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ABSTRACT

A model for the vertical structure of ocean gyres is presented that extends the ideal thermocline theories of
Rhines and Young and Luyten et al. to include a cross-layer volume flux associated with geostrophic eddy
transfer. A two-and-one-half-layer model is considered that assumes that the intensity of the eddy transfer depends
on the local strength of the current. The ideal thermocline models emerge in the limit where the parameter
characterizing the cross-layer volume flux is asymptotically small. Inclusion of the eddy-induced volume flux
resolves the nonuniqueness of the Sverdrup dynamics in the unventilated pool attached to the western boundary
layer. In the ventilated region, solutions of the model equations converge to their ideal counterparts. The cir-
culation is closed explicitly by developing a western boundary layer theory based entirely on the effects of the
cross-isopycnal volume flux due to eddies. Unlike most models of western intensification, the leaky boundary
layer here is active, and its dynamics are essential for determining the structure of the interior field.

1. Introduction

One of the most influential views on the vertical struc-
ture of the subtropical ocean circulation is expressed in
the ideal thermocline models (e.g., Luyten et al. 1983;
Huang 1988), which assume that the balance in the ther-
modynamic equation is adiabatic (v · =b 5 0, where v
is the velocity and b is the buoyancy) and that fluid
particles conserve their density and potential vorticity.
Solutions are a mapping of the surface temperature dis-
tribution (assumed to be known) to a vertical profile
consistent with Sverdrup balance and potential vorticity
(PV) conservation. Rhines and Young (1982, RY here-
inafter) explained how deep layers that do not outcrop
could be set in motion by the slow process of PV transfer
across closed geostrophic contours by eddies and re-
sulting PV homogenization. The aforementioned solu-
tions satisfy the Sverdrup constraint and therefore apply
only to the ocean interior. Absence of buoyancy and
vorticity sinks in these models require an implicit as-
sumption that there is a passive nonadiabatic boundary
layer that balances the buoyancy and PV budgets but
does not affect the interior structure. A number of ex-
cellent discussions of thermocline theory include those
by Rhines (1986) and Pedlosky (1996).

Although the ventilated thermocline (Luyten et al.
1983) and homogenization (RY) theories are self-con-
sistent models that have brought much insight, one can
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readily question some of the underlying assumptions.
One of the issues (raised by Ierley and Young 1983; IY
hereinafter; Luyten and Stommel 1985) is that the per-
fectly accommodating character of the western bound-
ary layers in the ideal thermocline theories is a feature
that should be demonstrated, but not assumed a priori.
Another, and perhaps more serious, criticism (e.g., Vallis
2000), is related to our present lack of knowledge of
the character and extent of the modification of ideal
equations by geostrophic eddies.

In recent papers (Radko and Marshall 2003, 2004;
hereinafter RM03, RM04, respectively), we analyzed a
set of eddy-resolving numerical simulations of idealized
oceanic flows. It was shown that the changes in PV
following a Lagrangian particle advected by the mean
flow are dominated by the diapycnal buoyancy transfer
by eddies, rather than by Reynolds stresses or by explicit
diffusion and viscosity. Analogous description of the
flow was given in terms of a layered model, in which
the eddy buoyancy transfer is represented by a diapycnal
volume flux w*. As discussed in RM03 and RM04, in
a continuously stratified fluid w* can be expressed thus:

Dz(b) 2= · (y9b9) 2 B
w* 5 w 2 5 ,

Dt bz

where z( ) is the depth of a mean buoyancy surface,b
D/Dt 5 (]/]x) 1 (]/]y), B represents the effects ofu y
the small-scale vertical mixing, and = · ( ) is the di-y9b9
vergence of the geostrophic eddy buoyancy fluxes. Di-
agnostics of eddy-resolving numerical simulations in
RM03 and RM04 indicate that the intensity of w* is
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dominated by the contribution from eddies and is lo-
calized to the western intensification zone, where the
flow field is characterized by swift currents and small
spatial scales.1

RM04 demonstrate that the ability of eddies to induce
a significant mean cross-isopycnal flux is related to the
diabatic component of the eddy fluxes. While eddies are
often assumed to be largely adiabatic in the interior (e.g.,
Gent and McWilliams 1990), numerical simulations in-
dicate that eddies have strong diabatic effects in the
near-surface frontal regions, where the presence of the
surface tends to suppress the vertical component of the
eddy fluxes ( ). Thus, the eddy fluxes become di-w9b9
rected across the isopycnals, resulting in large cross-
isopycnal fluxes ( ), which balance, in an integralw*eddy

sense, the downward Ekman flux of buoyant fluid into
the main thermocline.

