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ABSTRACT

A simple theory is developed for the large-scale three-dimensional structure of the Antarctic Circumpolar
Current and the upper cell of its overturning circulation. The model is based on a perturbation expansion
about the zonal-average residual-mean model developed previously by Marshall and Radko. The problem
is solved using the method of characteristics for idealized patterns of wind and buoyancy forcing constructed
from observations. The equilibrium solutions found represent a balance between the Eulerian meridional
overturning, eddy-induced circulation, and downstream advection by the mean flow. Depth and stratifica-
tion of the model thermocline increase in the Atlantic–Indian Oceans sector where the mean wind stress is
large. Residual circulation in the model is characterized by intensification of the overturning circulation in
the Atlantic–Indian sector and reduction in strength in the Pacific Ocean region. Predicted three-dimen-
sional patterns of stratification and residual circulation in the interior of the ACC are compared with
observations.

1. Introduction

The absence of land barriers in the Antarctic Circum-
polar Current (ACC) results in distinct dynamical fea-
tures that have no direct counterpart in the theory of
midlatitude ocean gyres. Sverdrup dynamics, the cor-
nerstone of subtropical thermocline theory (Rhines and
Young 1982; Luyten et al. 1983), do not apply here.
Both wind and buoyancy forcing play a role, as do geo-
strophic eddies, which appear to be crucial in determin-
ing the stratification and transport of the ACC (see the
review by Rintoul et al. 2001). The difficulty of incor-
porating eddy transfer led to a rather slow development
of conceptual models of the ACC (see, e.g., Johnson
and Bryden 1989; Marshall et al. 1993). Recently, how-
ever, residual-mean theories have been applied (see
Karsten et al. 2002; Marshall and Radko 2003, MR
hereinafter) that, we believe, capture the essence of the
zonally averaged circulation and stratification of the
Southern Ocean and fully embrace the central role of
eddies. It is assumed that the Eulerian meridional cir-
culation driven by the westerly winds (the Deacon cell),

tending to overturn isopycnals, is largely balanced by
the geostrophic eddies that act in the opposite sense.
The transformed Eulerian-mean formalism (Andrews
and McIntyre 1976) is used to represent the combined
effect of eddy-induced and mean flow advection.

While the simplified two-dimensional zonal-average
view attempts to explain the integral characteristics of
the ACC, such as the overall strength of the overturn-
ing circulation and eastward baroclinic transport, zonal
averaging masks important three-dimensional effects.
For example, inspection of the pattern of the net sur-
face heat flux in the Southern Ocean (Fig. 1) reveals its
strikingly nonuniform distribution along the path of the
ACC, with air–sea heat fluxes warming the ocean at
rates reaching �60 W m�2 in the Atlantic and Indian
Ocean sectors and becoming smaller and changing sign
in the Pacific Ocean. The downstream variation in the
surface forcing may be a consequence of the asymmetry
in the trajectory of the ACC; the current is partially
steered by bottom topography (Marshall 1995) and
therefore does not exactly follow latitude circles. As a
result, the surface heat flux into the ocean increases
(relative to the streamline average) where the ACC
meanders equatorward into warmer regions down-
stream of Drake Passage (see Fig. 1) and decreases
when the ACC drifts poleward in the Pacific sector.
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Wind stress (Fig. 2a) also varies along the path of the
ACC, being significantly larger in the Atlantic–Indian
sector. In this paper we will argue that the spatially
nonuniform forcing leads to downstream variation of
the thermocline depth and stratification of the ACC
[see observations of Sun and Watts (2002)] and modu-
lates the strength of the upper cell of the meridional
overturning circulation.

This study attempts to explain the three-dimensional
time-mean structure of the ACC and the associated
pattern of the overturning circulation by extending the
zonal-average model of MR. Exploiting the asymptotic
limit in which the downstream variation in buoyancy is
assumed to be weak relative to its variation in the me-
ridional plane, the problem is reduced to a system of
equations that can be readily solved using the method
of characteristics. The theory is analogous to linear
models of forced stationary waves in the earth’s tropo-
sphere [see the review by Held (1983)].

The paper is set out as follows. After presenting key
observations of the ACC in section 2, we develop a
theoretical framework (section 3) by introducing the
quasi-zonal jet approximation. Residual-mean theory is
used to incorporate the effects of mesoscale eddies.
Simplifications introduced by the analytical model are
then used to determine the interior structure of the
ACC for various surface and boundary conditions. In
section 4 we briefly consider the simplest “diagnostic”
model, which involves prescribing the idealized distri-
bution of the surface buoyancy (bm), buoyancy flux (B),
and wind stress (�) and computing the resulting interior
fields. In section 5 we study a different, and perhaps
more physical, “prognostic” model in which the surface
buoyancy distribution and fluxes are considered to be
unknown and are computed as a part of the problem.
Theoretical results are compared with the oceano-
graphic observations. The physical interpretation of the
model solutions (section 6) is accompanied by a

FIG. 1. Annual mean net surface heating of the ocean (W m�2) estimated from the NCEP–
NCAR reanalysis over 1980–2002 (A. Czaja 2004, personal communication). Superimposed
are the sea surface height contours (contour interval � 10 cm) from satellite altimetry, which
indicates the trajectory of the ACC.
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quantitative analysis of the buoyancy budget. We sum-
marize and conclude in section 7.

2. Observational background

Figures 2–4 present key observations of surface prop-
erties and forcing of the Antarctic Circumpolar Current
(to be used in our theoretical model). The pattern of
zonal wind stress (�) is shown in Fig. 2a, the surface
buoyancy distribution (bm) in Fig. 3a, and the air–sea
buoyancy flux (B) in Fig. 4a.1 To analyze the variation
of these fields along the path of the ACC, it is conve-

nient to reference our along-stream coordinate to mean
surface geostrophic contours deduced from satellite al-
timetry; these are indicated by the heavy solid lines in
Figs. 2a, 3a, and 4a, which mark the boundaries and the
axis of the ACC. The width of the region bounded by
these streamfunction contours is 1000–2000 km (de-
pending on the longitude). Projection of the zonal wind
stress, surface buoyancy, and buoyancy flux on to this
coordinate system is shown in Figs. 2b, 3b, and 4b, re-
spectively, where the ordinate is now a geostrophic
streamline rather than latitude.

Several comments on the structure of the forcing
fields are in order. Downstream (x) variation in (�, B,
bm) contains a large signal in the fundamental (in x)
harmonic whose wavelength equals the zonal extent of
the ACC. The two lowest Fourier components in
x—the along-stream average (n � 0 mode) mode and
the fundamental harmonic (n � 1 mode)—capture
much of the large-scale spatial variability of the ACC.
Downstream variation in the wind stress (Fig. 2b) is
rather moderate, about 20% of the mean. Winds over

1 It should be noted that there is a significant uncertainty in the
observations, particularly with regard to the air–sea fluxes; the
estimates of the surface buoyancy flux from various datasets
[e.g., the National Centers for Environmental Prediction–Na-
tional Center for Atmospheric Research (NCEP–NCAR) re-
analysis, Comprehensive Ocean–Atmosphere Dataset (COADS),
and Southampton Oceanography Centre (SOC)] differ by as
much as 50%.

