom (dashed line) in (a) a height coordinate model
using step topography, (b) a terrain-following coordinate model, and (c) a height coordinate model with
piecewise constant slopes.

1997a and 1997b), which demonstrate the applicability
of the ‘‘shaved cell’’ method to more general problems
involving topography.

2. The finite-volume method

Conservation of a scalar quantity f, with sources Q,
may be written in the general form:

]
f 1 = ·F 5 Q, (1)

]t

where F is the vector flux of the quantity f. Equation
(1), when integrated over a constant1 volume V enclosed
by the surface A, takes the form

]
f dV 1 F · dA 5 Q dV, (2)E R E]t V A V

where we have made use of the Gauss divergence the-
orem, dA 5 dAn is an element of surface area, and n
is a vector pointing along the outward normal of the
surface A. Thus, the variation of f inside the volume
depends only on the normal flux through the surface
that defines the volume and the source terms within it.
Equation (2) can be applied to a discrete control volume
VI ,

]
V f 1 F A 5 V Q , (3)OI I I,J I,J I I]t J

where the sum of the flux-area scalar products refers to
all the external sides J of the control volume. The dis-
crete variables are consistently defined by associating
each term in (3) with its counterpart in (2):

1 We limit the discussion here to control volumes that vary only
in space. The method can be applied to temporally varying volumes,
thereby allowing the use of both adaptive grids and other coordinate
systems such as isentropic coordinates.

] ] 1
V f 5 f dV ⇒ f [ f dVI I E I E]t ]t VIV VI I

1
F A 5 F · dA ⇒ F [ F · dAI,J I,J E I,J EAA AI,JI,J I,J

1
V Q 5 Q dV ⇒ Q [ Q dV. (4)I I E I EVIV VI I

That is, fI is the volume mean of f within the control
volume VI and similarly for QI. Term FI,J is the area
mean of the component of F normal to the side AI,J.

By adopting the definitions in (4), (3) is an exact
statement. However, more often than not, F and Q are
functions of the flow and must be found by interpolation.
For example, suppose F is an advective flux F 5 vf
where v is specified. The surface integral of F becomes

1
vf · dA 5 v · dA f dA 1 SGS, (5)E E EAI,JA A AI,J I,J I,J

where SGS represents terms resulting from the corre-
lation of subgrid-scale variations of f with v and will
be set to zero here. If v is known on the face, the integral
∫ v ·dA can be evaluated. The area mean of f, however,
must be approximated by interpolation of the volume-
mean quantities fI to the face. This is the major source
of truncation error in the discrete system

1 J 2f dA ø f 1 O(D f0), (6)E I JAI,J AI,J

where fI
J indicates interpolation of the volume-mean

quantities to the face.
The control volumes must satisfy the following con-

straints for the system to be consistently conservative.

1) The sum of the control volumes VI must fill the whole
domain;

2) every internal surface AI,J must be common to two
adjacent control volumes; and

3) substance fluxed out of one volume must be fluxed
into the next so that net substance is neither gained
nor lost in the fluxing process.
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FIG. 2. A cell being cut by topography. The volume of the shaved
cell, Vi,j,k, is smaller than that of the unshaved cell, and the area of
the faces of exchange between neighboring cells are also reduced.

FIG. 3. Properties can flux into the volume Vi,j,k, of the shaved cell, through the open faces of exchange
(shown in pairs). Advective fluxes through the solid surface are zero. Each face is common to two neighboring
volumes. The pairs shown in (a), (b), and (c) are labeled A , A , respectively., and Ax y zi61/2,j,k i,j61/2,k i,j,k61/2

Budgeting over volumes using the divergence of flux-
es naturally leads to a staggered grid; the fluxes are
defined on the faces of the volumes analogous to the
Arakawa C grid. Such an arrangement of flux quantities
and volume-mean quantities is also necessary if discrete
forms are to retain conservation properties, as will be
discussed later.

In general, the control volumes can take on any shape
and be structured or unstructured, but here we consider
the cells to be regular boxes in the physical coordinate
system arranged in a logical manner. Each unshaved cell
is defined as the volume contained between six surfaces
where the surfaces are aligned with the chosen coor-
dinate system: for example, the cell contained by the
intersection of the six surfaces

x 5 x , x 5 x , y 5 y , y 5 y ,i21/2 i11/2 j21/2 j11/2

z 5 z , and z 5 z ,k21/2 k11/2

has volume

V 5 (x 2 x )(y 2 y )(z 2 z )i, j,k i11/2 i21/2 j11/2 j21/2 k11/2 k21/2

5 Dx Dy Dz .i j k

We imagine that the ‘‘grid’’ of regular cells fills the
physical domain without distortion so that the solid
boundary of the ocean basin freely intersects those cells
which abut it, as sketched in Figs. 1c and 2. The shaded
area indicates solid land and the open space indicates
water. The model variables are thus arranged as if they

were on a regular grid. However, one should not think
of model variables as carried at a regular grid of points
as in a finite-difference model. In the finite-volume ap-
proach, the model variable is defined as the volume
mean over a model cell. In the case where the topog-
raphy intersects the model cell above the middle, no
special consideration is needed; the mean depth (v21∫ z
dV) of the cell is simply changed accordingly.

Since the advective flux normal to a boundary van-
ishes, the shape of the solid bounding surface does not
enter the advective budget. Thus, cells abutting a solid
boundary may take on more complex geometries with-
out introducing auxiliary terms or equations for each
cell. The cell topology can be described with seven
parameters; a volume and six surface areas. Figure 3
shows the six areas of open exchange corresponding to
the shaved cell in Fig. 2. With zero normal flux at solid
boundaries, the budget for volume-mean quantities is
determined completely by the fluxes through the open
areas of each face and the volume of water within the
volume. Boundary conditions that involve nonzero nor-
mal fluxes can be written as effective volume-mean
source terms (Q) but may demand a more complete
description of the surface.2

a. Finite-volume continuity and tracer advection
equations

Application of the discrete finite volume equation (3)
in three spatial dimensions gives

]
V f 1 A F 1 A Fi,j,k i,j,k x x y yi11/2,j,k i11/2,j,k i,j11/2,k i,j11/2,k]t

1 A F 2 A F 2 A Fz z x x y yi,j,k11/2 i,j,k11/2 i21/2,j,k i21/2,j,k i,j21/2,k i,j21/2,k

2 A F 5 V Q ,z z i,j,k i,j,ki,j,k21/2 i,j,k21/2

which, using the discrete notation of Arakawa (see ap-
pendix A), can be written more succinctly, thus

2 For example, heat conduction across the surface would require
that the area of the solid surface be supplied as a parameter. The
parameterization of frictional effects might also include a curvature
or roughness parameter as used in some atmospheric models.
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FIG. 4. The representation of hypothetical topography (dashed line)
in a height coordinate ocean model. In the ‘‘full step’’ approach, that
of conventional finite-difference models, the bottom depth is chosen
to coincide with the model grid. In the ‘‘partial step’’ representation
the thickness of the volumes abutting the bottom can be adjusted to
match the topography. In both the ‘‘full’’ and ‘‘partial step’’ methods,
the bottom depth is discontinuous. The ‘‘piecewise’’ representation
assumes a constant linear slope within each cell. The bottom depth
is then continuous, though its gradient is not.

