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ABSTRACT

Residual-mean theory is applied to the streamwise-averaged Antarctic Circumpolar Current to arrive at a
concise description of the processes that set up its stratification and meridional overturning circulation on an f
plane. Simple solutions are found in which transfer by geostrophic eddies colludes with applied winds and
buoyancy fluxes to determine the depth and stratification of the thermocline and the pattern of associated (residual)
meridional overturning circulation.

1. Introduction

Thermocline theory offers plausible explanations of
the structure of midlatitude ocean gyres in linear vor-
ticity and Sverdrup balance as reviewed, for example,
in Rhines (1993) and Pedlosky (1996). Theories of
ocean currents in zonally unblocked geometries such as
the Antarctic Circumpolar Current (ACC) are much less
well developed, however. In the absence of meridional
boundaries, Sverdrup balance no longer applies and it
is much less obvious how a meridional circulation is
maintained. Furthermore, just as in zonal-average theory
of the atmosphere, geostrophic eddy transfer in the ACC
plays a central role in its integral balances of heat, mo-
mentum, and vorticity—see, for example, McWilliams
et al. (1978), Bryden (1979), Marshall (1981), de Szoe-
ke and Levine (1981), Johnson and Bryden (1989), Gille
(1997), Marshall (1997), Phillips and Rintoul (2000),
Karsten et al. (2002), Bryden and Cunningham (2003).
For a recent review of observations and theories of the
ACC, see Rintoul et al. (2001).

In this paper, we put forward a simple theory of the
ACC and its associated meridional overturning circu-
lation that makes use of zonal average residual-mean
theory. Key observations of the Southern Ocean are
summarized in Fig. 1 in which we show the time-mean
surface elevation, a schematic of the meridional over-
turning circulation (MOC), the streamwise-averaged
buoyancy distribution, and the thermal wind. We sup-
pose, as sketched in Fig. 2, that westerly winds t drive
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the ACC eastward and, through associated Ekman cur-
rents, induce an Eulerian meridional circulation (theC
Deacon cell, see Doos and Webb 1994) that acts to
overturn isopycnals, enhancing the strong frontal region
maintained by air–sea buoyancy forcing B. The potential
energy stored in the front is released, we imagine,
through baroclinic instability, and the ensuing eddies
induce an overturning circulation C* that tends to re-
store the isopycnals to the horizontal (see Fig. 2). In
the theory presented here, it is the interplay of the ad-
vection of buoyancy in the meridional plane by andC
C* that sets the structure of the ACC.

We suppose the following.

1) Transfer by geostrophic eddies, balancing momen-
tum and buoyancy input at the surface, sets the strat-
ification and vertical extent of the ACC. This as-
sumption yields predictions for the depth of pene-
tration and stratification of the ACC and its baro-
clinic transport as a function of wind and buoyancy
forcing and eddy transfer.

2) There is an approximate balance between and C*;C
the MOC of the ACC is the ‘‘residual’’ circulation
Cres 5 1 C* that advects buoyancy (and otherC
tracers) in the meridional plane to offset sources and
sinks. Here we will solve for the pattern of Cres given
the pattern of wind and buoyancy forcing at the sur-
face and assuming a closure for C*.

Before going on, we emphasize that here we develop
an ‘‘ f plane’’ theory of the ACC—there is no account
taken of the b effect. The relation of this study to pre-
vious b-plane investigations is discussed as we proceed
and in the conclusions.

Our paper is set out as follows. In section 2 we for-
mulate the problem by developing and applying resid-
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FIG. 1. Key observations of the ACC: (a) the time-mean surface elevation measured from altimetry. Contour interval is 0.8 3 104 m2 s21.
The bold lines mark the boundaries of circumpolar flow. (b) A schematic of the currents and overturning circulation in the Antarctic region
modified from Fig. 164 of Sverdrup et al. (1942). (c) The streamwise-average buoyancy distribution computed from gridded hydrography;
contour interval is 1023 m s22. The vertical dotted lines denote the average latitude of circumpolar flow marked in (a). (d) The thermal wind
velocity computed from gridded hydrography by integration of the thermal wind assuming zero current at the bottom; contour interval is
1022 m s21. Modified from Karsten and Marshall (2002b).

ual-mean theory to the ACC. In section 3 we find so-
lutions for the vertical structure of the ACC and its
associated MOC. In section 4 we discuss and conclude.

2. Residual-mean theory applied to the ACC

We assume at the outset that ‘‘zonal average’’ theory
has relevance to the ACC. However, rather than aver-
aging along latitude circles, we reference our along-
stream coordinate to a mean surface geostrophic contour
(see Fig. 1a). Thus our zonal average, , ‘‘follows the

x
( )

stream,’’ as in de Szoeke and Levine (1981), rather than

a latitude circle. Eddy fluxes normal to these contours
are then by construction due to transient rather than
standing eddies—see Marshall et al. (1993).

a. Residual-mean balances of momentum and
buoyancy

1) BUOYANCY

The time-mean steady buoyancy equation can be writ-
ten in the familiar form:
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FIG. 2. Schematic diagram of the Eulerian mean ( ) and eddy-C
induced transport (C*) components of the Southern Ocean meridional
overturning circulation driven by wind (t) and buoyancy (B) fluxes.
The associated velocity is computed from the streamfunction as (u,
y) 5 (2]C/]z, ]C/]y), where y is a coordinate pointing northward
and z points upward. The sloping lines mark mean buoyancy surfaces

. The eddy buoyancy flux is resolved into a component in theb y9b9
surface and a horizontal (diapycnal) component.b

]b ]b ] ] ]B
y 1 w 1 (y9b9) 1 (w9b9) 5 , (1)

]y ]z ]y ]z ]z

where ( , ) is the Eulerian mean velocity in the me-y w
ridional plane, is the mean buoyancy, and variablesb
have been separated into mean (zonal and time) quan-
tities and perturbations from this mean caused by tran-
sient eddies. Here, for simplicity, we have adopted a
Cartesian coordinate system (see Fig. 2). Note that we
are in the Southern Hemisphere: x increases eastward,
y increases equatorward, z increases upward, and the
Coriolis parameter f , 0. In Eq. (1) the buoyancy forc-
ing from air–sea interaction and small-scale mixing pro-
cesses has been written as the divergence of a buoyancy
flux B.