Motivated by these results, we now develop a ther-
mocline model consisting of two active layers overlying
an infinitely deep abyssal water. The diapycnal flux w*
is parameterized as a function of local mean flow prop-
erties. The present extension of the simple reduced-
gravity model in RM03 makes it possible to describe
the baroclinic effects, such as active dynamics of the
western boundary layers. A fundamental difference be-
tween our model and other extensions of ideal ther-
mocline theory (Samelson and Vallis 1997; De Szoeke
1995) is that we attribute the largest part of the diapycnal
flux to the action of eddies rather than to small-scale
vertical mixing (see the discussion in RM04). This is
reflected in the parameterization scheme, which relates
the buoyancy fluxes to the lateral, rather than vertical,
gradients of the mean field.

The resulting solutions consist of a Sverdrup interior
connected to the narrow ‘‘leaky’’ western boundary lay-
er. The boundary layer equations are solved explicitly
and a complete solution is obtained by matching the
interior and boundary layer components. It is shown
that the boundary layer is active in the sense that it
directly controls the pattern of the interior flow. Partic-
ular attention is given to a setup (section 3) in which
the second layer is completely shielded from the direct
influence of wind. This configuration is very similar to
that used in RY. However, in contrast to RY, the interior
structure in our model is not determined by the slow
process of homogenization of potential vorticity, but is
set by an interaction of the boundary layer and interior
dynamics. The resulting PV distribution is always
slightly nonuniform, even when the parameterization of
eddies corresponds to a downgradient PV flux. The ven-
tilated model in which the upper-density interface out-
crops at the surface is also considered (section 4), and
the integral constraints on the eddy-induced diapycnal
fluxes are formulated.

1 Note that w* here is the total diapycnal volume flux and not the
vertical eddy-induced velocity of residual mean theory, which is also
often denoted by the same symbol.

2. Formulation

Consider a two-and-one-half-layer ocean in a closed
rectangular basin. The flow is assumed to be in hydro-
static and geostrophic balance. Geostrophy, assumed for
the entire domain (S), implies that the depth of each
density interface is constant along the vertical rigid
boundaries:

h (x, y) 5 h (x, y) ∈ ]S anddim 0dim

D (x, y) 5 D (x, y) ∈ ]S, (1)dim 0dim

where Ddim (hdim) is the depth of the lower (upper) in-
terface, and subscript ‘‘dim’’ pertains to the dimensional
variables. In all cases considered, the lower density in-
terface intersects the basin walls at finite depth (D0,dim),
whereas the upper density interface may outcrop at the
surface.

The system of nondimensionalization is based on the
zonal extent (Lxdim) of the basin, the value of the Coriolis
parameter at the southern boundary ( f 0), and the depth
of the lower interface at the basin boundary (D0dim). The
corresponding scale of the horizontal velocity is U 5
g9D0dim/ f 0Lxdim, and P 5 g9D0dim is used as a scale for
the dynamic pressure. Here g9 5 g(Dr12/r) is the re-
duced-gravity parameter, and for simplicity, we use
equal density differences for both interfaces (Dr12 5
Dr23). The resulting steady nondimensional large-scale
equations of motion are

]pif y 5 , i 5 1, 2,i ]x

]pifu 5 2 , i 5 1, 2,i ]y

p 5 D,2

p 2 p 5 h,1 2

] ]
(hu ) 1 (hy ) 1 w 2 w* 5 0, and1 1 e 1]x ]y

] ]
(h u ) 1 (h y ) 2 w* 1 w* 5 0, (2)2 2 2 2 2 1]x ]y

where h2 5 D 2 h is the depth of the second layer, and
in the volume equations represent the total diapycnalw*i

volume flux due to eddies:

] ]
w* 5 2 (h9u9) 2 (h9y9) and1 1 1]x ]y

] ]
w* 5 2 (D9u9) 2 (D9y9). (3)2 2 2]x ]y

We assume that this convergence of the ‘‘bolus flux’’
is dominated by the contribution from geostrophic ed-
dies that move laterally away from the subtropical gyre
and thereby continuously transport light fluid across the
isopycnals, analogous to Gulf Stream rings of the North
Atlantic subtropical gyre. These eddies detach and even-
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FIG. 1. Schematic of the shielded model. Both density interfaces
intersect the boundaries of the rectangular basin at finite depth.

tually lose the dynamical influence on the subtropical
gyre (see the discussion in RM03, RM04). Of course,
the buoyancy of a fluid particle can only be modified
by small-scale dissipative processes or direct buoyancy
forcing, and therefore the role of eddies in our model
is in facilitating the irreversible transfer of properties in
their cascade to smaller scales.

The Coriolis parameter varies linearly in y: f 5 1 1
by in nondimensional units; and Ekman pumping ve-
locity we is sinusoidal:

w (y) 5 2W sin(py/L ).e e y (4)

Scales are chosen having the North Atlantic subtropical
gyre in mind:

24 21 3f 5 0.5 3 10 s , D 5 10 m,0 0dim

6 22 2L 5 5 3 10 m, g9 5 10 m s , andxdim

26 21W 5 2 3 10 m s ,edim

in which case the nondimensional Ekman pumping am-
plitude is about We 5 0.2.

In order to derive an analytical solution that can cap-
ture the zero-order physics and dynamics at play, the

in (2) are parameterized as a function of the localw*i
strength of the large-scale flow. Following RM03, we
employ a simple and qualitatively plausible thickness
diffusion2 closure:

2 2w* 5 e¹ h and w* 5 e¹ D, (5)1 2

where e is related to the dimensional thickness diffusion
coefficient (Kdim) by e 5 Kdim/UL.

A coupled system of equations in (D, h) is obtained
by eliminating the geostrophic velocities and the dy-
namical pressure in (2) in favor of the layer depths:

1 b ](D 1 h)
J(D, h) 2 h 1 w 2 w* 5 0 ande 12f f ]x

1 b ]D
2 J(D, h) 2 (D 2 h) 2 w* 1 w* 5 0,2 12f f ]x

(6)

where J(a, b) 5 (]a/]x)(]b/]y) 2 (]a/]y)(]b/]x). An
elementary algebraic transformation reduces these equa-
tions to

b ]
2 2 22 (h 1 D ) 1 w 2 e¹ D 5 0 ande22 f ]x

D 2 h
2J D, 2 e¹ (D 2 h) 5 0, (7)1 2f

where (5) has been used to parameterize the cross-layer

2 A similar parameterization appears in the widely used Gent and
McWilliams (1990) model. Gent and McWilliams, however, assume
that eddies are adiabatic; because of the prescribed no-flux boundary
conditions, the volume of the density layers cannot change in time.
In our case, the boundary conditions (1) allow us to represent a
fundamentally diabatic effect—the eddy-induced variation in the cen-
sus of water masses.

fluxes. Note that (7) is similar to the quasigeostrophic
equations with interfacial friction, such as those em-
ployed by IY (see appendix A). Here, of course, these
equations have a different physical interpretation. The
first equation in (7) is essentially Sverdrup balance,
modified to take account of finite buoyancy influx into
the motionless lower layer. The second equation in (7)
describes the Lagrangian variation of potential thick-
ness R 5 (D 2 h)/ f, the reciprocal of the potential
vorticity, in the second density layer. In our model the
change in potential thickness in (7) is entirely due to
eddy-induced cross-isopycnal flux (w*). Some of our
solutions (section 4) are characterized by the outcrop
of the first density interface, in which case there is only
one active layer in the northern part of the basin. Then
(7) reduces to

b ]
2 22 D 1 w 2 e¹ D 5 0. (8)e22 f ]x

3. Shielded model

a. Numerical solution

Consider the setup in Fig. 1. The second density layer
is completely shielded from the direct influence of wind.
For simplicity, we assume equal layer depths and there-
fore set h0 5 0.5. The meridional extent of the basin is
Ly 5 0.5, chosen to roughly approximate the aspect ratio
of the North Atlantic subtropical gyre, and the nondi-
mensional beta is b 5 1, so that the Coriolis parameter
varies by 50% across the basin. On the basis of the
estimates in Marshall et al. (2002) we expect Kdim to be
on the order of 103 m2 s21, which in our nondimensional
units translates to e ; 1023–1022; in the following nu-
merical calculation we use e 5 3 3 1023.