FIG. 2. Analysis of the observed (NCEP–NCAR) surface wind stress (T. Ito 2004, personal
communication). (a) Zonal component of the wind stress. Heavy solid lines are the stream-
function contours obtained from the sea surface height that mark the boundaries and the axis
of the ACC [�g � �5, 0, 5 (�104 m2 s�1)]. (b) Projection of the data onto the frame of
reference associated with the streamfunction; the curved streamlines in the top of the plot are
now straight and horizontal. (c) The filtered data consisting of the two lowest Fourier com-
ponents in x: the streamline average mode and the fundamental harmonic.
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the ACC intensify in the Atlantic–Indian sectors and
weaken over the Pacific. Surface buoyancy (Fig. 3b) has
a similar pattern, characterized by weak downstream
variation, whereas the air–sea flux (see Fig. 4b) is highly
inhomogeneous. Buoyancy flux over the ACC is mostly
positive (i.e., into the ocean) but changes sign in the
eastern Pacific (120°–60°W).

The following discussion will focus on the dynamics
of the long-wave components, and therefore we also
show (in Figs. 2c, 3c, and 4c) the filtered data for (�, B,
bm) consisting of the two lowest Fourier components in
x: the streamline-average mode and the fundamental
harmonic. Fourier analysis indicates that the large-scale
variation in surface buoyancy and air–sea buoyancy
flux are very much in phase with each other, but shifted
somewhat to the west relative to the phase of the wind
stress. In addition to the Fourier analysis of the forcing
fields, we have also examined the variation in the width
of the ACC, defined here by the distance between �g �
�5 � 104 m2 s�1 and �g � 5 � 104 m2 s�1 streamlines.
The average width of the ACC is 11.7° latitude,
whereas its first Fourier component has an amplitude of
0.6°—only 5% of the mean. Thus, the long-wave vari-
ability in the width of the ACC is much weaker than the

variability in the wind stress and the air–sea fluxes, the
consequences of which will be explored in the following
theoretical model. Our objective is to study how these
surface forcing fields drive and interact with large-scale
motions in the interior of the ACC and thereby shape
the three-dimensional patterns of buoyancy and meridi-
onal overturning in the Southern Ocean.

3. Formulation

a. Elements of residual-mean theory

Our starting point is the three-dimensional time-mean
equations of motion. We ignore the inertial terms in the
time-mean momentum equations, and write them as

�f� � �
�P

�x
�

��x

�z
and

fu � �
�P

�y
�

��y

�z
, 	1


where (u, �) are the horizontal components of the Eu-
lerian-mean velocity v; (�x, �y) are the wind stress com-
ponents, which we assume to be significant only in a

FIG. 3. The same diagnostics as in Fig. 2 is now applied to the surface buoyancy field from
the Levitus climatology: (a) Mean surface buoyancy distribution in the Southern Ocean. (b)
Projection of the buoyancy distribution onto the frame of reference associated with the
streamfunction. (c) The filtered data consisting of the two lowest Fourier components in x.
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surface boundary layer; and P is the dynamical pres-
sure. The time-mean buoyancy equation is

v · �b � �� · 	v�b�
 �
�B

�z
, 	2


where b is the time-mean buoyancy and primes denote
the perturbations from this mean due to transient ed-
dies; B represents the vertical buoyancy flux due to
small-scale processes and air–sea fluxes. In application
to the ACC we interpret x as the along-stream coordi-
nate; y is the coordinate normal to the stream, refer-
enced to a mean surface geostrophic contour.

Andrews and McIntyre (1976) showed that it is pos-
sible to incorporate the eddy-flux terms in the Eulerian
equations by introducing “residual velocities” given by

vres � v � v*, 	3


where v* � (u*, �*, w*) is the eddy-induced velocity of
residual-mean theory, which is assumed to be nondiver-
gent:

� · v* � � · v � 0. 	4


We also require that the vertical velocity (w*) is zero
at the surface (z � 0), and therefore integration of (4)
from the surface to depth z results in

w* �
�

�x
�*u �

�

�y
�*�,

where �*u � ��z
0 u* dz and �*� � ��z

0 �* dz are com-
ponents of a vector streamfunction. The eddy velocities
can be compactly written as follows:

	u*, �*
 � �
�

�z
�* and

w* � �h · �*, 	5


where �* � (�*u , �*� ).
In appendix A we relate the vector streamfunction

�* to the eddy buoyancy fluxes (v�b)—see Eq. (A6).
The resulting model provides a physical basis for a pa-
rameterization scheme in which the eddy streamfunc-
tion (beneath the vertically homogeneous mixed layer)
is determined by the local isopycnal slope (sx, sy) as
follows:

�*u � k0sx|sx|, u* � �k0

�

�z
	sx|sx|
,

and

�*� � k0sy|sy|, �* � �k0

�

�z
	sy|sy|
, 	6


where k0 is a constant that sets the magnitude of the
eddy transfer process. This parameterization is a direct
extension of a two-dimensional closure introduced in

FIG. 4. The same diagnostics as in Figs. 2 and 3 but for the air–sea buoyancy flux based on
the NCEP–NCAR reanalysis (positive is into the ocean).
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MR and supported by the laboratory experiments in
Cenedese et al. (2004).

The buoyancy equation, written in terms of the re-
sidual velocities (see appendix A), reduces to

vres · �b �
�B̃

�z
, 	7


where B̃ � B � B* includes the explicit buoyancy forc-
ing (B) and a contribution from residual fluxes due to
diabatic eddies (B*). In the upper ocean eddies are
affected by the presence of the surface, tending to sup-
press the vertical component of the eddy fluxes. As a
result, the eddy buoyancy transfer becomes directed
across the isopycnals, which contributes to the conver-
sion of the water masses in the mixed layer (Karsten et
al. 2002). However, the estimates in MR suggest that
the explicit buoyancy forcing B exceeds B*, and there-
fore in the following discussion we will mostly associate
B̃ with the direct air–sea buoyancy fluxes. The assump-
tion that the diabatic eddy fluxes in the mixed layer
play a secondary role in the dynamics of the ACC is
subsequently verified (section 6).

The interior flow is assumed to be fully adiabatic; our
model does not take into account either the diabatic
effects of mesoscale eddies or the diapycnal mixing by
small-scale turbulence below the mixed layer. Of
course, both are present in the ocean; it is still a matter
of debate, however, to what extent the diabatic pro-
cesses affect the stratification and meridional overturn-
ing in the Southern Ocean. Numerical eddy-resolving
simulations (e.g., Kuo et al. 2005) indicate that eddy

transfer below the diabatic near-surface layer is di-
rected predominantly along the isopycnal surfaces, and
therefore diabatic effects of eddies at depth may not be
critical for the overall structure of the ACC. Our adia-
batic model can be viewed in this regard as an extreme
limit, which we believe captures the essential physics of
the ACC and allows for analytical treatment of the
problem.

b. Quasi-zonal jet approximation

Our study is focused on a regime in which departure
of the solution from its along-stream average is asymp-
totically small. As shown below, this approximation
makes it possible to theoretically analyze three-dimen-
sional effects, while retaining a direct connection with
the two-dimensional ACC model in MR.