Our goal now is to express Eq. (1) in terms of the
residual circulation Cres:

C 5 C 1 C*,res (2)

where is the overturning streamfunction for the Eu-C
lerian mean flow and C* is the streamfunction for the
overturning circulation associated with eddies (see Fig.
2 and caption). The key step is to note that if the eddy
flux lies in the surface, then = · can be writtenv9b9 b v9b9
entirely as an advective transport, v* · = , where, fol-b
lowing Held and Schneider (1999), v* is defined in
terms of a streamfunction C* given by

w9b9
C* 5 2 . (3)

by

Here is the vertical eddy buoyancy flux and y isw9b9 b
the mean meridional buoyancy gradient.

In more precise terms, to express Eq. (1) in terms of

Cres, we eliminate ( , ) using Eqs. (2) and (3) to ob-y w
tain1

]B ]
J (C , b) 5 2 [(1 2 m)y9b9], (4)y,z res ]z ]y

where Jy,z(Cres, ) 5 (Cres)y z 2 (Cres)z y 5 v* · =b b b b
and m is given by

w9b9 1
m 5 . (5)1 21 2y9b9 sr

Here

s 5 2b /br y z (6)

is the slope of mean buoyancy surfaces. The parameter
m controls the magnitude of the diapycnal eddy flux: if
m 5 1, then the eddy flux is solely along surfaces,b
the diapycnal horizontal component vanishes, and the
advective transport captures the entire eddy flux; if m
5 0, horizontal diapycnal eddy transport makes a con-
tribution to the buoyancy budget. Diagnosis of the eddy-
resolving ‘‘polar cap’’ calculations presented in Karsten
et al. (2002) shows that the interior eddy flux is indeed
closely adiabatic but that, as the surface is approached,

tends to zero, leaving a horizontal eddy flux di-w9b9
rected across surfaces. The implications of these dia-b
batic eddy fluxes are studied in section 3f. Elsewhere
in our study we assume that all diabatic eddy fluxes are
zero.

Note the following.

1) Streamfunction C*, Eq. (3), is defined so that, in the
limit of adiabatic eddies, vanishing small-scale mix-
ing, and air–sea buoyancy fluxes (m 5 B 5 0), Eq.
(4) reduces to J(Cres, ) 5 0. Then is advected byb b
Cres, suggesting that classic inferences of overturn-
ing in the Southern Ocean based on tracer distri-
butions (see Fig. 1b) are sketches of the residual,
rather than of the Eulerian mean flow.

2) Streamfunctions C*, , and hence Cres unequivo-C
cally vanish at the surface because 5 w9 5 0 there.w

2) MOMENTUM

We now wish to express the momentum balance in
terms of residual, rather than Eulerian-mean velocities.
This is desirable because the buoyancy equation [Eq.

1 To arrive at Eq. (4) from Eq. (1), decompose the eddy fluxes
( , ) into an along- component ( /sr, ) and the re-y9b9 w9b9 b w9b9 w9b9
maining horizontal component ( 2 /sr, 0) (see Fig. 2). They9b9 w9b9
divergence of the along- component is then written as an advectiveb
transport

= · (w9b9/s , w9b9) 5 y *b 1 w*b 5 J(C*, b),r y z

where C* is given by Eq. (3). This is combined with mean flow
advection in Eq. (1) to yield the lhs of Eq. (4). The divergence of
the diapycnal (horizontal) eddy flux leads to the last term on the rhs
of Eq. (4).
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FIG. 3. The residual flow Cres 5 1 C* is assumed to be directedC
along mean buoyancy surfaces in the interior but to have a diapycnalb
component in the mixed layer of depth hm (denoted by the horizontal
dotted line).

(4)], to which the momentum equation is intimately
linked, is most succinctly expressed in terms of residual
velocities; the momentum and buoyancy equations must
be discussed together.

The statement of Eulerian-mean zonal-average zonal
momentum balance is, in the steady state (remembering
that 5 0, etc.),px

2 f y 5 F , (7)

where f is the Coriolis parameter, is the Eulerian-y
mean meridional velocity, and combines together mo-F
mentum sources and sinks and momentum fluxes ,uy
such as 2= · ( ) terms. To express Eq. (7) in terms ofvu
the residual meridional velocity

y 5 y 1 y*,res

where

]C ]C*
y 5 2 and y* 5 2 , (8)

]z ]z

we add 2 fy* to both sides of Eq. (7). The resulting
residual momentum balance can be written as

]C ]C*resf 5 F 1 f , (9)
]z ]z

where we have used Eq. (2) and C* is chosen as in Eq.
(3) to ensure that the residual buoyancy balance, Eq.
(4), takes on a simple form.

To make further progress, we now make some sim-
plifying assumptions.

b. Simplified system

In the interior of the ACC we suppose that 1) buoy-
ancy forcing (due both to convection and mixing pro-
cesses) vanishes, that is, B 5 0 in Eq. (4), and that 2)
the eddy flux is directed entirely along surfaces, thatb
is, m 5 1 in Eq. (4). Thus

J(C , b) 5 0res (10)

in the interior, implying that there is a functional rela-
tionship between Cres and : Cres 5 Cres( ). This func-b b
tional relationship will be set, we suppose, in the surface
mixed layer.