The nonlinear system (7) has to be solved subject
to the boundary conditions (D, h) 5 (D 0 , H 0) at (x, y)
∈ ]S. One simple and intuitively clear solvability con-
dition for this system appears when the volume equa-
tions in (2) are integrated over the total basin area (S)
resulting in
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FIG. 2. Depths of the (a) lower and (b) upper density interfaces
and (c) second-layer potential vorticity for a steady state obtained by
the numerical solution of the governing equations in (2).

w dS 5 w* dS 5 w* dS, (9)E e E 1 E 2

which can be interpreted as a requirement that, in a
steady state, the continuous flux of buoyancy into each
density layer is balanced by the detrainment of warm
water by eddies.3 Note that (9) holds even in the pres-
ence of the inertial terms in the momentum equations.
Of course, even the existence of a steady state in our
problem, and more so its uniqueness or stability, is ques-
tionable. Nevertheless, numerical integration of (2) with
added time derivatives using a simple finite-difference
code yields a steady (for e 5 3 3 1023) solution, which
is presented in Fig. 2.

The structure of the flow in Fig. 2 conforms to our
view of the subtropical gyres as consisting of the quasi-
adiabatic interior flow smoothly connected to a thin
western boundary layer, which in our model is con-
trolled by w*. The interior field in Fig. 2a includes the
shadow zone with almost no motion in the second layer,

3 The volumetric balance in (9) should be modified in the presence
of the baroclinic cross-gyre exchange flows as in Chen and Dewar
(1993). These effects are beyond the scope of the present model.

and a pool region where all streamlines are connected
to the boundary layer. Plots of the cross-layer volume
fluxes (not shown) reveal the highly localized character
of , which are confined to the thin western boundaryw*1,2

layer in Fig. 2, just as seen in the eddying gyres of
RM04. The second-layer potential vorticity in the pool
region is slightly nonuniform (Fig. 2c). As will be
shown below, this PV distribution is set in our model
by an active boundary layer, in contrast to the homog-
enization theory (RY).

Because the solution for small « is, at the leading
order, adiabatic outside of the western boundary layer
(see Fig. 2), we briefly review (section 3b) fundamentals
of the ideal thermocline theory and then explore the
consequences of matching these ideal interior solutions
with our ‘‘leaky’’ boundary layer.

b. Elements of the ideal thermocline theory

When the small cross-layer fluxes in the interior are
neglected, the governing system (7) reduces to the ideal
thermocline equations:

b ]
2 22 (h 1 D ) 1 w 5 0 ande22 f ]x

D 2 h
J D, 5 0. (10)1 2f

Integration of the first (Sverdrup) equation in x from the
eastern boundary results in an algebraic relationship be-
tween D and h:

22 f py
2 2 2 2h 1 D 5 h 1 D 1 (1 2 x)W sin . (11)0 0 e 1 2b Ly

In order to close the problem and determine a unique
distribution of (D, h), one more relation between D and
h is needed. The second equation in (10) implies only
that D and R 5 (D 2 h)/ f are functionally related. This
is a rather weak requirement that could be satisfied by
a whole class of suitable functions, and therefore se-
lection of a specific solution requires an additional con-
straint on (D, h).

Rhines and Young (1982) pointed out that the func-
tional relation between R and D is fundamentally dif-
ferent in the shadow zone where the PV contours are
blocked by the rigid (eastern and northern) boundaries
of the basin and in the pool region where the streamlines
are closed in a boundary layer (see the schematic in
Fig. 3). In the shadow zone, the second-layer flow has
to be motionless (D 5 const 5 D0) to satisfy the re-
quirement of no flux normal to the basin boundary, and
the Sverdrup transport is entirely in the upper layer. In
the pool region, however, the second-layer flow may be
finite as long as the potential thickness is a function of
the (varying) second-layer depth:
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FIG. 3. Structure of the flow field in the second layer. Outside of
the narrow western boundary layer isopleths of D coincide with the
isopleths of the second-layer potential vorticity q2 5 f /(D 2 h). Note
that dq2/dy 5 0 at the return point y 5 yA.