To develop a linear theory for the quasi-zonal cur-
rent, we search for a solution by expanding in a param-
eter

� �
�b1�

�b0�
� 1,

which measures the variation in buoyancy along the
streamlines of the ACC relative to the cross-stream
variation. Inspection of the surface buoyancy field in
Fig. 3c indicates that � � 0.1, which justifies the asymp-
totic expansion in �. Next, we separate the mean vari-
ables into the dominant two-dimensional part [a func-
tion of (y, z) only] and a weak (��) three-dimensional
component. The linear analysis is focused on the dy-
namics of the fundamental harmonic in x:

v � v0	y, z
 � v1	x, y, z
 � · · ·, v1 � Re�v̂1	y, z
 exp	ikx
�,

v* � v*
0	y, z
 � v*

1	x, y, z
 � · · ·, v*1 � Re�v̂*
1	y, z
 exp	ikx
�, and

b � b0	y, z
 � b1	x, y, z
 � · · ·, b1 � Re�b̂1	y, z
 exp	ikx
�, 	8


where k is a wavenumber. The subscripts (0, 1) in (8)
pertain to (zero, first)-order quantities in �. We also
isolate the streamline average and the fundamental har-
monic of the surface forcing fields—wind stress and the

air–sea buoyancy flux (although no assumption is made
as to the relative amplitudes of their spectral compo-
nents):

B � B0	y, z
 � B1	x, y, z
 � · · ·, B1 � Re�B̂1	y, z
 exp	ikx
�, and

�x � �0x	y
 � �1x	x, y
 � · · ·, �1 � Re��̂1x	y
 exp	ikx
�,

where B is the buoyancy forcing in (7) and �x is the
zonal component of the wind stress.

To illustrate the expansion procedure, we write the
buoyancy equation in (7) as follows:

	v0 � v1 � · · ·
 · �	b0 � b1 � · · ·
 � 	v*
0 � v*

1 � · · ·


· �	b0 � b1 � · · ·
 �
�B0

�z
�

�B1

�z
� · · ·.
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The leading (zero order) balance in � is

v0 res · �b0 �
�B0

�z
, 	9


whereas the first-order balance for the fundamental
harmonic in x requires that

v1 res · �b0 � v0 res · �b1 �
�B1

�z
. 	10


The momentum equations in (1), continuity equation
in (4), and the eddy closure in (6) are similarly ex-
panded in powers of �. Not surprisingly, at zero order in
� we recover a set of equations identical to those used
in the two-dimensional model (MR), which is briefly
reviewed below. The first-order correction, on the
other hand, will give us information about longitudinal
variations in the stream, the information that we seek.

c. Zero-order solution: The ACC in two dimensions

The zero-order component of the (y, z) velocities can
be expressed in terms of the scalar streamfunctions
(time mean and eddy induced) as follows:

�*0 � �
��*0
�z

, w*0 �
��*0
�y

,

�0 � �
��0

�z
, and w0 �

��0

�y
,

and the residual circulation is described by the stream-
function �0 res(y, z) � �0 � �*0 .

The eddy parameterization (6) at leading order re-
duces to

�*0 � k0	s0	s0 � �k0s0
2,

�*0 � �
��*0
�z

� k0

�

�z
s0

2, and s0 � �
b0y

b0z
,

	11


and the zero-order y-momentum equation is

�f�0 �
��0

�z
. 	12


The problem is solved separately in a thin, vertically
homogeneous mixed layer (�hm � z � 0) and in the
stratified interior (z � �hm). For the interior it is as-
sumed that eddies are adiabatic, and the forcing, me-
chanical and thermodynamical (B, �), vanishes. Hence,
the buoyancy equation (9) reduces to

J	�0 res, b
 � 0, 	13


where J(A, B) � AyBz – AzBy. Equation (13) implies
that the residual streamfunction and buoyancy are
functionally related: �0 res � �0 res(b0).

Integrating the buoyancy equation in (2) over the

depth of the vertically homogeneous mixed layer (�hm

� z � 0), for the (two dimensional) zero-order compo-
nent we obtain

�0 res|z��hm

�b0m

�y
� B0, 	14


where b0m is the surface buoyancy. Integrating the mo-
mentum equation in (12) vertically from the surface to
depth z (noting that �0 � 0 at the surface and � is zero
at depth), we find that f �0 � ��0. Because �0 res(y, z)
� �0 � �*0 , we arrive at, using (11), the key relation-
ship of the MR model:

�0 res	b0
 � ���0

f
� k0s0

2�. 	15


This equation can be easily integrated (see MR)
along isopycnal surfaces: an algebraic transformation
shows that the isopycnals represent the characteristics
of (15), and the characteristic velocities �c and wc are

dy

dl
� �c � 1 and

dz

dl
� wc � s0 � �

b0y

b0z
� ���

�0

fk0
�

�0 res

k0
.

	16


Of course, �0 res and b0 do not change at a point
moving along the characteristics, and therefore, for any
given distribution of surface buoyancy and air–sea
fluxes, the interior solution can be obtained by integrat-
ing the characteristic equations in (16) downward from
the surface. If, however, the surface �0 res or b0 are
unknown, as in the problem solved in section 5, the
method of characteristics can be readily modified to
include an iterative adjustment to specified surface and
boundary conditions.

d. First-order correction

To proceed to the next order, we rewrite the first-
order buoyancy budget (10) in terms of the complex
amplitudes of the fundamental harmonics of residual
velocity and buoyancy (v̂1 res, b̂1). Since the x compo-
nent of the eddy-induced velocity does not appear at
this order—the parameterization in (6) implies that u*
� O(�2)—(10) reduces to

�̂1 res

�b0

�y
� ŵ1 res

�b0

�z
� u0ikb̂1 � �0 res

�b̂1

�y

� w0 res

�b̂1

�z
�

�B̂1

�z
. 	17
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The continuity equation (4) at O(�) is

ikû1 �
��̂1 res

�y
�

�ŵ1 res

�z
� 0. 	18


To simplify the algebra, it is also convenient to in-
troduce the following O(�) variables:


*1 � � �
0

z

�̂*1 dz and


1 res � � �
0

z

�̂1 res dz, 	19


which represent the first-order terms in the � expansion
of the eddy streamfunction �*� in (6) and the corre-
sponding residual streamfunction. The integral of the
continuity equation (18) in z yields, after applying
boundary conditions,

ŵ1 res �
�
1 res

�y
� ik�

0

z

û1 dz. 	20


Solution of the perturbation equations in (17)–(20) is
greatly simplified by introducing a coordinate system
associated with the zero-order buoyancy surfaces. As
shown in appendix B, an algebraic transformation re-
duces the system of partial differential equations in (y,
z) in (17)–(20) to a system of ordinary differential equa-
tions in variable l, which measures the distance along
the “old” zero-order isopycnals:

db̂1

dl
�

	
1 res � �̂1x�f 
b0z

2k0s0
� ik

b0z�
0

z

P̂1 dz

2k0s0f
and

d
1 res

dl
� �d�0 res

db0
� db̂1

dl
� ik

u0b̂1

b0z
� ik�

0

z

û1 dz,

	21


where d/dl is defined in (16). Dynamical pressure and
the zonal velocity in (21) are related to the buoyancy by
the hydrostatic and geostrophic relations:

P̂1 � �
�h

z

b̂1 dz and û1 � �
1
f

�P̂1

�y
, 	22


where h is the depth of the model thermocline.
In what follows, we solve the linearized problem by

integrating the system of coupled ordinary differential
equations for (b̂1, �1 res) in (21) downward from the
base of the mixed layer into the interior along the zero-
order isopycnals. Essentially, the method of character-
istics, introduced in section 3c for the two-dimensional
problem, is extended to three dimensions. Implemen-
tation of this method depends on a particular choice of
surface and boundary conditions, and specific details

are given in sections 4 and 5. However, in every case
integration of (21) requires knowledge of �1 res at the
base of the mixed layer. In appendix B, we derive the
(order �) perturbation equations for the mixed layer
and show that �1 res can be expressed as


1 res	�hm
 �

B̂1 � �0 res	�hm

�

�y
b̂1m � iku0b̂1mhm

�

�y
b0m

.