We suppose the following about the mixed layer: 1)
It is vertically homogeneous and of constant depth hm,
as sketched in Fig. 3. Furthermore, we set entrainment
fluxes at the base of the mixed layer to zero (B 52hm

0) and neglect the seasonal cycle. 2) Eddy fluxes have
a diabatic component; m in Eq. (4) varies from 0 at the
surface to 1 at the base of the mixed layer—see Treguier
et al. (1997) and Fig. 3.2

2 Note that it is likely that the depth hm of the ‘‘diabatic’’ layer is
not, in general, the mixed layer depth (A.-M. Tregueir 2001, personal
communication). It is more likely that hm at a given location is the
depth of the deepest isopycnal that occasionally grazes the surface
because of eddy dynamics or the seasonal cycle.

With these assumptions, the steady-state mixed layer
buoyancy budget can be written as

]C ]b ]B ]res o2 5 2 (1 2 m) y9b9,
]z ]y ]z ]y

where bo(y) is the mixed layer buoyancy. Integration
over the depth of the mixed layer hm, noting that Cres

5 0 at the surface, gives

]bo ˜C 5 B , (11)res zz52h om ]y

where
0 ]

B̃ 5 B 2 (1 2 m) y9b9 dz (12)o o E ]y
2hm

is the net buoyancy supplied to the mixed layer by air–
sea buoyancy fluxes and by lateral diabatic eddy fluxes.
The relative importance of Bo and ] /]y in the localy9b9
buoyancy budget of the diabatic surface layer is not yet
clear. Speer et al. (2000) argue (and show supporting
observational evidence) that air–sea fluxes can provide
the necessary warming to allow a surface flow directed
away from Antarctica as suggested in Fig. 1b: indeed
they diagnose the sense of Cres from Eq. (11) using
observations of B̃o (assuming that B̃o is dominated by
surface heat fluxes). In theoretical calculations, Marshall
(1997) also assumes that the eddy contribution in Eq.
(12) is negligible. Calculations presented in section 3f
below, however, suggest that diapycnal eddy fluxes
could play an important role in the buoyancy budget of
the surface layer in the ACC.

Equation (11) sets the functional relationship between
Cres and bo. If B̃ . 0 (corresponding to local buoyancy
gain by the mixed layer), then, because ]bo/]y . 0,
C . 0 and so (noting that Cres | surface 5 0) theres | z52hm

flow in the mixed layer is directed equatorward. If the
mixed-layer buoyancy gradient is constant, then, ac-
cording to Eq. (11), the strength and sense of the residual
circulation will be directly proportional to B̃ at each
latitude.

In the momentum equation [Eq. (9)], we suppose that
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]( )/]y terms can be neglected,3 allowing to be setuy F
equal to the vertical divergence of a stress, 5 ] /]z.F t
Then Eq. (9) can be written as

]C ]t ]C*resf 5 1 f .
]z ]z ]z

Integrating from the surface where C* 5 Cres 5 0 and
5 to (the surface wind stress) through the surfacet

Ekman layer to depth z in the interior, where 5 0, wet
obtain

C (z) 5 2t / f 1 C*(z). (13)res o

Equation (13) is one of our key relations and equates
the residual flow to the sum of an Eulerian circulation,
the directly Ekman-driven current 2to/ f , and a flow
associated with eddies, Eq. (3). The physical content of
Eq. (13) is a statement of steady-state integral momen-
tum balance: multiplying through by f , we see that the
net Coriolis torque on the residual flow over the water
column is balanced by wind stress applied at the surface
and eddy form drag at the bottom. Note that in the ACC,
f , 0 and t . 0, and so Ekman flow is directed equa-
torward at the surface: . 0, as sketched in Fig. (2).C

To proceed further, we must express C* in terms of
. In other words, we must ‘‘close’’ for the eddy flux.b

c. Closure for C*

If the eddies are ‘‘adiabatic’’ in the interior, then m
5 1 in Eq. (5), and Eq. (3) can be written in terms of
horizontal buoyancy fluxes as follows:

w9b9 y9b9
C* 5 2 5 , (14)

b by z

yielding the more ‘‘conventional’’ definition of C*—
see, for example, Andrews et al. (1987) and Gent and
McWilliams (1990). We adopt the following simple clo-
sure for the interior eddy buoyancy flux:

y9b9 5 2Kb ,y

where K is an eddy transfer coefficient that is assumed
to be positive. Then C* can be written as

by9b9 y
C* 5 5 2K 5 Ks , (15)rb bz z

where Sr is given by Eq. (6). Furthermore, if we suppose
that K is itself proportional to the isopycnal slope [this
assumption and its relation to the prescription of the
horizontal variation of the Ks, suggested by Visbeck et
al. (1997), is discussed in the appendix]:

K 5 k | s | ,r (16)

where k is a positive scaling constant, then C* can be
written as

3 This is a very good approximation in the ACC—see the estimates
of based on float data by Gille (2003).u9y9

C* 5 k | s | s .r r (17)

In the ACC, C* is negative, that is, in the sense to
return the isopycnals to the horizontal, balancing asC
sketched in Fig. (2).

3. Solutions for the ACC and its overturning
circulation

Let us now draw together our key relations—Eqs.
(11), (13), and (17)—and seek solutions. They are

t o 1 C 5 C* and C* 5 k |s |s , (18)res r rf

where

C 5 C (b)res res (19)

set in the mixed layer by Eq. (11) and sr is given by
Eq. (6).

Rearranging the above, we can write (for sr , 0, the
case considered here)

1/2
t C (b)o ress 5 2 2 2 . (20)r [ ]fk k

In that which follows, the system of Eqs. (18)–(20) will
be solved for a given surface pattern of to(y), B̃o(y), and
bo(y).

a. Solution technique

Any physically meaningful model of the ACC should
be characterized by the poleward shallowing of the ther-
mocline in which sr , 0 (see Fig. 1c), and therefore
we consider only the solution branch corresponding to
the negative sign in Eq. (20). The equation for the slope
[Eq. (20)] is rewritten as a first-order partial differential
equation in using Eq. (6):b

1/2
t (y) C (b)o resb 2 2 2 b 5 0. (21)y z[ ]fk k

Despite the seemingly complicated form of its coeffi-
cients, this equation can be easily integrated along char-
acteristics, since to(y) is prescribed and Cres( ) can beb
evaluated at the base of the mixed layer using Eq. (11).