]
V f 1 d (A F ) 1 d (A F ) 1 d (A F ) 5 VQ. (7)x x x y y y z z z]t

The discrete equation for a conservative tracer u is then
obtained by setting f 5 u, Q 5 0 and supposing that
F contains both the advective flux yu and diffusive flux
D (here we will assume that there is no diffusive flux
across the solid boundary):

] x y¯ ¯V u 1 d (A uu 1 A D ) 1 d (A yu 1 A D )x x x x y y y y]t
z¯1 d (A wu 1 A D ) 5 VQ. (8)z z z z

The continuity equation is obtained by setting f 5 Q
5 0 and F 5 v to give

dx(Axu) 1 dy(Ayy) 1 dz(Azw) 5 0. (9)

Note that the flux divergence operator in (8) is very
similar to the divergence operator in the continuity equa-
tion. This property is now made use of when we consider
conservation of higher moments.

b. Conservation properties of the discrete tracer
equations

The net amount of tracer is identically conserved by
the discrete advection operator (8) because it has been
written as the divergence of a flux. Because of the way
we have chosen to average u, it turns out that (8) also
conserves the domain average of the second moment
(u2), in a direct analogy with the continuous equations:

D 1 D
2u 5 u u 5 0.1 2Dt 2 Dt

For global conservation of the second moment, we
must be able to write the advective terms in (8), when
multiplied by u, as the divergence of a flux:

x y z¯ ¯ ¯u[d (A uu ) 1 d (A yu ) 1 d (A wu )]x x y y z z

1 1 1
2 2 25 d A u EuE 1 d A y EuE 1 d A w EuEx x x y y y z z z1 2 1 2 1 22 2 2

1
21 u [d (A u) 1 d (A y) 1 d (A w)],x x y y z z2

a result derived in the appendix. Here EuE2
x [ ui21/2ui11/2

is the geometric product between two neighboring points.
The last term vanishes due to (9). The remaining term on
the right-hand side is written as the divergence of an ad-
vective flux [analogous to = ·(½u2u) in the continuum]
and so also vanishes on application of boundary conditions
when summed over the whole model.

3. Representation of topography

So far we have described a finite-volume approach
that is ideally suited for arbitrary geometries. We now

discuss the manner in which we represent topography
by shaving those volumes. To facilitate this discussion,
we consider a two-dimensional problem in the y–z plane.
Figure 4 shows some possible approximate represen-
tations of a hypothetical topographic surface, shown as
a dashed line. The position of the approximate surface
can then be used to ‘‘shave’’ the model cells.

In the conventional finite-difference approach, as em-
ployed in the Geophysical Fluid Dynamics Laboratory
model (Bryan 1969), for example, the depth of the bot-
tom is rounded to the nearest model depth to form ‘‘full
steps.’’ This is the lowest-order representation of the
ocean bottom. Neither the volume of the water column
nor the cross-sectional area presented to the flow are
accurately approximated unless the ocean bottom hap-
pens to be flat and lie at a model depth!

In the ‘‘partial step’’ approach, the bottom surface
can take any intermediate depth within the cell, thus
capturing the volume of the water column more accu-
rately. The bottom cell of each column in the model can
have its volume appropriately chosen but steps are still
present. This approach was discussed by Cox (1977)
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FIG. 5. Arrangement of streamfunction C, passive tracer u, and ad-
vecting flow y and w.

and used by Semtner and Mintz (1977) (see their Fig.
2), Maier-Reimer and Mikolajewicz (1992), and D. S.
Stevens and S. Maskell (1996, personal communica-
tion). In both ‘‘step’’ methods, the bottom discontinu-
ously jumps. The size of the steps is less in the ‘‘partial
step’’ method and is therefore perhaps more desirable.

The ‘‘piecewise’’ slope representation assumes a con-
stant slope within each cell and the face coincident with
the bottom is allowed to intersect the vertical edges at
any point. As can be seen in Fig. 4, this is a better
approximation to the ‘‘true’’ surface except in local
regions of high curvature (i.e., the topography has large
subgrid-scale variations). Moreover, the bottom depth
is now continuous and ought to lead to ‘‘smoother’’
solutions. We now go on to compare the results of using
these three representations of the topography: the ‘‘full
step,’’ ‘‘partial step,’’ and ‘‘piecewise slope’’ methods.

An illustration: Advection of a passive tracer in 2D

The problem we pose is the advection of a passive
tracer by a prescribed nondivergent flow. The two con-
servation laws for the discrete volumes are the conti-
nuity and tracer advection equations. The discrete
two-dimensional continuity equation is

dy(Ayy) 1 dz(Azw) 5 0. (10)

A streamfunction can be constructed that exactly sat-
isfies (10):

d C d Cz yy 5 , w 5 2 , (11)
A Ay z

suggesting that C be chosen to lie at the corners of the
model cells (see Fig. 5). The discrete two-dimensional
tracer equation is

]u y z¯ ¯V 1 d (A yu ) 1 d (A wu ) 5 0. (12)y y z z]t

The calculation is simplified by the flow being pre-
scribed. We have also chosen not to represent any sub-
grid-scale terms and to assume that there are no sources
and sinks; this will test the advection operator in the
extreme limit of no dissipation.

We impose a sheared zonal flow over a Gaussian to-
pographic feature. All variables and parameters are non-

dimensional. The channel is of unit depth (21 # z #
0) and of length 2 (21 # y # 11) and is periodic in
y. The height of the topographic feature is given by

h(y) 5 hoe ,22(y/l) (13)

where l is the decay scale. The nondivergent shear flow
is specified by

C(y, z) 5 (1 2 z)2 where z 5 z/[h(y) 2 1], (14)

so that C(y, z 5 0) 5 1 and C(y, z 5 h 2 1) 5 0. The
initial conditions are u(y, z) 5 1 1 z. The bump has
height ho 5 1/2 and decay scale l 5 1/4. There is no
explicit diffusion. We first use 16 points in the horizontal
and eight levels in the vertical so that the aspect ratio
of an unshaved model cell is unity.

Figure 6 shows the streamfunction C (fixed in time)
and tracer u at t 5 0.3 for three realizations of the finite-
volume representation of the smoothly varying bottom
topography: (a) full step, (b) partial step, and (c) piece-
wise linear slope. The common feature in the stream-
function is a compression of the streamlines over the
bump. Vertical motion should be confined to the slopes
of the bump. In the full-step representation, the top of
the bump is crudely represented as a level plateau. The
vertical velocity is consequently zero above the center
and elsewhere is compressed into vertical bands above
each step. The same is true of the streamfunction in the
partial step calculation, but the discontinuities are less
severe. In the piecewise slope calculation, the stream-
function follows the smoothly varying bottom depth
with no discontinuities.

The common feature in the tracer field of each cal-
culation is a column of high values that have been swept
off to the right from above the bump. The flow has also
sheared the feature as it carries it downstream. Any
discontinuities in the streamfunction, seen as bands of
upwelling, will lead to grid-scale noise in the tracer field.
This effect can be seen most prominently in the full-
step calculation. Upstream of the bump, the noise takes
on the characteristic up–down grid-scale pattern. The
amplitude of the noise is much reduced in the partial-
step calculation and barely discernible in the piecewise
slope calculation. Remember that these calculations
have no explicit diffusion; in practice such noise might
be removed by explicit diffusion or a diffusive advection
scheme.