	23


Equations (21) and (23) are the key elements of our
model that, as we now show, makes it possible to
readily obtain steady linear three-dimensional solutions
for the ACC and its overturning circulation.

4. Diagnostic model: Prescribing the surface
buoyancy and the air–sea fluxes

The simplest problem that can be treated by the
method of characteristics, and the one that was solved
in two dimensions by MR, involves prescribing the sur-
face buoyancy distribution (bm), wind stress (�x), net
buoyancy forcing (B), and computing the resulting in-
terior distribution of buoyancy and residual circulation.
To relate our theoretical results to the observations, it
is convenient to set the origin of the coordinate system
at 180°. This projects the longitude range from �180
eastward to 180° in Figs. 2, 3, and 4 onto the computa-
tional interval 0 � x � Lx � 2�/k in our model; the zero
longitude therefore corresponds to x � 0.5Lx. The two
lowest spectral components of (�x, bm, B) in Figs. 2c, 3c,
and 4c are closely approximated by the following ana-
lytical expressions for wind stress:

�x � �0x	y
 � Re��̂1x	y
 exp	ikx
�,

�0x � �00�0.6 � sin��
y

Ly
��, �00 � 0.0001 m2 s�2, and

�̂1x � 0.3 exp	0.5�i
�0x;

	24


for buoyancy:

bm � b0m � Re	b̂1m exp	ikx
�,
b0m � 	y�Ly
b, b � 0.015 m s�2, and

b̂1m � �0.07 exp	�0.3�i
b sin��
y

Ly
�;

	25


and for air–sea flux:
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B � B0 � Re�B̂1 exp	ikx
�,

B0 � B00 sin��
y

Ly
�, B00 � 7 � 10�9 m2 s�3, and

B̂1 � �0.5	1 � i
B0.

	26


Two technical issues should be mentioned with re-
gard to the projection of the data onto our along/cross-
stream (x, y) coordinate system. First, we work in Car-
tesian coordinates and do not attempt to represent de-
tails of spherical geometry. Second, our regridding
technique does not take into account variation in the
width of the circumpolar current. This approximation is
based on the Fourier analysis of observations (see sec-
tion 2), which shows that the fundamental harmonic of
the ACC width is only 5% of its mean value—much less
that the relative amplitude of the fundamental har-
monic of the air–sea flux (100% of the mean) or the
variation in the wind stress (20% of the mean). While
this approximation introduces a minor error in the mo-
mentum and buoyancy budgets, its effect is consider-
ably weaker than the uncertainty in the magnitudes of
the forcing fields in observations.

The mixed layer depth is set at hm � 100 m, and the
constant that sets the magnitude of the eddy transfer
coefficients K (see the appendix A) is k0 � 106 m2 s�1,
as estimated and used in MR. The zonal extent of the
channel is Lx � 20 000 km, and the width of the model
current is Ly � 2000 km. As discussed earlier (sections
1 and 2), the patterns of buoyancy and buoyancy flux
anomalies represent the enhanced warming of the ACC
in the Atlantic and Indian Ocean regions and cooling
east of Australia (see Fig. 4). The complex coefficients
in the b̂1, �̂1x, and B̂1 terms reflect the phase of the
fundamental (in x) harmonic relative to the �180° to
180° interval.

The zero-order interior fields of buoyancy and re-
sidual circulation are obtained by integrating Eqs. (16)
as in MR. The resulting solution, for surface conditions
in (24)–(26), is shown in Fig. 5. The depth of the model
thermocline reaches 2 km on the equatorward flank of
the ACC, not unlike the observations discussed in
Karsten and Marshall (2002a). The sense of the residual
circulation corresponds to upwelling of fluid in the deep
layers that outcrop at the poleward flank of the ACC;
fluid is subducted downward and equatorward in the
upper layers. The net strength of the overturning cir-
culation is 18 Sv (Sv � 106 m�3 s�1), which is compa-
rable to the earlier observational estimates (e.g.,
Karsten and Marshall 2002b) and the zonal-average
theoretical model of MR.

The next step is to compute the O(�) quantities. For

a prescribed buoyancy distribution in the mixed layer
(b̂1m), �1 res(�hm) is obtained from Eq. (23). Knowing
(�

1 res
, b̂1) at the bottom of the mixed layer, we integrate

the interior equations in (21) along the zero-order
(hence already known) characteristics. This integration,
however, requires knowledge of the terms on the right-
hand side of (21), which, in our case, have to be ob-
tained as a part of the solution. These terms are com-
puted using an iterative procedure. First we solve (21)
ignoring the rhs terms, and then use the resulting solu-
tion to evaluate them; pressure and zonal velocity are
obtained from (22). The integration along the charac-
teristics is repeated consecutively, and on each iteration
we use the estimate of the rhs terms from the previous
step. Typically, it takes less than 10 such iterations for
the model to converge, within a negligible error of
�10�8, to a sought-after solution.

The total buoyancy and velocity fields are obtained
by adding the two-dimensional zero-order components
and the O(�) correction (8). Figure 6a shows the distri-
bution of wres at z � �hm; this quantity indicates the
location and strength of the flux of buoyancy and pas-
sive tracers into (from) the diabatic mixed layer. The
overturning circulation, as measured by wres, is charac-
terized by a strong—comparable to the mean—down-
stream variation.2 The amplitude of wres is relatively

2 Recall that our linear theory makes no assumptions as to the
relative strength of the zonally averaged and 3D components of
the residual circulation.

FIG. 5. The (top) buoyancy (m s�2) and (bottom) residual cir-
culation for the zero-order (2D) component, multiplied by Lx to
represent the net strength of the overturning circulation (Sv).
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weak for 0 � x � Lx/3 (an interval corresponding to
180°–60°W) but greatly intensifies after x � Lx/3,
reaching values of 2 � 10�6 m s�1 � 60 m yr�1. Thus,
our model predicts that the meridional overturning cell
(MOC) in the Southern Ocean is greatly reduced in
strength in the Pacific sector, but enhanced in the At-
lantic–Indian sector. Note the considerable difference
in the structure and amplitude of wres in Fig. 6a and the
Ekman pumping in Fig. 6b, which indicates the signifi-
cance of eddy advection for the overturning circulation
in the Southern Ocean.

5. Solving for the surface buoyancy and buoyancy
flux

While the foregoing setup is internally consistent and
provides an important diagnostic tool for the dynamics
of the ACC, one can readily question some of the im-
plicit assumptions in the formulation of the model. In
particular, the surface buoyancy distribution and/or the
air–sea fluxes, which have been prescribed in section 4,
in reality may be a consequence of internal dynamics of
the ACC and its interaction with the adjacent subtropi-
cal gyres. Although the issue of causality is beyond the
scope of the present study, we now consider alternative,
and perhaps more physically motivated, upper bound-
ary conditions.