The characteristic velocities y c and wc are

dy
5 y 5 1cdl

1/2
dz t (y) C (b)o res5 w 5 2 2 2 , (22)c [ ]dl fk k

and, of course, Cres and do not change at a pointb
moving along the characteristic

dC /dl 5 0 and db/dl 5 0,res

where l is the distance along a characteristic.
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FIG. 4. The assumed forcing functions: (a) wind fields [to(y)]/to 5
y and {0.3 1 sin[(py)/Ly]} and (b) buoyancy flux [B̃(y)]/B̃o 5
sin[(2py)/Ly], plotted as a function of y/Ly.

TABLE 1. Numerical constants used in solutions for circumpolar
flow.

Surface (specific) wind stress
Meridional scale of ACC
Zonal scale of ACC at 558N
Vertical scale
Mixed layer depth

t o

Ly

Lx

H
hm

2 3 1024 m2 s22

2000 km
21 000 km
1 km
200 m

Coriolis parameter
Planetary vorticity gradient
Buoyancy change across ACC
Net buoyancy forcing
Eddy transfer coefficient

f
b
Dbo

B̃o

K

21024 s21

10211 s21 m21

7 3 1023 m s22

2 3 1029 m2 s23

500 m2 s21

Eddy parameter k 5
L Ky

H
106 m2 s21

Thermal expansion coefficient
Specific heat of water
Density of water

a
Cp

r

1024 K21

4000 J kg21 K21

103 kg m23

It is worthy of note that f appears in Eq. (22) in
combination with the wind stress, and so to and f have
the same status and could both be allowed to vary:
solutions to Eq. (21) can readily be found with variable
f . However, the closure assumption, Eq. (16), is based
on f -plane ideas and may require modification in the
presence of b (see the appendix). For this reason, we
confine ourselves here to f -plane solutions.

Reduction of the problem to a system of ordinary
differential equations, as in Eq. (22), enables analytical
expressions for the thermocline depth to be found for
simple forcing functions (see section 3c). For more com-
plicated and realistic patterns of forcing, the system of
Eq. (22) requires an elementary numerical calculation.
Some solutions are presented below in section 3d.

b. Forcing fields

1) WIND

We consider two idealized wind profiles, one that
increases linearly from Antarctica:

t (y) 5 t (y/L ),o o y (23)

and a second profile with more structure and perhaps
more realism:

py
t (y) 5 t 0.3 1 sin . (24)o o 1 2[ ]Ly

They are plotted in Fig. 4a. Numerical constants that
are assumed are set out in Table 1.

2) SURFACE BUOYANCY AND BUOYANCY FLUX

We suppose that the surface buoyancy field increases
linearly away from Antarctica:

y
b 5 Db , (25)o o Ly

where Dbo is the buoyancy drop across the ACC at the
surface.

The patterns of net buoyancy forcing over the ACC
are uncertain. We experiment with the following form:

2py˜ ˜B(y) 5 6B sin . (26)o 1 2Ly

If the positive sign is chosen, buoyancy is gained on
the polar flank of the ACC and is lost on the equatorial
flank, as suggested by the observations—see Speer et
al. (2000). Note that the form Eq. (26) ensures that the
net buoyancy flux vanishes, when integrated across the
jet.

3) NUMERICAL CONSTANTS

Table 1 defines and gives typical values of the pa-
rameters used in our calculations. Note that if the ther-
mal expansion coefficient a 5 1024 K21 then a B̃o of
2 3 1029 m2 s23 corresponds to a heat flux of 10 W
m22 and a buoyancy jump Dbo 5 7 3 1023 m s22

corresponds to a temperature jump of 108C.

c. Depth of the thermocline

Integration of the system in Eq. (22) is particularly
simple for those characteristics that emanate from the
base of the mixed layer at which Cres 5 0, corresponding
to B̃ 5 0—no net heating of the surface layers. Then
Eq. (22) reduces to

dy
5 y 5 1cdl

1/2
dz t (y)o5 w 5 2 2 . (27)c [ ]dl fk

One such characteristic corresponds to the base of the
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FIG. 5. The stratification obtained for the linear wind profile, Eq.b
(23), in the case of vanishing Cres (contour interval is 1023 m s22).
A linear buoyancy profile is assumed at the sea surface, Eq. (25).
The depth of the zero surface is given by the formula Eq. (29).b
Numerical constants used are set out in Table 1.

FIG. 6. The stratification (contour interval is 1023 m s22) obtainedb
for the wind profile, Eq. (24), in the case of vanishing Cres. A linear
buoyancy profile is assumed at the sea surface, Eq. (25). The assumed
numerical constants are set out in the table.

thermocline z 5 2h(y), which, in our case, is best de-
fined by the isopycnal outcropping at y 5 0 (where ob
5 0). Fluid below the thermocline [z , 2h(y)] is as-
sumed to be homogeneous with vanishing residual cir-
culation: Cres 5 0. The consistency of our assumption
that Cres 5 0 at y 5 0 at the base of the mixed layer
is ensured by using the buoyancy forcing function Eq.
(26) with B̃ | y50 5 0, as required by Eq. (11).

The depth of the thermocline under these assumptions
reduces to a first integral of Eq. (27):

1/2y t (l)oh(y) 5 2 2 dl. (28)E [ ]fk0

The fact that the thermocline depth depends on isÏto

a consequence of our closure assumption Eq. (17)—also
see the appendix where key parametric dependencies
are summarized.