If we increase the horizontal resolution the aspect
ratio of unshaved model cells will approach the typical
aspect ratio of general circulation models. Figure 7
shows the same scenario using twice as many points
(32) in the horizontal as in Fig. 6.

The full-step representation is even less accurate
now, representing the slope as a series of level pla-
teaus. The discontinuities in the streamfunction are
now over narrower bands, enhancing the vertical ve-
locity. The spurious oscillations in the tracer field
dominate the solution. In contrast, the partial-step and
piecewise linear slope cases have improved, the
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FIG. 6. Streamfunction C and passive tracer u at time t 5 0.3 (time is normalized by the advective timescale) for three renditions of zonal
flow over a Gaussian bump. The bump has height ho 5 1/2 and exponential decay scale 1/4. The model resolution is Dy 5 1/8 and Dz 5
1/8. The bump is represented in (a) by full-step, (b) by partial-step, and (c) by linear piecewise methods.

streamfunction in the partial step is smoother than
before, and the noise level is consequently much re-
duced. Indeed, the piecewise slope calculation has
almost indiscernible noise levels, which suggests that,
in the limit of high resolution, the piecewise slope
solution approaches the continuum faster than the par-

tial-step solution. This could also be deduced from
the actual representation of the slope; the partial-step
method has an error that decreases linearly with N,
the number of grid points in the horizontal, while the
piecewise slope decreases quadratically (N2).

This example demonstrates the inadequacy of the
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FIG. 7. As in Fig. 6 but at twice the horizontal resolution. Here, Dy 5 1/16 and Dz 5 1/8.

full-step representation of topography for the simple
problem of passive tracer advection by a steady flow
field. The spurious oscillations in the tracer field be-
come more prominent with increasing horizontal res-
olution (i.e., as the flat plateaus span an increasing
number of grid points). The difference in volumes and
areas between the partial-step and trapezoidal repre-

sentations vanishes as the horizontal resolution be-
comes infinitesimal. The partial-step method does ap-
pear adequate at high horizontal resolution, but the
piecewise linear slope method is clearly superior, es-
pecially at coarse resolution.

The noisiness of the tracer fields in the above ex-
periments is a numerical response to the discontinuities
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FIG. 8. Three idealizations of barotropic flow across a hypothetical
slope (dashed line). The transport streamfunction is given by C 5 1
2 z/H where we have assumed unit depth and unit horizontal grid
spacing. In the ‘‘full step’’ approach (a), wz is zero everywhere except
at a single model point. The ‘‘partial step’’ (b) and ‘‘piecewise linear’’
(c) approaches both have smoother w fields, where the upwelling is
spread over three or four points.

FIG. 9. The control volumes for the u, y, and w variables are stag-
gered in space relative to the tracer control volume V u.

in the advecting flow, which in turn arise from the dis-
continuities in the bottom profile. To further illustrate
the nature of the difference between the full-step and
shaved-cell approaches, we consider the simple case of
barotropic flow across the hypothetical slope shown in
Fig. 8. In the full-step approach (Fig. 8a), the slope is
represented by a single step. The vertical velocity is
zero everywhere except for the model point upstream
of the step and hence appears discontinuous to the mod-
el. Consider next the piecewise linear approach shown
in Fig. 8c. Here the model sees an exact representation
of the linear slope so the vertical transport is appropri-
ately spread out over the length of the slope. The vertical
velocity field is subsequently smoother than in the full-
step case. Finally, consider the partial-step approach
shown in Fig. 8b. Here, we choose the model depths to
exactly represent the volume of water columns. As a
result, the far left column of the model sees a small
barrier, which forces a vertical motion. The vertical ve-

locity is subsequently spread out over four model points
and is thus smoother, though less accurate, than in the
piecewise linear approach.

4. Discretization of the incompressible Boussinesq
equations using finite volumes

Instead of prescribing the flow, we now wish to find
it by stepping forward the hydrodynamical equations.
The incompressible Boussinesq equations for oceanic
motion consist of the incompressibility condition (non-
divergence of the flow), two horizontal momentum
equations, one vertical momentum equation (which may
take the form of hydrostatic balance), prognostic equa-
tions for the potential temperature and salinity, and an
equation of state. The equations are written out in full
in Marshall et al. (1997a).

As we have seen, discrete forms of the continuity and
tracer equations (heat and salt) are obtained by inte-
grating over the volume of the tracer cells; we label
these cells with a superscript, u. Each tracer cell has
associated with it a volume V u and three areas u uA , A ,x y

for the eastern, northern, and upper faces, respec-uAz

tively. Only three face areas are needed since each face
is common to two cells. Cells that abut the solid bound-
ary are shaved to fit the boundary by, as before, ap-
propriately modifying the volume and areas. No extra
parameters are needed to describe the shaved cell as
long as the flux normal to the solid surface is zero.

The control volumes for the velocity variables u, y,
and w are shifted relative to the tracer volumes and are
sketched in Fig. 9. For unshaved cells, the volumes and
areas of the cells can be readily deduced since they are
regular. Each of the variables u, y, and w has associated
with it a volume and three face areas, identified using
the appropriate superscript. The discrete momentum
equations are then found by applying the finite-volume
formulation of section 2. The overall discretization, in-
cluding a discussion of hydrostatic, nonhydrostatic, and
quasi-hydrostatic forms, is given in Marshall et al.
(1997b), the details of which will not be repeated here.
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FIG. 10. Assuming piecewise slopes within the two neighboring
tracer cells (labeled Vu), the bottom within the consistent u volume
(labeled Vu) is constructed from two sections of piecewise slope.

However, one important question is, what shapes do
the momentum volumes take in the case of shaved cells?
Consider, for example, the two neighboring tracer cells
in Fig. 10 in which we have assumed a piecewise slope
representation of the topography. The thick dashed line
outlines an obvious choice for the u volume even though
it has a different form than for an individual tracer vol-
ume; the surface defining the base of the u volume is
formed from two piecewise slopes, whereas the bottom
surface of tracer volumes is represented using only one
piecewise slope.