In the following example we suppose that the surface
buoyancy distribution and the air–sea fluxes are not
known and should be computed as a part of the prob-
lem. Instead, the mixed layer buoyancy bm(x, y) is re-
laxed to a target buoyancy distribution b* � b*(y) �
Re[b̂*1 (y) exp(ikx)], which, we assume, is set by the at-
mosphere and therefore is to be regarded as known.
The surface buoyancy flux is parameterized accord-
ingly:

B � ��	bm � b*
. 	27


In this calculation we use � � 9 � 10�6 m s�1, which,
for hm �100 m, corresponds to a relaxation time scale
of about 2 months; the resulting solutions show little
sensitivity to the specific value chosen for this param-
eter.

Inspection of the near-surface atmospheric tempera-
ture (not shown) suggests that b* can be approximated
by the following simple analytical function:

b* � b*0 � Re�b̂*1 exp	ikx
�,

b*0 � 	y�Ly
b, b � 0.015 m s�2, and

b̂*1 � �0.1 exp	�0.3�i
b sin��
y

Ly
�, 	28


which only slightly differs from the surface buoyancy
distribution (25) used in our previous model (section 4).
We emphasize that the longitudinal variation in b* in
our theory should be interpreted as a result of the me-
ridional displacement of the ACC in physical coordi-
nates. As the ACC circumnavigates the globe, it shifts
toward the warm lower latitudes in the Atlantic–Indian
sectors and returns poleward as it passes through the
Pacific sector. Thus, when the atmospheric temperature
is projected onto the streamline coordinate system, it
acquires a distinct signal in the fundamental Fourier
component in x, the signal which may be absent in the
original (latitude–longitude) frame of reference.

At the same time, it is sensible to consider the verti-
cal distribution of buoyancy on the equatorial flank of
the ACC as given. If the ACC (y � Ly) merges con-
tinuously with a subtropical gyre on the equatorial
flank (y � Ly), then the stratification at y � Ly may be
affected, or even determined, by the dynamics of the
subtropical thermocline. According to Karsten and
Marshall (2002a), the stratification on the equatorial
flank of the ACC can be represented by a decaying
exponential with an e-folding depth of he � 1000 m. We
therefore use

b|y�Ly
� bN	z
 � A1 exp	z�he
 � A2. 	29


FIG. 6. (a) The vertical component of the residual velocity at the
bottom of the mixed layer. The strength of the overturning circu-
lation, as measured by wres increases in the eastern part of the
domain (Atlantic–Indian sectors) and decreases in the Pacific re-
gion (x � Lx/3). (b) Ekman velocity. Note the significant differ-
ence between wres and wEk. Positive (negative) contours start at
0.25 � 10�6 m s�1 (�0.25 � 10�6 m s�1) and are indicated by solid
(dashed) curves. The contour interval is 0.5 � 10�6 m s�1, and the
zero contours are represented by the dotted line. Note that 10�6

m s�1 � 30 m yr�1.
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The constants A1 and A2 are determined by requiring
bN(z � �hrn) � �b and bN(z � �h) � 0, where h is the
depth of the model thermocline at y � Ly.

Prescribing the density distribution at y � Ly re-
quires modification of the foregoing method of charac-
teristics; we implement the following iterative proce-
dure. First we compute the two-dimensional zero-order
solution. An initial guess is made for the surface buoy-
ancy [we start with a linear b0m(y)], the surface buoy-
ancy flux is computed from (27), and the model is in-
tegrated using the method of characteristics in (16).
The resulting buoyancy distribution at y � Ly is com-
pared with our target buoyancy distribution (29), and
the difference between the two is used to adjust the
surface buoyancy at the origin of each characteristic.
The procedure is repeated until the buoyancy at y � Ly

converges, within an acceptable error (�10�8), to the
target distribution at the northern flank (29).

The zero-order (two dimensional) components of
buoyancy and residual circulation are shown in Fig. 7;
this solution is similar to the one obtained with the
model in section 4 (see Fig. 5). In our case, however,
the model is interactive and does not rely on the a priori
knowledge of the air–sea fluxes. The implied stream-
line-averaged buoyancy flux and surface buoyancy in
the model are shown in Fig. 8. Buoyancy flux is posi-
tive (into the ocean) with a maximum amplitude of 6 �
10�9 m2 s�3, broadly consistent with the observations in
Fig. 4c.

Next, the same iterative technique is applied to the
three-dimensional component of circulation. Equations
(21) are consecutively integrated along the zero-order
characteristics; on each iteration the value of surface
buoyancy at the origin of each characteristic (b1m) is
adjusted to reduce the amplitude of b1 at the point
where this characteristic crosses the northern boundary
(y � Ly). The procedure is repeated until b1 converges
to zero at the equatorward flank of the ACC: b1|y�Ly �
0. The resulting distribution of buoyancy for surface
and boundary conditions prescribed in (27)–(29) is
shown in Fig. 9. The zonal buoyancy section along the
center (y � 0.5Ly) of the model current is characterized
by a pronounced warming, increase in stratification and
upper-thermocline depth in the eastern region 0.5Lx �
x � Lx (0°–180°). These model predictions are consis-

FIG. 7. The (top) streamline-averaged buoyancy (m s�2) and
(bottom) residual circulation for a model in which we prescribe
the stratification at the northern flank of the ACC, and relax the
surface buoyancy to a target distribution b*. The residual stream-
function is multiplied by Lx to represent the net strength of the
overturning circulation (Sv).

FIG. 8. The (top) streamline-averaged surface buoyancy and
(bottom) air–sea buoyancy flux for the model in Fig. 7.

FIG. 9. Zonal buoyancy (m s�2) cross section of the model ACC
along y � 0.5Ly. Note the warming, increase in stratification, and
the upper thermocline depth in the eastern part of the section.
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tent with oceanographic observations; see, for example,
the recent data analysis by Sun and Watts (2002). These
authors present streamfunction projections of the his-
torical hydrographic data, the frame of reference di-
rectly associated with our (x, y) coordinates, and the
pattern of buoyancy in Fig. 9 is suggestive of the ob-
served temperature field along the streamline in Fig. 11
of Sun and Watts (2002).

Figure 10 reveals the spatial pattern of the down-
stream variation in buoyancy. The amplitude of b1—the

fundamental harmonic in x—is plotted as a function of
y and z. Figure 10 indicates that most of the down-
stream variability in the model occurs in the upper
ocean (at depths �500 m or less) on the equatorward
side of the ACC. This feature also finds support in
observations (see, e.g., Fig. 9 in Sun and Watts 2002).
The maximum downstream buoyancy variation in our
model occurs at the surface and its amplitude is �7 �
10�4 m s�2, which corresponds to the temperature
variation �1°C. It should be emphasized, however, that
the variability shown in Fig. 10 represents only the con-
tribution from the first longitudinal spectral mode and
does not include high-wavenumber components.

The implied patterns of the surface buoyancy and the
air–sea flux are shown in Fig. 11. While the downstream
buoyancy variation is very gentle, less than 10% of the
cross-stream buoyancy difference, the air–sea flux in
Fig. 11a is highly nonuniform. The amplitudes of the
zero and first spectral harmonics are comparable, lead-
ing to their approximate cancellation in the eastern Pa-
cific Ocean and intensification in the Atlantic–Indian
sector (Lx/3 � x � 2Lx/3 in the model). Compelling
evidence in support of the theory comes from compar-
ing our solutions with the corresponding low modes of
the observed air–sea flux and buoyancy in Figs. 3c and
4c. Both phase and amplitude of the observed buoy-
ancy and the air–sea flux are captured by the model
predictions in Figs. 11a and 11b.