For the linear variation of the wind stress t(y) 5 toy,
Eq. (28) yields

1/2 3/22 t yoh(y) 5 2 L (29)1 2 1 23 fk L

and defines the depth of the deepest surface plottedb
in Fig. 5. The vertical scale is set by

1/22 t o L 5 1886 my1 23 fk

for the typical parameters set out in Table 1. We see
that the depth of the thermocline increases moving away
from Antarctica to reach some 1800 m on the northern
flank of the jet, not unlike the observations discussed
in Karsten and Marshall (2002b); see their Fig. 4.

Solutions for the more realistic wind field in Eq. (24)
can be written down but do not take on a simple form.

d. The stratification and overturning circulation

1) B̃ 5 0: THE LIMIT OF Cres 5 0

Figure 5 shows the field obtained for the wind Eq.b
(23) when B̃ 5 0 and so Cres 5 0. The depth of each
isopycnal has been computed from Eq. (27); the deepest
isopycnal has the form given by Eq. (29). Indeed all
isopycnals in Fig. 5 are parallel to one another. This can
readily be understood by inspection of Eq. (20): because
Cres 5 0, sr only depends on to(y) and so is independent
of depth. Although we keep f constant in our theory,
it is helpful to phrase the discussion in terms of potential
vorticity (PV). The isentropic PV gradient (IPVG) is
N 2f (dsr/dz) 5 0 because the surfaces are parallel tob
one another with f constant.

The stratification is given by

2N 5 b 5 b /h,z o (30)

where bo is given by Eq. (25) and h by Eq. (29).
As discussed in the appendix, our expressions for

thermocline depth and stratification are consistent with
the results of Marshall et al. (2002), Karsten et al.
(2002), and Cenedese et al. (2004) derived from studies
of laboratory and numerical lenses. The relation of these
results to those of Bryden and Cunningham (2003) are
also discussed.

Figure 6 shows for the wind field Eq. (24): in thisb
case Eq. (27) had to be integrated numerically. The
stratification has more structure because of the more
complex form of the driving wind field, but again, with
PV uniform, all isopycnals are parallel to one another
because f is constant.

In these solutions Cres 5 0 and the momentum budget
Eq. (18) reduces to

t /f 5 C*O (31)
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FIG. 7. (a) The buoyancy (contour interval is 1023 m s22) andb
(b) residual circulation Cres (Sv) for nonzero thermal forcing B̃ 5 1 B̃o

sin[(2py)/Ly]. The wind stress is given by Eq. (24).

FIG. 8. Isentropic PV gradient normalized by the nominal b-in-
duced contribution (see text) for the solution shown in Fig. 7. Regions
of positive IPVG are marked (1); negative regions are marked (2).

Eddies carry the momentum imparted by the wind ver-
tically through the column by interfacial form drag. The
relationship Eq. (31) was first derived heuristically by
Johnson and Bryden (1989)—see the discussion in Kar-
sten et al. (2002) and Olbers and Ivchenko (2002). We
see it now as a special case of Eq. (13) applicable only
in the limit that Cres 5 0.

In the homogeneous layer below the main thermo-
cline z , 2h(y) we assume that C* remains finite (ex-
actly balancing ) until interaction with topography canC
balance the surface stress through topographic form drag
as described in Munk and Palmen (1951). In this ho-
mogeneous layer we set u 5 uabyss and suppose that

eu 5 t .abyss o (32)

Here e is a parameterization of bottom Ekman layer/
topographic form-drag effects.

We now go on to consider effects caused by the finite
residual circulation by including nonzero buoyancy
forcing B̃ of the form in Eq. (26).

2) B̃ ± 0: OVERTURNING CIRCULATION

Figures 7a,b show and Cres for the wind field Eq.b
(24) and the buoyancy forcing given by Eq. (26), choos-
ing the positive sign, and B̃o 5 2 3 1029 m2 s23, that
is, we warm south of the ACC and cool north of it, as
suggested by air–sea flux observations. The sense of the
residual circulation corresponds to upwelling of fluid in
the deepest layers that outcrop at the poleward flank of
the ACC (0 , y , Ly/4) and the shallow layers that
outcrop on its equatorward flank (3Ly/4 , y , Ly). At
the surface, residual flow converges in to intermediate
layers (outcropping at the latitudes Ly/4 , y , 3Ly/4),
from the south on the poleward flank and from the north
on the equatorial flank. Here fluid is subducted down-
ward and equatorward: we associate this flow with Ant-
arctic Intermediate Water.

Note that now isopycnal surfaces are not parallel to
one another: the subtle variation in the thickness of is-
opycnal layers implies the presence of interior PV gra-
dients. The spatial distribution of these PV gradients
(] /]y)b 5 N 2f (]sr/]z) is shown in Fig. 8, where it isq
normalized by the nominal value of PV gradient due to
b, not used in the theory. We see that the PV gradient
reverses sign with y res: fluid upwells as it approaches
Antarctica in regions of positive PV gradient and fluid
is subducted and flows equatorward in regions of neg-
ative PV gradient (we return to this point in the con-
clusions).

The magnitude of the overturning streamfunction
plotted in Fig. 7b is set by the assumed buoyancy gra-
dient and surface buoyancy flux at the sea surface. For
the parameters chosen in Table 1 we find

B̃ L Lo y x
C 5 5 12 Svres Dbo

(where 1 Sv [ 106 m3 s21), broadly consistent with the
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FIG. 9. Vertical cross section of the zonal velocity (y, z) that goesu
along with the field shown in Fig. 7. The contour interval is 1022b
m s21.