In the finite-volume formulation, the conservation
properties are readily obtained for the first moments of
the flow and tracers. However, as in the implementation
of Marshall et al. (1997a), we can also retain conser-
vation of second moments if the volumes are chosen
carefully. This is achieved in the tracer equations by
using centered, unweighted interpolation. As we now
go on to discuss, special consideration of the discreti-
zation of the momentum equations, and in particular
pressure gradient forces, is required to retain kinetic
energy conservation. This has ramifications for the form
of the elliptic problem. We describe these implemen-
tation details next.

a. Form of the pressure gradient and elliptic
equation

The elliptic equation for pressure is formed by taking
the divergence of the momentum equations and invok-
ing continuity:

]
v 1 =P 5 G

2]t ⇒ ¹ P 5 = ·G, (15)6= ·v 5 0

where P 5 p/ro and all terms in the momentum equa-
tions have been collected into the vector G. When the
momentum equation is discretized in time, the pressure
gradient force can be thought of as that force required
to ensure nondivergence at the next time step. The pres-
sure field is unique to within a constant of integration
(homogeneous Neumann boundary conditions are im-
plicit in the finite-volume formulation). The pressure
gradient force, with zero curl, which guarantees non-

divergence, is unique, as can be illustrated as follows.
Expressing (15) in terms of the pressure gradient force
Fp 5 =P:

]
v 1 F 5 Gp = ·F 5 = ·Gp]t ⇒ (16)56 = 3 F 5 0,= ·v 5 0 p

where we have noted that Fp, because it can be written
as the gradient of a scalar, the pressure, has zero curl.
There is only one field of force Fp that has divergence
= ·G and zero curl. Because it is only the pressure gra-
dient force that appears in the momentum equations,
there is a certain flexibility in our choice of discreti-
zation of it; if we change our discretization of =P the
discrete form of the elliptic operator may change but
the same discrete pressure gradient will be implied by
that field. We are therefore at liberty to modify our
choice of discretization so that it leads to a simple el-
liptic equation. We thus simply write, for example, the
zonal momentum equation as

] 1
uu 1 d P 5 G ,xu]t Dx

where Dxu is some (as yet undefined) length over which
the pressure gradient is measured. When we consider
the kinetic energy balance we will find Dxu has to be
appropriately chosen to ensure conservation. The above
discretization of the pressure gradient terms also ensures
that the elliptic operator remains symmetric and so stan-
dard conjugate gradient methods can be used to solve
it. We choose the preconditioned conjugate gradient al-
gorithm over multigrid methods because it can readily
handle an irregular domain. Details of the implemen-
tation of this algorithm and its mapping on to parallel
computer architectures can be found in Marshall et al.
(1997a).

b. Energy conservation

Some terms in the finite-volume momentum equa-
tions need to be interpolated from the volume-mean
quantities either because they are needed at faces (e.g.,
velocities in advection terms) or because they are needed
in a different volume (e.g., fy Coriolis term in the u
cell). We use centered (i.e., unweighted) interpolation
for these terms. This ensures that in the interior of the
ocean, the finite-volume discretization recovers the sec-
ond-order finite-difference discretization of Arakawa
and Lamb (1977). This particular discretization has the
property of conserving first and second moments of all
quantities in a manner analogous to the continuous equa-
tions. To reproduce analogs of these conservative prop-
erties near the boundaries, we must carefully consider
each term in the momentum equations.

The nonlinear terms (e.g., Fu 5 vu) ought to conserve
total kinetic energy. If we discretize thus,
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x y zF · dA 5 d (U*ū ) 1 d (V*ū ) 1 d (W*ū ), (17)R u x y z

A

where U*, V*, and W* have units of area times velocity,
then it can be shown (see appendix B) that to ensure
global conservation of u2, the V*’s themselves must
satisfy a nondivergence condition:

dxU* 1 dyV* 1 dzW* 5 0. (18)

Since the flow (u, y, and w) satisfies continuity over a
tracer volume (9), this requirement can be satisfied by
choosing

x x x
u u uU* 5 A u V* 5 A y W* 5 A w . (19)x y z

Similar quantities are invoked for the y and z momentum
equations where the 2x averaging is replaced with 2y
and 2z.

In the continuum, the Coriolis terms do not generate
kinetic energy since v · ( f k 3 v) 5 0. The discretized
Coriolis terms can be chosen to imply no net kinetic
energy generation (i.e., when integrated over the whole
model) if they are written thus,

x
u yfy dV 5 fV ȳE

uV

y
u xfu dV 5 fV ū .E

yV

The discrete analog of the generation term does not
vanish locally but has the form

x yx y
u y u x u yu fV ȳ 2 y fV ū 5 d [ud ( fV ȳ )]x x

u x2 d [yd ( fV ū )].y y

However, since the right-hand side is the divergence of
a flux, its global sum vanishes.

In the continuum, conservation of total kinetic energy
also depends on the identity

v ·=P 5 = · (vP) 2 P= ·v 5 = · (vP). (20)

The discrete finite-volume analog is
x y z

d P d P d Px y zu y wV u 1 V y 1 V w
u y wDx Dy Dz

x y zu y wP V u P V y P V w
5 d 1 d 1 dx y zu y w1 2 1 2 1 2Dx Dy Dz

u y wV u V y V w
2 P d 1 d 1 d , (21)x y zu y w1 2Dx Dy Dz

where Dxu, Dyy, and Dzw are the effective distances over
which the pressure gradient is evaluated. The last term
should vanish by continuity but will not do so unless
we choose

u y wV V V
u y wDx 5 Dy 5 Dz 5 . (22)

u u uA A Ax y z

Thus, to ensure good energetic credentials in the discrete
momentum equation, we choose Dxu as given above
where V u is defined as in Fig. 10. The complete spatial
discretization of the zonal momentum equation is then

] x x x
u u u uV u 1 d (A u u) 1 d (A y u) 1 d (A w u)x x y y z z]t

x 1
u y2 fV ȳ 1 d P 5 · · ·xuDx

and similarly for the meridional and vertical momentum
equations.

c. Gravity wave noise induced by ‘‘step’’ topography

Continuing the theme of comparing solutions using
the ‘‘step’’ and ‘‘shaved cell’’ representation of topog-
raphy, we present a further two-dimensional example,
this time using the hydrodynamical model of Marshall
et al. (1997a) to study the influence of topography on
the flow (previously, the flow was specified). We con-
sider a zonally averaged channel, the bottom of which
is inclined to the horizontal. A (zonal) wind-stress-driv-
en meridional circulation induces downwelling on the
deep side of the channel and upwelling on the shallow
side (see Fig. 11). The deep return meridional flow,
moving over the bottom slope, must match the surface
Ekman transport set by the wind.

The model is confined to the y–z plane by setting all
derivatives in the x direction to zero. To isolate the
generation of gravity waves over step topography from
the numerical issues described in section 3a, we have
switched off all nonlinearity in the code so that the
buoyancy equation is simply ]b/]t 5 2wN2, where N2

is constant. The wind forcing is given a half sinusoidal
profile with magnitude 2 dyn. The stratification is N 5
20f, where the Coriolis parameter is a constant, f 5 1
3 1024 s21.

Each of the following experiments attempts to model
the effect of a constant bottom slope in a channel of
width 1000 km (Dx 5 50 km), such that H(y 5 0 km)
5 4000 m and H(y 5 1000 km) 5 3000 m. Figure 11
shows the meridional circulation in a four-level model
(Dz 5 1000 m) at an instant in time, 2.5 inertial periods
(t 5 5p/f ) into the model spinup (in this case, no bottom
stress is specified so the model would actually spinup
indefinitely). The first panel (Fig. 11a) shows the model
solution when a stepwise approach is used. Halfway
along the bottom, the meridional flow ‘‘hits’’ the wall
of the step and is forced to turn upward. This collision
with a solid wall generates gravity waves that radiate
away from the region of the step. The kinks in the in-
stantaneous streamfunction are the manifestation of
these topography-generated gravity waves.