Last, it is of interest to examine the distribution of

FIG. 10. The absolute value of the complex amplitude of the
fundamental harmonic of buoyancy (m s�2) is plotted as a func-
tion of y and z; |b1| indicates the magnitude of the buoyancy
variation along the streamfunction contours of the ACC. Com-
parison with the streamline average in Fig. 7 (top panel) indicates
that the downstream variability is generally weak relative to the
mean (�5%).

FIG. 11. (a) Implied air–sea buoyancy flux in the model (zero contour is marked by the
dashed line). (b) The mixed layer buoyancy.
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the large-scale potential vorticity PV � fbz along the
isopycnal surfaces in our model. In addition to being a
useful dynamical tracer, the isentropic PV gradients
measure the direction and strength of the residual cir-
culation (see the discussion in MR). Figure 12 shows
the distribution of the isentropic potential vorticity on
the isopycnal with b � (2/3)�b This surface is located
on the equatorward flank of the ACC in the region
where the residual circulation (see Fig. 6) is directed
downward from the mixed layer. An intriguing feature
of the PV pattern in Fig. 12 is related to a region of low
PV in the western part of the domain (x � 0.25Lx)—the
counterpart of southeastern Pacific. This low-PV fluid
apparently originates near the surface in the region of
surface cooling (see Fig. 11a) and then spreads, along
the isopycnal surface, downward and eastward into the
main thermocline. It is tempting to relate this low-PV
fluid with the Subantarctic Mode Water. Of course,
mode waters are known to form convectively within the
deep winter mixed layers, physics that is beyond the
scope of our idealized linear model. However, our
theory predicts the conditions—surface cooling and
subduction—that favor the formation of the low-PV
water, and thus can be used to explain its spatial distri-
bution.

6. Physical interpretation of the model results

Inspection of the PV distribution along the buoyancy
surfaces (e.g., Fig. 12) and the general structure of the
solution in section 5 suggests the following interpreta-
tion of the mechanisms controlling the residual circula-
tion of the ACC. As the ACC moves through the Pa-
cific sector (180°–90°W), passing through the cold

southern polar regions, its isentropic potential vorticity
gradients are relatively weak (see Fig. 12b), which may
be related to the PV homogenization3 (e.g., Rhines and
Young 1982). The absence of strong large-scale isen-
tropic PV gradients in the Pacific in our model leads to
a reduced downgradient flux of potential vorticity (and
other tracers) along the buoyancy surfaces. As dis-
cussed in MR, weak isentropic eddy transfer is, in turn,
directly related to a decrease in the strength of the
residual circulation, which is indeed reproduced by our
model (Fig. 6a).

However, as the ACC shifts equatorward east of
Drake Passage, the surface temperature along its axes
rises, which is revealed most clearly by the projection of
the surface buoyancy onto streamlines in Fig. 3c. This
feature is also reflected in the schematic diagram in Fig.
13a, which illustrates the spatial distribution of buoy-
ancy in the frame of reference associated with the
ACC. The downstream increase in buoyancy in the At-
lantic–Indian sector (60°W–100°E) in Fig. 3c is accom-
panied by the corresponding strengthening of the me-
ridional surface buoyancy gradient south of the � � 0
streamline. The resulting pattern of buoyancy in the
meridional plane is indicated in Fig. 13b. Since the
stratification at the equatorward flank of the ACC
[bN(z)] does not significantly vary in y (Karsten and
Marshall 2002a), an increase of the surface buoyancy

3 Of course, the eddy parameterization used in our model (ap-
pendix A) provides a mechanism for isopycnal diffusion of thick-
ness rather than PV. However, given the relatively limited me-
ridional extent of the ACC (small �f ) and a significant depth
variation within it (large �h), the isentropic mixing of PV and
thickness become largely equivalent.

FIG. 12. Distribution of the potential vorticity PV � f�b/�z on the isopycnal surface with b
� (2/3)�b. Note the region of low-PV fluid in the upper-left corner of the plot (counterpart
of the southeastern Pacific).
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gradient on the poleward flank of the ACC in the At-
lantic sector (Fig. 3c) leads to considerable isopycnal
PV gradients. As indicated in Fig. 13b, PV gradients
become positive immediately above the base of the
ACC thermocline (isopycnal layers are thin near the
surface and thicken as their depth increases toward the
equator). The isopycnal PV gradients, however, change
sign in the buoyant upper isopycnal layers. This pattern
implies the poleward downgradient flux of PV (and
thus of other tracers as well) at depth and the equator-
ward eddy transfer in the upper layers (see Fig. 13b),
which is consistent with the structure of residual circu-
lation predicted by the model (section 5).

a. Two-dimensional effects in the dynamics of the
ACC

The foregoing model indicates that the overturning
circulation greatly intensifies in the Atlantic–Indian
sector, similar to the patterns of both the wind stress (�)
and air–sea flux (B), creating an impression that the
response of the ACC to the external forcing may have
a largely local character. Thus, we now attempt to de-
termine whether the ACC can be viewed as a quasi-
two-dimensional flow whose structure, at any given me-
ridional cross section, is controlled by local processes.
To quantify the role of the fundamentally three-
dimensional effects in setting the meridional distribu-
tion of buoyancy and residual circulation—effects that
result from the zonal convergence of the buoyancy and

volume fluxes—we go on to diagnose the dominant bal-
ances of the residual buoyancy equation for the solu-
tion in section 5. We separately consider the upper
mixed layer and stratified interior.

The first-order (��) component of the buoyancy
equation in the mixed layer is given by (B12) in appen-
dix B, and the partitioning of terms in the buoyancy
budget is shown in Fig. 14. The upper plots present, for
each y, the amplitude (Fig. 14a) and phase (Fig. 14b) of
the zonal advection term

Tu	y
 � iku0b̂1mhm, 	30


whereas the term resulting from the meridional advec-
tion of buoyancy by the residual flow

T�	y
 � 
1 res

�b0m

�y
� �0 res

�b̂1m

�y
	31


is shown in Figs. 14c and 14d. The analogous plot of the
buoyancy flux B̂1 is in Figs. 14e and 14f. Comparison of
the amplitudes of these terms indicates that the (three-
dimensional component of) air–sea buoyancy flux (B1)
is largely balanced by the meridional advection (T�).
The Tu term, whose amplitude is only a third of (and
whose phase is significantly shifted relative to) T�, plays
but a minor role in the mixed layer budget.

Term T� consists of two distinct terms: advection of
the zero-order buoyancy by the perturbation of the me-
ridional velocity

FIG. 13. Schematic diagram for the pattern of buoyancy in the
ACC. (a) Three-dimensional structure of the buoyancy field. The
surface buoyancy flux into the ocean in the Atlantic sector results
in the poleward shift of the surface buoyancy contours relative to
the stream (see the observations in Fig. 3c). (b) Distribution of
buoyancy in the meridional cross section of the ACC in the At-
lantic sector marked by the dashed lines in (a). Poleward shift of
the surface buoyancy contours results in the interior isopycnal
potential vorticity gradients. These gradients cause the downgra-
dient PV fluxes and ultimately result in a considerable meridional
overturning by the residual flow indicated by the solid arrows.