FIG. 10. Contours of the eddy-transfer coefficient K (m2 s21). The
largest values of K, about 1600 m2 s21, occur near the center of the
ACC front.

analysis of Marshall (1997) who found residual circu-
lations of 10–15 Sv, but somewhat smaller than the 20
Sv or so of overturning implied by air–sea fluxes—see
Karsten and Marshall (2002a). In comparison with the
zonal transport (;100 Sv; see below), this flow is weak.
We will discuss the processes responsible for B̃o below
in section 3f.

3) ZONAL TRANSPORT

The large-scale zonal velocity in Fig. 9 was com-u
puted from the thermal wind balance assuming no mo-
tion below the thermocline [z , 2h(y)]. The general
structure of the thermal wind velocity field has a peak
of 7 cm s21, broadly consistent with the observations
(see Fig. 1c). The zonal baroclinic transport directly
computed from Fig. 9 is 75 Sv, however, considerable
smaller than the observed 130-Sv transport of the ACC.
The difference is perhaps due to our uncertainty in the
choice of eddy transfer coefficient, the prescribed linear
variation in the surface buoyancy, Eq. (25), which does
not impose a frontal structure, or simply the idealized
nature of the model. Note, however, that to obtain the
absolute velocity we should add the depth-independent
uabyss 5 [to(y)]/e to this profile. Gille (2003) estimates
a barotropic component to the stream of about 1 cm
s21. If uabyss has a peak value of 1 cm s21, then the
depth-integrated component contributes a transport of
40 Sv to the transport if the current is 3 km deep and
Ly 5 2000 km.

In the limit that Cres → 0, the baroclinic transport of
the ACC depends linearly on the wind: this can be
shown by integrating up the thermal wind equation,
f z 5 y, from depth z 5 2h, Eq. (29), to the surface,u b
using Eq. (21) (with Cres 5 0). The resulting is thenu

integrated vertically and across the stream to obtain the
transport. We find that the baroclinic transport depends
on external parameters as follows:

2t L Dbobaroclinic transport ; . (33)
2f k

The transfer coefficient K(y, z) 5 k | sr | plotted in
Fig. 10 indicates strong spatial variation in the eddy
activity, which, in our model, is mostly limited to the
regions of large vertical shear. For the assumed k 5 106

m2 s21, the maximum value of K reaches 1600 m2 s21,
not inconsistent with observational and numerical es-
timates (see, e.g., Visbeck et al. 1997; Stammer 1998,
Karsten and Marshall 2002). Note that the former two
papers attempt to estimate a vertically averaged eddy
diffusivity over the main thermocline of the ocean,
whereas Karsten and Marshall estimate the near-surface
diffusivity (which is likely to be elevated above interior
values).

e. Meridional eddy heat and buoyancy flux

The meridional eddy buoyancy flux in the limit of
vanishing Cres is given by Eq. (31):

t oy9b9 5 b .z f

If z is given by Eq. (30) and the windfield by Eq. (23),b
then the integrated buoyancy flux at midchannel is

0 Db to oy9b9 dz 5 .E 4 f
2h

If the buoyancy flux is dominated by the heat flux (note,
however, that freshwater fluxes may make an important
contribution in the ACC), then
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Cr pH 5 B,
g a

and so the total meridional heat flux at midchannel in-
tegrated around the ACC is given by

C1 r tp o 15meridional heat flux 5 Db L 5 0.3 3 10 W (34)o x4 g a f

for the parameters given in Table 1.
This value is of the same order as estimated by, for

example, de Szoeke and Levine (1981), Marshall et al.
(1993), and, most recently, Gille (2003). Note that the
above estimate is independent of details of the eddy flux
closure because it pertains in the limit that Cres 5 0 and
so Eq. (31) holds. Of course, in the limit that Cres 5 0,
the meridional heat transport by eddies is exactly bal-
anced by transport of heat by the mean meridional over-
turning .C

The total heat transport across the ACC in our model
is a function of the imposed B̃o, Eq. (12). If there is
warming south of the stream and cooling north of the
stream—as in the calculations presented here—then

carries slightly more heat north than C* does south.C
We now discuss the role of diapycnal eddy heat fluxes

in setting the pattern of B̃o.

f. The role of diapycnal eddy heat fluxes

In the calculations shown thus far, a pattern of buoy-
ancy forcing (B̃o) was prescribed. It includes contri-
butions from air–sea fluxes (Bo) and from the lateral
eddy heat transfer in the mixed layer [see Eq. (12)]. In
this section we compute, as part of the solution, the
contribution due to mixed layer eddy buoyancy flux
given a prescribed surface buoyancy forcing (Bo).

Because the mixed layer is assumed to be vertically
homogeneous, the mixed layer eddy fluxes in Eq. (12)
can be expressed as a function of the mean quantities
immediately below the mixed layer using the interior
closure

]b ]bo oy9b9 5 2K 5 ks , (35)o]y ]y

where so(y) 5 sr(y, 2hm). For the linear surface buoy-
ancy profile Eq. (25), convergence of the eddy flux in
Eq. (12) reduces to

]y9b9 ]s ]bo o5 k . (36)
]y ]y ]y

Using Eq. (17) evaluated at the mixed layer base, Eq.
(11) yields B̃o as a function of so:

]b to 2B̃ 5 2ks 2 . (37)o o1 2]y f

Using Eqs. (37) and (36) to simplify Eq. (12) (setting

m 5 0), we obtain the following ordinary differential
equation for so:

]b ]s ]b to o o o2h 5 B 1 ks 1 , (38)m o o1 2]y ]y ]y f

which can be solved given a distribution of Bo, to, bo,
and f . Integration of the first-order differential Eq. (38)
requires a single boundary condition; if Cres 5 0 at the
base of the mixed layer at y 5 0, then Eq. (20) tells us
that