In contrast, the partial-step (Fig. 11b) and piecewise
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FIG. 11. Streamfunction C at time t 5 5p/f (i.e., 2.5 inertial periods) for three simulations
of meridional circulation over a shallow meridional slope across a channel. The solutions (a),
(b), and (c) were obtained with the full-step, partial-step, and piecewise linear representations,
respectively. There are four levels in the vertical so the full-step calculation (a) sees the slope
as only a single step. The contour interval (0.5 Sv) is the same in all plots.

(Fig. 11c) representations have no such problems (the
slope is represented exactly by the piecewise method
because the slope is constant). In both cases, the me-
ridional circulation smoothly follows the sloping bound-
ary (w 5 2y]H/]y). These two solutions appear to be
nearly identical because the bottom depths are so sim-
ilar; the difference between partial step and piecewise
linear representations is insignificant for shallow slopes.

With increased vertical resolution (eight levels, Dz 5
500 m), the amplitude of the topography-generated
gravity waves is reduced (see Fig. 12a). However, there

are now two steps and therefore double the source of
gravity wave energy. Furthermore, a gently rising mo-
tion of fluid near the bottom boundary is absent and
replaced by discontinuous jumps. Again, the partial-step
and piecewise linear representations have none of these
problems.

These experiments were intentionally carried out
with a linear model to isolate the problem of topo-
graphically generated (gravity wave) noise in dynam-
ical models from the issues raised in the passive tracer
experiment. It is quite likely that the combination of
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FIG. 12. As for Fig. 11 but with eight levels in the vertical.

noisy advecting fields and noisy active tracer fields
would present even more of a problem in higher–Ross-
by number flows.

5. Further oceanic illustrations

The discretization outlined in the previous section
was used to formulate the 3D numerical model of Mar-
shall et al. (1997a). Here we further test the represen-
tation of topography using shaved cells as an alternative
to the conventional stepwise representation in simula-
tions of the large-scale ocean circulation.

The first experiment highlights the importance of ac-

curately representing shallow slopes in dynamical mod-
els. The second set of experiments attempts to test the
approach in the presence of order 1 topography through
direct comparison with a terrain-following coordinate
model. We also study how the various schemes behave
as their respective resolutions are increased.

a. Topographic b effect at large horizontal scales

Steady, inviscid, and weak flow of a homogeneous
rotating fluid must, by the Taylor–Proudman theorem,
follow contours of f/H, where f is the Coriolis parameter
and H is the fluid depth. Variations in f/H can be due
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TABLE 1. Parameters for the two experiments to model planetary
(I) and topographic (II) b effects ( fo 5 1 3 1024 s21, b 5 1.6 3
10211 s21 m21, Ho 5 4000 m).

Experiment I II

Dimension for x (km)
Dimension for y (km)
Grid spacing Dx (km)
Grid spacing Dy (km)

0 to 2000
22000 to 2000

100
100

0 to 2000
22000 to 2000

100
100

Time step Dt (s)
Depth H(y) (m)
Coriolis f (y) (s21)
Horizontal viscosity AH (m2 s21)

3600
Ho

fo 1 by
5000

3600
Ho /(1 1 by/ fo)

fo

5000

TABLE 2. Parameters for the SPEM comparison experiment. The
resolution in the SPEM integration is approximate. A stretched co-
ordinate was used to increase resolution over the bump.

FVGCM SPEM

Grid size (Nx 3 Ny) 80 3 60 66 3 65
Zonal resolution Dx (km) 5 4.375 # Dx # 8.125
Meridional resolution

Dy (km) 5 3.281 # Dy # 6.094
Nominal ocean depth H (m) 4500 4500
Height of bump h (m) 4050 4050
Length scale of bump L (km) 25 25
Stratification NH/ fL 1.5 1.5
Barotropic in-flow

uo (cm s21) 25 25
Horizontal dissipation

A4¹ (m4 s21)4
h 5 3 109 5 3 109

Vertical viscosity
AV (]2/]z2) (m2 s21) 1023 1023

Horizontal diffusion
k4¹ (m2 s21)4

h 1 3 109 1 3 109

Vertical diffusion
kV(]2/]z2) (m2 s21) 1025 1025

Time step Dt (s) 600 432

to a variation in the planetary vorticity (]f/]y 5 b ±
0) or to a sloping bottom.

On a b plane in a basin of constant depth Ho, the
potential vorticity and its meridional gradient are

f 1 by ]Q boQ 5 ; 5 , (23)
H ]y Ho o

while on an f plane with variable bottom depth H(y):

f ]Q 2 f ]Ho oQ 5 ; 5 . (24)
2H(y) ]y H ]yo

To obtain the same PV and PV gradient in both cases,
H(y) in (24) must vary thus,

HoH(y) 5 . (25)
1 1 (by/ f )o

The model was configured for two experiments: the
first (i) on a b-plane basin with a constant depth, Ho,
the second (ii) on an f plane with a variable depth given
by (25). We forced the model with the same wind stress
in both calculations; t(x) 5 to cos2py/Ly, t(y) 5 0. The
maximum wind stress was to 5 2 dyn cm22. The hor-
izontal viscosity AH was chosen such that the Munk layer
thickness dMunk ; (AH/b)1/3 was just resolved by the grid.
All numerical parameters are summarized in Table 1
and were the same for both experiments.

The model was set up with one layer3 and a regular
Cartesian grid. The homogeneity of the layer is guar-
anteed if temperature and salt of the layer are initially
homogeneous and there is no buoyancy forcing. In the
second experiment, the shaved cells are invoked to rep-
resent the variable bottom depth. The same code is used
for both calculations.

The barotropic streamfunction (depth-integrated
transport) after one year is shown for each experiment
in Fig. 13. The solutions are nearly identical. We con-
clude that the use of shaved cells endows the model
with the ability to respond to the gentle topographic
variations in a realistic way.

3 With a ‘‘rigid-lid,’’ the model then reduces to the barotropic equa-
tions.

b. Flow over a Gaussian bump

A direct comparison of the finite-volume model of
Marshall et al. (1997a) with SPEM v3.0 (Haidvogel et
al. 1991) was made possible by D. Goldner (MIT/WHOI
Joint Program, 1995). He made numbers available from
an experiment conducted using SPEM to study flow over
a seamount (Fieberling, an amazing topographic feature
in the Pacific Ocean that looks very much like a Gauss-
ian bump!).

A Gaussian bump was placed in a periodic channel
of width 300 km and length 400 km. The bump had
a characteristic horizontal length scale of 25 km and
was centered in the channel. It rose to a height of 90%
the depth of the ocean (i.e., to within 450 m of the
surface).

The finite-volume code was configured to match the
SPEM integration as much as possible. SPEM (version
3.0) uses a spectral representation in the vertical and is
formulated using s coordinates as a vertical coordinate.
Eight modes were used in SPEM and so eight levels in
the vertical were chosen in the finite-volume model,
equally spaced since the stratification was initially con-
stant. The SPEM integration also used stretched coor-
dinates in the horizontal to increase resolution over the
bump. A horizontal resolution of 5 km was chosen for
the finite-volume model as an approximate mean of the
SPEM resolution (see Table 2).

SPEM used biharmonic dissipation, oriented along
the sloping s surfaces, with a damping timescale of
35 h on a length scale of 5 km. The same amount of
biharmonic dissipation is used in the shaved cell cal-
culations, but the operator acts along horizontal sur-
faces.