FIG. 14. The (left) amplitudes and (right) phases of the indi-
vidual three-dimensional (the first Fourier harmonic) components
of the mixed layer buoyancy budget in (B12): (a), (b) the zonal
advection of buoyancy in (30); (c), (d) the meridional advection of
buoyancy in (31); and (e), (f) the air–sea buoyancy flux.
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T�1 � 
1 res

�b0m

�y

and advection of the buoyancy perturbation by the
zero-order flow

T�2 � �0 res

�b̂1m

�y
.

Of these two terms, the dominant contribution comes
from T�1, and therefore the buoyancy budget of the
mixed layer can be approximated by


1 res

�b0m

�y
� B̂1. 	32


The balance in (32) suggests that the 3D component
of the overturning circulation, as measured by �1 res

immediately below the mixed layer, is largely in phase
with the buoyancy forcing. The situation, however, be-
comes markedly different in the interior of the ACC,
where the explicit buoyancy forcing vanishes and strati-
fication comes into play. The buoyancy budget at
O(�)—see (17)—now consists of three distinct terms
representing the effects of the advection of buoyancy
by the individual components of residual velocity. Un-
like the mixed layer budget, the interior dynamics does
not reduce to a simple quasi-two-dimensional
balance. All three advection terms have comparable
amplitudes: their rms values are, correspondingly,
(ubx)|1mode � 3.5 � 10�12 m s�3, (�by)|1mode � 3.8 �
10�12 m s�3, and (wbz)|1mode � 4.8 � 10�12 m s�3. In-
spection of the spatial distribution of these terms (not
shown) indicates that the zonal advection plays a criti-
cal role in the warm upper equatorward regions char-
acterized by swift currents; however, the ubx term
greatly weakens at depth near the base of the model
thermocline. These findings indicate that fundamen-
tally three-dimensional effects resulting from the zonal
convergence of buoyancy fluxes play a significant role
in determining the interior structure of the thermocline.

b. Diabatic eddy fluxes in the mixed layer

Another aspect of our theory, which can be exam-
ined by diagnosing the steady-state solution in section
5, is related to the diabatic eddy fluxes and their role in
the dynamics of the ACC. In constructing our model,
we assumed (section 3) that the eddy transfer is largely
adiabatic; that is, the eddy fluxes are directed along the
isopycnal surfaces. Since this assumption was based on
the two-dimensional model (MR), it becomes necessary
now to validate it by using our three-dimensional solu-
tion.

Theoretical reasoning and numerical simulation (e.g.,

Karsten et al. 2002) suggest that the significant diabatic
effects of eddies may occur in near-surface frontal re-
gions; presence of the ocean surface tends to suppress
the vertical component of the eddy fluxes and thereby
forces eddy fluxes to become nearly horizontal in re-
gions where eddies “feel” the surface. As a result, eddy
fluxes become directed across the isopycnals, causing
significant diapycnal volume fluxes. Thus, in estimating
the role of diabatic eddy effects we focus primarily of
the near-surface mixed layer.

As discussed in appendix A, the eddy fluxes can be
separated into the components parallel and normal to
the mean b surfaces. For convenience, in the earlier
discussion (section 3) the small diabatic component in
(A2)

Fdia �
v�b� · �b

	�b	2
�b 	33


was combined with the explicit buoyancy forcing. Now
we directly compute the diabatic term (33) by diagnos-
ing the solution in section 5 and, thus, determine the
partitioning of the total flux in the mixed layer (B̃)
between the air–sea fluxes (B) and diabatic eddies
(B*).

Equation (33) can be greatly simplified by using the
long-wave approximation �/�x � �/�y and assuming that
bz vanishes in the mixed layer:

�Fdia �
�

�y
��b�. 	34


Because the mixed layer is assumed to be vertically
homogeneous, the eddy fluxes in (34) are evaluated by
applying the interior closure (A8) immediately below
the mixed layer and assuming that �b is vertically uni-
form within the mixed layer. The total buoyancy flux
supplied by air–sea fluxes and the diabatic eddies in the
mixed layer reduces to

B̃ � B � hmk0

�

�y ��by

bz
�by��

z��hm

. 	35


The partitioning of terms in (35) is given in Table 1,
which shows that the contribution of the diabatic eddy

TABLE 1. Root-mean-square of the buoyancy fluxes in the
mixed layer. First column shows the partitioning of the total buoy-
ancy flux (B̃) between direct air–sea fluxes and diabatic eddy
fluxes. The second column presents the partitioning of terms in
the first Fourier component of (35).

Total (m2 s�3) Mode 1 (m2 s�3)

Eddy flux (B*) 6.2 � 10�10 3.2 � 10�10

Air–sea flux (B) 6.7 � 10�9 3.9 � 10�9
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fluxes in the mixed layer budget is an order of magni-
tude less than the direct air–sea buoyancy flux.4 The
limited significance of the diabatic eddies is seen in the
total mixed layer buoyancy budget (the first column in
Table 1) and in the first Fourier component of the
fluxes as well (the second column in Table 1).

7. Conclusions

A model for the large-scale three-dimensional struc-
ture of the Antarctic Circumpolar Current has been
presented that assumes that the eddy transport in the
interior of the ACC is entirely adiabatic; the diapycnal
flux by small-scale turbulence is limited to the upper
mixed layer. Tractability is achieved by expressing the
buoyancy field in terms of the Fourier series in the
zonal direction and drastically truncating the expan-
sion. Our representation consists of only two modes:
the dominant streamline average component and the
first (fundamental) Fourier harmonic. Accordingly, the
model is driven by the two lowest spectral components
(n � 0, 1 harmonics) of the wind stress and buoyancy
forcing.

The new theoretical framework makes it possible to
determine the three-dimensional distribution of buoy-
ancy and residual circulation for various surface and
boundary conditions. In one of the examples (section 4)
we prescribe the surface buoyancy distribution and the
air–sea flux and compute the interior fields. However
the “prognostic” model in section 5 computes the buoy-
ancy fluxes as a part of the problem, assuming that the
stratification at the equatorward flank of the ACC is
controlled by the circulation in the adjacent gyres and
therefore is regarded as known; results of the two mod-
els are mutually consistent. Of particular significance is
the ability of the prognostic model to independently
predict the amplitude and distribution of the air–sea
buoyancy fluxes, which are consistent with observa-
tions.

The model solutions represent a balance between the
Eulerian meridional overturning, parameterized ed-
dies, and the downstream advection of buoyancy by the
mean flow. The latter component is absent in the zonal-
average theories of the ACC (e.g., MR) and plays a
significant role in determining the three-dimensional
structure of the model thermocline. The diabatic eddy

effects, on the other hand, are shown (section 6) to be
of secondary importance for both streamline-averaged
and three-dimensional components of the residual cir-
culation.

Residual circulation in the model is characterized by
intensification of the overturning circulation in the At-
lantic–Indian Ocean sectors and dramatic reduction in
its strength in the Pacific region, a pattern that is readily
understood by considering the phases of the surface
heat flux and the wind stress. Likewise, the model ther-
mocline is relatively warm, stratified, and deep in the
region corresponding to 120°E–60°W. These model
predictions are consistent with the hydrography of the
Southern Ocean.
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APPENDIX A

Eddy-Induced Velocities of the Residual-Mean
Theory

Following Andrews and McIntyre (1976) (see also
Plumb and Ferrari 2005; Ferreira et al. 2005), we write
the time-mean buoyancy budget (2) as

v · �b � �� · F �
�B

�z
, 	A1


where b is the mean buoyancy and the eddy buoyancy
flux

F � v�b� �
v�b� · �b

	�b	2
�b �

v�b� × �b

	�b	2
� �b

	A2


is separated into components parallel and normal to the
mean b surfaces. We are mostly concerned here with
the second term in (A2), the “skew flux,” which is
equivalent to advection of b by the following eddy-
induced velocity field:

v* � � � �, 	A3


where

� � �
v�b� × �b

	�b	2
. 	A4


4 A reviewer pointed out that the diabatic eddy flux may be
critical for other aspects of the ACC dynamics, particularly in
communicating the heating signal downward from the surface and
thus increasing the downstream variation in buoyancy.