1/2
t (0)os (0) 5 2 . (39)o [ ]fk

Figure 11a presents the numerical solution of Eqs. (38)
and (39) in the case that the surface buoyancy forcing
vanishes (Bo 5 0) and for the wind profile given by Eq.
(24); other parameters are the same as were used to
obtain Fig. 7. The solution is expressed in Fig. 11a in
terms of the total buoyancy flux B̃o, which has been
computed from so using Eq. (37). Thus Fig. 11a shows
that, as is to be expected from downgradient diffusion
in Eq. (35), eddy heat transfer in the mixed layer warms
the poleward flank of the ACC and cools the equatorial
flank. This pattern is consistent with the one assumed
for B̃o a priori in section 3d. Addition of a finite surface
flux in Fig. 11b modifies B̃ but, for a realistic parameter
range, does not change the general structure of the total
buoyancy flux.4

Figures 12a,b show the buoyancy field and residual
circulation computed using the method of characteristics
(see section 3a) for the buoyancy forcing in Fig. 11a.
The overturning circulation plotted in Fig. 12b, reaching
a magnitude of some 6 Sv, is entirely driven by diabatic
eddy processes—the air–sea flux is assumed to be zero.
We see, then, that diabatic eddy effects may make a
nontrivial contribution to the residual-mean overturning
in the ACC.

4. Discussion and conclusions

We have applied zonal average residual mean theory
to develop a model of the ACC that combines the effects

4 There is no reason to assume a priori that the combined effect of
surface buoyancy forcing and eddies in Fig. 11b is a linear super-
position of these two contributions. The governing equation [Eq. (38)]
is significantly nonlinear. Nevertheless, in the parameter range under
consideration, the two contributions add linearly.
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FIG. 11. Total buoyancy flux B̃o (solid line) computed for a given
air–sea flux Bo (dashed line). (a) The B̃o when Bo 5 0: in this case
diabatic eddy fluxes redistribute buoyancy within the mixed layer.
(b) The B̃o when Bo 5 Bo sin[(2py)/Ly], with Bo 5 1 3 1029 m2 s23.

FIG. 12. (a) The buoyancy field and (b) the residual circulation for
the buoyancy forcing shown in Fig. 11a. The wind stress is given by
Eq. (24). Contour intervals are 5 1023 m s22 and Cres 5 2 Sv,b
respectively. Here the residual overturning streamfunction, Fig. 11b,
is driven entirely by diabatic eddy fluxes in the mixed layer.

of buoyancy and mechanical forcing in a transparent
way. Simple solutions have been derived on the f plane
that capture its mean buoyancy distribution, zonal cur-
rent, and pattern of meridional overturning circulation.
In our theory, transfer by baroclinic eddies balances
imposed patterns of wind and buoyancy forcing and

1) controls the depth to which the thermocline of the
ACC penetrates; and

2) plays, through diabatic fluxes directed horizontally
through the mixed layer, an important role in redis-
tributing buoyancy in the mixed layer, supporting a
meridional overturning circulation, surface conver-
gence at the axis of the ACC, and subduction.

We find that the depth of the thermocline and baro-
clinic transport is intimately connected to the assumed
balance between the applied wind stress and vertical
momentum transfer by baroclinic eddies [see Eq. (28)].
The overturning circulation Cres, by contrast, is asso-
ciated with buoyancy supply to and from the mixed layer
B̃ [see Eq. (11)] in which both air–sea flux and diabatic
eddy fluxes play a role.

a. Thermocline depth, stratification, and zonal
transport

If C* depends on the square of the isopycnal slope,
as assumed in Eq. (17), and Cres is smaller than its

component parts, then the depth of the thermocline de-
pends on the square root of the wind stress [see Eq.
(28)] and the stratification is given by Eq. (30). This
result finds support in laboratory (Marshall et al. 2002;
Cenedese et al. 2004) and numerical studies (Karsten et
al. 2002) of the ACC. A corollary of this result is that
the zonal transport depends linearly on the applied wind
[see Eq. (33)]. This dependence should be compared
with the predictions of other authors who argue that the
baroclinic transport varies like (Johnson and BrydenÏt
1989), is independent of the wind (Straub 1993), or
varies like t (Gnanadesikan and Hallberg 2000; Karsten
et al. 2002, and this study). Only in the latter two studies
is the stratification not set a priori.

We note the dependence of our solutions on the form
assumed for our eddy closure and that of the eddy trans-
fer coefficient, Eqs. (15) and (16). The eddy closure
assumption 5 2K] /]y is conventional and findsy9b9 b
support in eddy-resolving numerical models of the
ACC—see, for example, the recent study of Karsten et
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FIG. 13. The meridional IPVG deduced from a hydrographic data base by Marshall et al. (1993).
Regions of positive IPVG are shaded gray; regions of negative IPVG are white. The arrows mark
the sense of the sense of the implied residual flow; poleward where IPVG . 0, equatorward
where IPVG , 0. Note that the downward arrow around Antarctica is hinted at by the sign of
the (very weak) IPV gradient but is not represented in the simple solutions discussed here.

al. (2002). The assumed dependence of K on the local
baroclinity yields a simple but important connection be-
tween K and mean flow quantities, as described in the
appendix. It is, however, an f -plane closure that may
be modified by the presence of b, see below.

b. Meridional overturning circulation

The sense of the residual circulation shown in Fig.
7b corresponds to upwelling of fluid in the deepest lay-
ers that outcrop at the poleward flank of the ACC and
the shallow layers that outcrop on its equatorward flank.
At the surface, fluid converges in to intermediate layers,
from the south on the poleward flank and from the north
on the equatorward flank. It is tempting to associate the
fluid upwelling around Antarctica with upper North At-
lantic Deep Water and the fluid subducted downward
from the convergence zone farther north with Antarctic
Intermediate Water. On the equatorward flank of the
ACC, the residual flow is to the south (for our chosen
pattern of B̃ in Fig. 4b), and so the eddy-induced mixed
layer transport here is larger than, and in the opposite
direction to, the Ekman transport. This situation is not
implausible—see, for example, the inference from ob-
servations of these components by Karsten and Marshall
(2002). The strength (and sense) of the overturning cir-
culation is of approximately 10 Sv and depends on our
choice for the magnitude of B̃. Note that our solution
does not contain a representation of Antarctic Bottom
Water because of the absence of cooling around Ant-
arctica in the assumed B̃.