The models were initialized with a barotropic inflow
of 25 cm s21. Both models are periodic but SPEM is
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FIG. 13. Barotropic streamfunction C after one year of integration for (a) the flat bottomed b-plane calculation and (b) the f-plane calcu-
lation with sloping bottom.

formulated using a barotropic streamfunction so that the
zonal transport is easily specified for all time. In the
finite-volume model, we mimic the boundary conditions
on the zonal transport by relaxing the zonal flow toward
the initial conditions on a timescale of 1 h in a narrow
band upstream of the bump (0 , x , 50 km). This
relaxation supplies a force that balances the decelerating
form drag exerted by the bump.

The flow in both models is immediately deflected to
the left as it passes over the bump. In time, an anti-
cyclonic and cyclonic eddy are formed, the latter of
which is shed off the bump and advected downstream
(see Figs. 14, 15a).

The effect of the topography in steering the flow is
represented in a very similar manner in both models.
The distortion of the cyclonic tail, upstream of the

bump in the shaved cell calculations, is a result of
the cyclonic eddy impinging on the band of relaxation
and should be ignored. The orientation of the elliptic
cyclonic eddy is slightly different, but the process of
eddy formation, shedding, and advection modeled in
SPEM is properly duplicated in the piecewise linear
shaved cell calculation. Remember that in addition to
their respective coordinates, the models differ in the
distribution of resolution, both vertical and horizon-
tal, and the orientation of the surface along which
dissipation occurs. The SPEM solution appears
smoother than the finite-volume model solution. This
might be attributed to the fact that the seamount in-
tersects levels of the finite-volume model, thereby in-
troducing discontinuities, whereas there are no lateral
boundaries on a s surface other than at the channel
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FIG. 14. Nondimensional depth integrated relative vorticity /f in the SPEM integration, at tẑ
5 10 days. Contour interval is 100. The features to note are the anticyclonic eddy positioned
over the bump (center), the cyclonic eddy swept downstream, and a tail of cyclonic vorticity
that stretches between the bump and the downstream eddy.

walls. Despite these differences, it is clear that the
shaved cell method does a comparable job to that of
the s-coordinate model in representing flow even over
this large topographic feature.

c. Comparison of piecewise linear shaved cells with
step topography

In order to assess the merits of our various methods
of representing topography using finite volumes, we re-
peated the above integration using the partial-step and
full-step representations with exactly the same param-
eters. The bump profiles as seen by the model are shown
in Fig. 16. The three curves correspond to the three
representations used (the solid curve is the profile used
in the shaved cell approach). In both stepwise approach-
es, the profiles are discontinuous but because of the
particular resolution generally follow the Gaussian
shape. This is because the aspect ratio of the grid cell
(Dz/Dx) is comparable with the slope of the topography
(; h/L):

Dz 562.5 m
5 5 0.1125

Dx 5 km

and

h 4050 m
5 5 0.162.

L 25 km

The model was initialized and integrated forward as
before. Figures 15b and 15c show the depth-integrated
relative vorticity normalized by f at day 10. Both step
approaches manage to model the process of eddy for-
mation, shedding, and advection. The notable differ-
ences between piecewise linear and partial step are (i)

the larger maxima within the tail structure in the partial
step and (ii) the tendency in the partial step for the end
of the tail above the bump to split in two. On the whole,
however, the solutions are qualitatively similar, although
the piecewise linear slope solution most resembles the
SPEM solution. The differences between the solutions
using partial-step and full-step approximations are more
significant: (i) stronger local maxima within the tail
structure, (ii) a complete split in the end of the tail
rendering an isolated cyclonic feature that is almost as
strong as the cyclonic eddy itself, (iii) a stronger, wide
band of cyclonic vorticity positioned off the northeast-
ern flank of the bump, and (iv) much more small-scale
noise over the bump itself.

In this example, the horizontal scale of topographic
variation was well resolved; the aspect ratio of the grid
cell is near that of the slope. Ironically, as the height
of the bump is reduced, more levels would be needed
in the ‘‘full step’’ method to ‘‘properly’’ resolve the
slope.

All numerical methods should asymptote to the ‘‘cor-
rect’’ solution as the resolution becomes finer. To test
the convergence properties of the various topographic
representations, we conducted two additional experi-
ments for each representation, one with Dx 5 3⅓ km
and the second with Dx 5 2½ km, keeping the vertical
resolution unchanged (i.e., using eight levels). The time
step was reduced to Dt 5 200 s and Dt 5 100 s, re-
spectively, but all other parameters remained unchan-
ged. As we increase the horizontal resolution (i.e., re-
duce Dx) one expects the ‘‘piecewise linear slope’’ and
‘‘partial step’’ solutions to converge to the same ‘‘cor-
rect’’ solution.

Figures 17a and 18a show the ‘‘piecewise linear
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FIG. 15. Nondimensional depth integrated relative vorticity /f at t 5 10 days using (a) piecewiseẑ
linear, (b) partial-step, and (c) full-step representations of topography. Contour interval is 100.
The distorted tail of cyclonic vorticity upstream of the bump (0 , x , 50 km) is an artifact of
the band of relaxation used to mimic open boundaries in a periodic channel.
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FIG. 16. Profiles of bottom depth in the three shaved cell calcu-
lations of zonal flow over a Gaussian bump. The solid line is the
piecewise linear representation the nodal points of which fall exactly
on the Gaussian curve being modeled. The short-dashed curve and
long-dashed curve correspond to the partial-step and full-step rep-
resentations, respectively. Note that the full-step topography fits the
model grid that has been overlaid on the right. To the eye, all curves
should look approximately Gaussian, but on closer examination it
becomes clear that the full step curve is a poor local approximation
to the topography, while the partial step is closer even though it is
discontinuous.

slope’’ solutions for the two finer resolutions of Dx 5
3⅓ km and Dx 5 2½ km, respectively. The solutions
differ from the former calculations (Fig. 15a) only in
fine detail, the overall structure being the same. The
amplitude of the cyclonic eddy reduces as the resolution
is made finer, suggesting that coarse resolution over-
estimates the eddy strength.

The ‘‘partial step’’ solutions, shown in Figs. 17b and
18b, differ more substantially from the low-resolution
calculation (Fig. 15b). The tail structure has lost the two
tongued feature and becomes even more similar to the
‘‘piecewise linear slope’’ solution. Indeed, the finest res-
olution ‘‘piecewise linear slope’’ and ‘‘partial step’’ cal-
culations are almost indistinguishable.

In the case of the ‘‘full step’’ method, the solution
appears to diverge! Figures 17c and 18c show the so-
lution for Dx 5 3⅓ and Dx 5 2½, respectively. Note
that as the resolution is increased, the degree of noise
above the bump becomes worse, the cyclonic eddy is
distorted, and a new anticyclonic eddy appears between
the cyclone and the bump. The ‘‘rings’’ of grid-scale
noise become more pronounced with increased resolu-
tion and clearly delimit the steps of the bump.