666 J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y VOLUME 36



The first term in (A2) is zero for adiabatic eddies in
which the eddy buoyancy fluxes are directed along
mean buoyancy surfaces. If, however, eddies have a
component normal to b contours, it is convenient (see
MR) to combine the diabatic term with the direct
diapycnal buoyancy flux (B) by rewriting (A1) as

vres · �b �
�B̃

�z
, 	A5


where B̃ � B � B* includes a contribution from the
diapycnal component of eddy fluxes (B*). Residual ve-
locities in (A5) are given by

vres � v � v*.

Next, we note that the expression for the eddy ve-
locities in (A3) and (A4) greatly simplifies if the lateral
scales significantly exceed the vertical scale (�/�z � �/�x,
�/�y), a condition that is generally well satisfied in the
ocean (except in the relatively thin surface and bottom
mixed layers). In this case, the horizontal eddy veloci-
ties reduce to the familiar forms

u* �
�

�z �u�b�

bz
� and

�* �
�

�z ���b�

bz
�. 	A6


We adopt a conventional downgradient closure for
the eddy buoyancy fluxes in (A6):

u�b� � �Kbx, 	A7


where the eddy transfer coefficient K is not constant,
but rather is determined by the local properties of the
flow field. Marshall and Radko (2003) used a model in
which K is proportional to the isopycnal slope, a closure
suggested by Visbeck et al. (1997) and supported by the
laboratory experiments in Cenedese et al. (2004). Ex-
tending this model for three-dimensional flows, we as-
sume that

u�b� � �k0	sx	bx � �k0�bx

bz
�bx and

��b� � �k0	sy	by � �k0�by

bz
�by, 	A8


where k0 is a positive constant. Parameterization in
(A8) reduces (A6) to

u* � �k0

�

�z
	sx	sx	
 and

�* � �k0

�

�z
	sy	sy	
. 	A9


Eddy-induced velocities can be expressed in terms of
the vector streamfunction �* � (�*u , �*� ) such that
(�/�z)(�*u , �*� ) � �(u*, �*), and using (A9) we identify

�*u � k0sx	sx	 and

�*� � k0sy	sy	 	A10


for the interior of the ocean below the mixed layer (z �
�hm).

In the mixed layer (�hm � z � 0) where isopycnals
become vertical, (A10) does not apply. Instead, we re-
quire there that �* varies continuously from a finite
value at z � �hm to zero at the surface (z � 0). There-
fore, for both the interior and the mixed layer, we can
relate the eddy streamfunction and the eddy-induced
velocities as follows:

�*u � ��
0

z

u* dz,

�*� � ��
0

z

�* dz, and

w* � �h · �*,

providing a consistent model for the nondivergent
eddy-induced velocity field whose vertical component
(w*) vanishes at the surface.

APPENDIX B

Reduction of the First-Order Problem to a System
of Ordinary Differential Equations

Following MR, we consider separately the adiabatic
interior (z � �hm) and a thin, vertically homogeneous
mixed layer (�hm � z � 0); see Fig. 3 of MR.

a. Interior dynamics

Since the buoyancy forcing B is assumed to be neg-
ligible in the interior, the O(�) buoyancy equation in
(17), written in terms of �1 res, reduces to

J	
1 res, b0
 � J	�0 res, b̂1
 � ik��
0

z

û1dz
�b0

�z
� u0b̂1�,

z � �hm, 	B1


where (19) and (20) were used to eliminate (ŵ1 res, �̂1 res).
The explicit expression for �*1 is obtained by expand-

ing �* in powers of �:
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�
0

z

�* dz � k0sy
2 � k0

� �

�y
b�2

� �

�z
b�2 � k0�b0z

2

b0y
2 � Re�2

b0y

b0z
3 	b̂1yb0z � b̂1zb0y
 exp	ikx
�� O	�2
	. 	B2


Therefore, isolating the first-order (��) term, we
find


*1 � �2k0

b0y

b0z
3 J	b̂1, b0
. 	B3


The first-order y-momentum equation written in
terms of �1 res is

f
�
1 res

�z
� �ikP̂1 � f

�
*1
�z

�
��̂1x

�z
. 	B4


Integrating (B4) once in z and recalling that �*1 |z�0 �
�1 res|z�0 � 0, we arrive at

f
1 res � �ik�
0

z

P̂1 dz � f
*1 � �̂1x	z�0. 	B5


Despite the seemingly complicated form of the gov-
erning equations in (B1) and (B5), they can be effi-
ciently integrated along the “old,” zero-order charac-
teristics. For the characteristic velocities (�c, wc) given
by (16),

d

dl
	·
 � �c

�

�y
	·
 � wc

�

�z
	·
 �

�

�y
	·
 � s0

�

�z
	·


�
1

b0z
J	 ·, b0
, 	B6


and therefore the first term in the buoyancy equation
in (B1) reduces to b0zd�1 res/dl. Likewise, using (B6)
we simplify the second term on the left-hand side of
(B1) to

J	�0res, b̂1
 � ��d�0 res

db0
�J	b̂1, b0


� �b0z�d�0 res

db0
� db̂1

dl
, 	B7


and thus (B1) reduces to

d
1 res

dl
� �d�0 res

db0
� db̂1

dl
� ik

u0b̂1

b0z
� ik�

0

z

û1 dz.

	B8


The momentum equation in (B5) can also be greatly
simplified by expressing it in terms of the (zero order)
isentropic gradients. Using (B6), we rewrite (B3) as


*1 � 2k0

s0

b0z

db̂1

dl
. 	B9


Substituting �*1 given by (B9) into (B5), we arrive at

db̂1

dl
�

	
1res � �1x�f
b0z

2k0s0
� ik

b0z�
0

z

P̂1 dz

2k0s0f
.

	B10


b. Mixed layer

The steady, vertically homogeneous, mixed layer
buoyancy budget in 3D is

ures

�bm

�x
� �res

�bm

�y
�

�B

�z
. 	B11


To proceed with the truncated spectral model, (B11)
is integrated in z over the depth of the mixed layer hm,
and the result is expanded in powers of � using (8). The
first-order (��) component is given by

iku0b̂1mhm � 
1res

�b0m

�y
� �0res

�b̂1m

�y
� B̂1,

	B12


where �0 res, �1 res are evaluated at the bottom of the
mixed layer, resulting in an explicit expression for
�1 res|z��hm


1 res �

B̂1 � �0 res	z��hm

�

�y
b̂1m � iku0b̂1mhm

�

�y
b0m

.

	B13


Equations in (B8), (B10), and the surface boundary
condition (B13) are used in the model (sections 4 and 5)
to efficiently compute the steady three-dimensional
components of buoyancy and residual circulation of the
ACC.
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