The large-scale potential vorticity field is a primary
contact point between our theory and the observations.
Interior residual flow y res is only possible if there is a
meridional eddy PV flux, : 2 fy res 5 . Ify9q9 y9q9 y9q9

is fluxed down the isentropic PV (IPV) gradient, then
y res 5 2(K/ f )(]IPV/]y). Thus the sense of y res can be
gleaned from inspection of observations of the merid-
ional IPV gradient. The arrows in Fig. 13 [modified from
Marshall et al. (1993)] indicate the sense of the implied
residual flow, poleward where IPV increases poleward
and equatorward where IPV increases equatorward. The
shallow regions of reversed IPVG seen in the obser-
vations are very likely to be associated with low-PV
fluid created by convection in mode-water formation
just equatorward of the ACC. These convected waters
are subducted in to the interior, carrying with them their
low-PV signal and reversing the sign of IPV.

c. The role of b

As discussed in the appendix, our eddy closure, Eqs.
(15) and (16), is explicitly an f -plane parameterization,
with no sense of a critical shear for instability or eddy
saturation. This closure may break down in the ACC
where b constraints are likely to be important—see, for
example, Tansley and Marshall (2001) or Hallberg and
Gnanadesikan (2001). Further study is required to draw
such effects in to our theory.

Last, we emphasize that the ideas and formulation set
out here have no direct counterpart in thermocline the-
ory. Our solutions are not in Sverdrup balance because
there is no b effect. Because of the absence of merid-
ional boundaries, pathways for mean heat transport
across the ACC are limited, and so eddies must be large-
ly responsible for poleward heat transport across the
stream (see, e.g., de Szoeke and Levine 1981). The ed-
dies also balance the input of momentum by the winds.
The southward heat flux is directly related to a down-
ward momentum flux through interfacial drag (see, e.g.,
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Johnson and Bryden 1989). This drag allows the surface
momentum to be transferred to depth where it can be
dissipated by mountain drag as the ACC flows over the
high ridges (Munk and Palmen 1951). Such a balance
has been established as the dominant balance of the
ACC both in observations (Phillips and Rintoul 2000)
and in numerical models (Ivchenko et al. 1996; Gille
1997) and is at the heart of the simple model presented
here.

Tasks for the future are (i) to incorporate the effects
of the b effect, (ii) to unravel the zonal-average 2D
solutions discussed here to study the effect of regional
topographic and forcing detail, and (iii) to study the role
of interior mixing.
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APPENDIX

Eddy Closure and Scaling Results

To place the eddy closure adopted in this study in
context [Eq. (16)] and to relate our results to previous
work, following Visbeck et al. (1997) [using ideas that
go back to Green (1970)] we write the eddy transfer
coefficient as follows:

f
K 5 y9l9 5 c L L , (A1)e r yÏRi

where ce is a constant, Ri 5 (N 2h2)/u2 is the Richardson
number, u is the mean zonal current at the surface, f /

is the Eady growth rate, Lr 5 (Nh)/ f is the de-ÏRi
formation radius, and Ly is the meridional scale of the
baroclinic zone. As discussed in, for example, Marshall
et al. (2002), the eddy velocity implied by Eq. (A1) is
y9 ; ( f / )Lr 5 u, appropriate if the eddies garnerÏRi
energy over a deformation scale Lr (see, e.g., the dis-
cussion in Held 1999). The eddy transfer scale is as-
sumed to be Ly, the scale of the baroclinic zone. Note
that this may be a problematical assumption in the
ACC—the eddy transfer scale could be set, for example,
by the Rhines scale (u/b)1/2, an obvious avenue for fu-
ture enquiry.

The thermal wind equation tells us that

h Dbou 5 , (A2)
f Ly

where Dbo is the buoyancy change at the surface over
the scale Ly. Hence K, Eq. (A1), can be written as

hDboK 5 c uL 5 c . (A3)e y e f

Further, from Eq. (16) and supposing that | sr | 5 h/Ly,
we can identify k as

Db Lo yk 5 c . (A4)e f

Using Eq. (A4) our predicted depth of the thermo-
cline, Eq. (29) can then be written entirely in terms of
external parameters as

1/2t Lo yh ; . (A5)1 2Dbo

Furthermore, if we assert that Bo ; wEkDbo with wEk 5
to/( fLy) being the scale of the Ekman pumping, Eq.
(A5) can be expressed in terms of buoyancy forcing Bo,
rather than the surface buoyancy field Dbo; thus

1/2f
h ; w L . (A6)Ek y1 2Bo

This equation is the scaling for thermocline depth dis-
cussed in Marshall et al. (2002) and Karsten et al. (2002)
and derived from their studies of labaratory and nu-
merical lenses forced by buoyancy flux rather than a
prescribed buoyancy field. It is interesting to note that
the baroclinic transport, Eq. (33), scales like ;(toL)/ f ,
independent of Dbo, if Eq. (A4) is subsituted for k.

Last we relate the above expressions to those dis-
cussed in Bryden and Cunningham (2003). The strati-
fication implied by the Marshall et al. (2002) scaling,
Eq. (A6), is

2/3 2Db B f Bo o o2N 5 ; ; K,
2 1/2 2h w f L tEk y o

where we have set Dbo 5 Bo/wEk and used Eqs. (A3)
and (A6) to express K as K 5 ce(Bo/ f )1/2Ly. The relation
N 2 5 [( f 2Bo)/ ]K is the key result of Bryden and Cun-2to

ningham (2003), their Eq. (9).
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