We can assess the degree of convergence by com-
paring the strength of the cyclonic eddy, the values of
which are shown in Table 3. As the grid spacing is
reduced, the strength of the cyclone reduces but asymp-
totically so. We have taken the liberty of extrapolating
the strengths to the limit of infinite resolution (right-
hand column) by using second-order rational functions
that pass through the three data points. Based on three
experiments each for the three representations, it appears

that the ‘‘piecewise linear slope’’ and ‘‘partial step’’
solutions are converging on the same solution (; 731
6 5), but the ‘‘full step’’ solution appears to be asymp-
toting to a completely different solution (; 508). In
fact, the full-step method does not approach a sensible
solution; in the finest resolution case, there are patches
of cyclonic vorticity above the bump (variations at the
grid scale) that reach a magnitude twice that of the
cyclonic eddy! To explain why the ‘‘full step’’ solution
does not converge to the proper solution, in the limit
of very high horizontal resolution, we need only point
out that the model topography itself does not converge
to a Gaussian bump because the vertical resolution is
fixed; instead, the topography asymptotes to a stack of
seven vertical cylinders. We can only expect the solution
to improve if we increase the vertical resolution with
the horizontal resolution, thereby allowing the model
topography to asymptote to a Gaussian bump.

This series of experiments clearly indicates that the
shaved-cell representations (both piecewise linear slope
and partial step) converge to a sensible solution with
increased horizontal resolution. The ‘‘piecewise linear
slope’’ method appears, as expected, to converge with
greatest rapidity in that the structure of the solution
changes less as the resolution increases and the ampli-
tudes are closer to the asymptotic value. The ‘‘full step’’
method, on the other hand, does fortuitously well at low
resolution (because we are modeling a steep topographic
slope) but becomes progressively worse as the horizon-
tal resolution is increased. This can be understood in
light of the idealized two-dimensional experiments pre-
sented earlier that isolated problems associated with
‘‘full step’’ topography.

6. Summary

A finite-volume approach for use in height coordinate
ocean models has been outlined, which endows them
with a superior treatment of topography. In the interior
of the ocean, the scheme reduces to a conventional flux-
form finite-difference model. However, ‘‘finite vol-
umes’’ makes possible the use of irregularly shaped vol-
umes that can readily be employed to represent the to-
pography using ‘‘shaved cells.’’

Two idealized experiments were designed to illustrate
the advantage of the ‘‘shaved cell piecewise linear
slope’’ representation over conventional ‘‘full-step to-
pography.’’ In the passive tracer experiment, it was dem-
onstrated that discontinuities in ocean depth that result
from the use of step topography led to discontinuities
in a steady flow that, in turn, led to noise in the passive
tracer field. In a similarly configured dynamical model,
we show that grid-scale gravity waves are generated by
flow over discontinuities inherent in step topography.
Within the same conceptual framework, but by shaving
the cells with piecewise slopes, these problems are
avoided.

The approach set out here, motivated by considera-
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FIG. 17. As in Fig. 15 but with horizontal resolution Dx 5 3⅓ km.
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FIG. 18. As in Fig. 15 but with horizontal resolution Dx 5 2½ km.



2312 VOLUME 125M O N T H L Y W E A T H E R R E V I E W

TABLE 3. Maximum nondimensional cyclonic vorticity measured in
the center of the cyclonic eddy.

Topographic
representation

Resolution

Dx 5
5 km

Dx 5
3⅓ km

Dx 5
2½ km

Extrap-
olation
Dx → 0

Piecewise linear slope
Partial step
Full step

1152
1305
1234

946
971
858

860
861
711

736
724
508

tions of energy conservation, is fully implemented in
the model of Marshall et al. (1997a). Two experiments
of oceanic interest were carried out with the model to
test the representation of topography. For low–Rossby
number flow of a homogeneous ocean, we numerically
reproduced the dynamical equivalence of planetary and
topographic b. An example in a more nonlinear regime,
that of zonal, stratified flow over a Gaussian bump,
showed close agreement with a well-established s-co-
ordinate model, SPEM. However, because we use height
as a vertical coordinate we have none of the well-known
problems associated with terrain-following coordinate
models.

A comparison between piecewise linear slope, partial-
step, and the conventional full-step representations
clearly indicates that the shaved cell representations are
superior. The piecewise linear slope method is the most
conducive to smooth, accurate representation, but we
note that the partial-step method (as used by Semtner
and Mintz 1977) is a good compromise for shallow
slopes.

The smoothness of the solutions is a function of the
resolution of the topographic variations. That is, if the
topography varies substantially on the grid scale, then
the dynamical response will be at the grid scale. This
means that even using an accurate representation of to-
pography (e.g., piecewise linear or even higher-order
representations), steep slopes that cross several model
levels in one or few model grid lengths will inevitably
appear discontinuous and thus force grid-scale noise.

In the case of shallow slopes (i.e., changes of depth
of a grid level or less over horizontal scales of many
grid lengths), the shaved-cell approaches, both piece-
wise linear and partial-step, have clear advantages over
the conventional full-step approach. Indeed, the latter
is utterly unable to represent the slope and thus cannot
be used to model the influence of such topography on
the ocean circulation. One might expect that the ocean’s
high-frequency response to wind forcing, which is large-
ly barotropic, could be poorly modeled with a full-step
topography.

We draw an analogy between the various choices of
topographic representation and methods for evaluating
the area under a curve. In Simpson’s method of inte-
gration, a series of columns that approximately fit the
curve are used. The method converges and is accurate
if we use more columns. The trapezoidal method is ca-
pable of exactly representing a higher-order function (an

inclined line) and subsequently needs fewer columns to
achieve the same accuracy. More often than not, higher-
order methods are not required because the trapezoidal
method is sufficiently accurate with a moderate number
of columns. Note that we never consider using a method
that is lower order than Simpson’s because the curve
would be reduced to a series of large steps. Quite un-
thinkable!

a. Computational overhead

The relative merits of the three representations of
topography discussed involve issues other than accuracy
and fidelity of representation. There are important prac-
tical considerations to be taken into account:

1) cost in terms of arithmetic computation,
2) cost in terms of memory,
3) complexity of code, and
4) accuracy.

It turns out that the number of computations is es-
sentially the same for an optimized finite-difference
code as for a general finite-volume code. The general
shaved cell code (including piecewise linear slope)
requires four parameters for any grid cell that abuts
a boundary. In principle, if the topography is never
steep, these parameters could be stored in four 2D
arrays. This is not possible when the topography in-
tersects more than one level in a single water column,
and more sophisticated storage methods then have to
be invoked. The simple way forward is to store the
parameters for all cells in full 3D arrays, even though
the areas and volumes in the interior are constant.
However, this does involve a large memory require-
ment since on a C grid there a four distinct sets of
volumes with four parameters each: a tracer volume
and three momentum volumes, which introduces a
further 16 full 3D arrays, perhaps doubling the mem-
ory requirement of a conventional ocean model. On
the other hand, the partial step method can be coded
using a single 2D array to describe the geometry
since, by definition, the topography can only intersect
one model level at a time. In this case, the additional
memory requirement is nominal but the cell geome-
tries would then have to be calculated as needed, in-
troducing a small computational overhead.

There is no additional code complexity for the general
shaved-cell dynamical model; no conditional (‘‘if’’)
statements are needed making the code highly vecto-
rizable. If the memory-saving option of storing the to-
pography in a 2D array is used in the case of partial
steps, then the additional code needed to calculate cell
geometries would be interspersed with the dynamical
code, making the code less transparent to a user.

b. Computational stability

Explicit time integration schemes are generally stable
if the grid spacing is greater than the distance that the
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fastest waves can travel in a model time step (Dx .
cDt). In the case of tracer advection with shaved cells,
the effective grid spacing can be estimated by consid-
ering the terms in the x and z directions:

] x z
u u uV u 5 2uA d u 2 wA d u .x x z z]t

The effective grid spacing in x and z directions is ap-
proximately

u uV V
Dx ; and Dz ; .x zeff eff

u uA Ax z

For arbitrarily shaved cells, the model can become un-
stable for a given time step in regions where the effec-
tive grid spacing has become too small. To avoid this,
we restrict the minimum size that a volume can take by
either adding or taking away land from the topography.
To some degree, this reverts to the philosophy of step
topography, but here the errors are obviously much less
since the amount by which we need to change the depth
of the ocean is much less, typically less than a few
percent.

In the case of partial steps, it turns out that this CFL
issue only applies in the vertical direction. Consider a
partial cell of depth h. Then the above effective grid
spacing becomes

Dxeff ; Dxregular and Dzeff ; h.

The effective horizontal grid spacing is that of the reg-
ular grid. To avoid a restrictive CFL limit to vertical
motions, we can again limit the range of h by adding
or taking away land from the topography.

c. Arbitrary volumes

We mentioned that the topography could be repre-
sented by higher-order polynomials. In three dimen-
sions, such a polynomial could have only seven degrees
of freedom since the model has seven attributes per cell
(one volume and six areas). The volume and areas might
alternatively be found by evaluating the ‘‘true’’ volumes
and areas of the ocean from high-resolution datasets
without going through the step of fitting curves to the
topography. We note that for a given set of volumes and
areas, there is no unique topography that corresponds
to those volumes and areas. Having generated the vol-
umes and areas, the shape of the topography is therefore
open to interpretation.

A higher-order polynomial representation could quite
easily be used within each cell; since the (3D) cell has
seven degrees of freedom (six areas and one volume),
a third-order, 2D polynomial might be used. We have
not fully explored higher-order representations since
there are many choices to be made about the form of
the polynomial. We feel that the piecewise linear slope
is sufficiently accurate for most purposes but higher-
order representations would be more accurate and could
be considered.

d. Less vertical resolution

It is evident from the experiments shown that the
piecewise slope representation lessens the need for high
vertical resolution to resolve the topography. Lindzen
and Fox-Rabinovitz (1989) suggest that the vertical and
horizontal resolution of atmospheric models should
have the same aspect ratio as the motion. In the ocean,
the aspect ratio of the motion under quasigeostrophic
scaling goes like L/H ; N/f. High vertical resolution is
needed more in the upper ocean since it is much more
stratified than at depth. In current height coordinate
models, moderately high resolution is needed through-
out the water column just to resolve (albeit poorly) the
topography. The use of shaved cells means that the ver-
tical resolution can be chosen to better resolve water
masses and vertical structure.

e. Coasts

It should be self evident that the piecewise linear
slope representation can also be used to shave cells
laterally and therefore employed to represent the
coasts. In both the partial and full step methods, the
coastline assumes a blocklike structure (just like step
topography) and would be improved using the piece-
wise linear slope method that allows the coast to in-
tersect the model cells.

f. General applicability

The finite-volume method bears much similarity
with the finite-difference method written in flux form.
Since most z-coordinate models are built using this
method, the implementation of ‘‘shaved’’ cells ought
to be possible. The applicability for use in other co-
ordinate systems has not been investigated. The formal
derivation of layer models is based on volume con-
servation between material surfaces, which is essen-
tially a time-varying finite-volume method. The ability
to shave cells is a formal property of the finite-volume
formulation, and we anticipate that it is applicable in
such models.
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APPENDIX A

Discrete Notation

The following notation is used in this paper:

x 1
f [ (u 1 u )i21/2 i11/22

d f [ u 2 u .x i11/2 i21/2

The interpolation operator, 2x, is centered and sec-
ond-order accurate for a regular grid; for irregular grid
spacing, errors are first order. This is true also of the
discretized differential operator:

] 1
f ø d f.x]x Dx

These operators satisfy the following rules:

d d f 5 d d f (A1)z h h z

h h
d f 5 d f (A2)z z

z hh z
f 5 f (A3)

z z
d (fc) 5 f d c 1 c d f (A4)z z z

z z
d (f c) 5 fd c 1 cd f (A5)z z z

z z z 1
fc 5 f c 1 d fd c (A6)z z4

z z 1z
f c 5 fc 1 d (cd f), (A7)z z4

where z and h may be any coordinate. The first three
rules (A1)–(A3) are statements of commutivity. Rules
(A4) and (A5) are discrete forms of the product rule,
](fc)/]z 5 f]c/]z 1 c]f/]z. The last two rules, (A6)
and (A7), reflect the smoothing effect of the inter-
polation operator; use of (A7) to express a double
interpolation in terms of the central term gives

2 2xx 1 Dx ]
f 5 f 1 d d f ø f 1 f.x x 24 4 ]x

One unconventional piece of shorthand is

[ fi21/2,j,kfi11/2,j,k,2EfEx

which satisfies the rules
z z z

2 2EfE 5 2f f 2 f (A8)z

z z 1
2 2EfE 5 f f 2 (d f ) . (A9)z z4

This last operator is introduced to keep the notation
concise when we consider conservation of second mo-
ments in the tracer advection equation. The operator

is the geometric product between two neighboring2EfEz

points.

APPENDIX B

Derivation of Second-Moment Conservation

The discrete advection operator used in (8) is
x y z

d (A uu ) 1 d (A uu ) 1 d (A uu ).x x y y z z

Global conservation of the second moment requires that
this term multiplied by u can be written as the diver-
gence of a flux. Considering just the x component, we
have

x x
ud (A uu ) 5 u[A ud u 1 ud (A u)]x x x x x x

using (A5). The first term on the right-hand side can be
written

xx x 1
uA ud u 5 A uu d u 2 d (A ud ud u)x x x x x x x x4

x

1 1
2 25 A ud u 2 d [A u(d u) ],x x x x x1 22 4

where we have used first (A7) and then (A4). Using
(A5) again, the first term can then be written

x x

1 1 1
2 2 2 2A ud u 5 d A u u 2 u d [A u(d u) ].x x x x x x x1 2 1 22 2 2

Substituting this back into the previous expressions
gives

x 1 1
2 2ud (A u ) 5 d A u EuE 1 u d (A u),x x x x x x x1 22 2

where we have introduced the geometric product op-
erator EuE2

x using (A9). It then follows that
x y z

u 3d (A uu ) 1 d (A yu ) 1 d (A wu )4x x y y z z

1 1 1
2 2 25 d A u EuE 1 d A y EuE 1 d A w EuEx x x y y y z z z1 2 1 2 1 22 2 2

1
21 u [d (A u) 1 d (A y) 1 d (A w)],x x y y z z2

which is the equation in section 2b.
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