D 2 h
R 5 5 F(D). (12)

f

The expression for the boundary [x 5 xs(y)] separating
these two regions can be obtained by requiring conti-
nuity of the depth and constant R along this curve.

The problem, however, is still far from being solved
since any function F such that (D0 2 h0)/ f (Ly) 5 F(D0)
would provide an internally consistent solution of (10).
In order to resolve such degeneracy of the ideal equa-
tions, RY assumed that the flow is, at leading order,
ideal everywhere along each closed streamline and used
the higher-order effects to select a particular zero-order
solution. Their model becomes particularly simple and
intuitively appealing when these higher-order effects re-
sult in the downgradient mixing of PV. This process,
according to RY, eventually homogenizes PV in the pool
region, thereby selecting a unique solution with F 5
const in (12).

Although relatively homogenized PV regions have
been observed in the ocean (McDowell et al. 1982) and
in the eddy-resolving numerical experiments (e.g., Rhi-
nes and Schopp 1991; Drijfhout and Hazeleger 2001),
there is still much controversy regarding the applications
of homogenization theory. Dewar (1986), for example,
demonstrated how the cross-isopycnal mass exchange
can affect the potential vorticity dynamics in the regions
shielded from the direct influence of wind, in much the
same way as Ekman pumping controls the dynamics of
the upper layer. Ierley and Young (1983) pointed out
that there is no reason for the homogenization theory
to be valid in the presence of a strongly nonadiabatic
western boundary layer, and presented a simple counter
example—a two-layer quasigeostrophic model with
small interfacial and bottom drag. In their model, PV

was not homogeneous in the pool region, and in contrast
to the assumption in RY, its distribution was set in the
frictional boundary layer.

In view of the arguments in IY, a question arises as
to how to reconcile their results, which predict the O(1)
departure from homogenization, with the existence of
zones with relatively uniform PV in the ocean. One
possibility is that the process of homogenization is the
most important factor, and the highly idealized case con-
sidered by IY may not be directly relevant to the ocean.
Our solution, presented below, suggests an alternative
possibility. The mathematical structure of our governing
equations (7) is very similar to that in IY (although our
interpretation of governing equations is very different).
In solving system (7) we essentially revisit the IY prob-
lem, but find a very different solution in which the de-
parture from homogenization is rather small, of order
15% (see Fig. 2c). Thus, although we agree with IY’s
general conclusion about the importance of the bound-
ary layers in setting the interior PV distribution, we
question their specific solution (see appendix A).

c. Leaky boundary layers: Passive or active?

To develop a simple analytical description of the
steady state in Fig. 2, we search for a solution consisting
of an interior part with O(1) scales and the western
boundary layer where ]/]x k ]/]y 5 O(1). Because
rather low values of e are expected to be realized in the
ocean (recall that e 5 3 3 1023 was used for the ex-
periment in Fig. 2), it is sensible to consider the as-
ymptotic limit e → 0. In this case the terms with second
derivatives in y in (7) become uniformly small every-
where in the basin. In the interior, where ]/]x 5 O(1)
is also assumed, the governing equations in (7) further
reduce to the ideal thermocline equations in (10).

The scale for the boundary layer width is obtained
by balancing the diffusive terms in (7) with the advec-
tive ones:

2] ]
; e → Dx 5 O(e),

2]x ]x

and, for convenience, the x coordinate in the boundary
layer is rescaled accordingly:

x 5 e x .0

In the limit e → 0 the governing equations in (7) reduce
to

2b ] ]
2 22 (h 1 D ) 5 D andB B B2 22 f ]x ]x0 0

2D 2 h ]B BJ D , 5 (D 2 h ), (13)0 B B B21 2f ]x0

where (DB, hB) are the interfacial depths in the boundary
layer, and J0(a, b) 5 (]a/]x0)(]b/]y) 2 (]b/]x0)(]a/]y).

Since the governing equations are of the second order,
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FIG. 4. (a) Solution of the eigenvalue equation in (17). One of the
eigenvalues becomes positive in the northern part of the gyre ( y .
yA), which is indicative of the active nature of the boundary layer.
(b) Depth of the lower interface immediately outside of the western
boundary (DI) as a function of y. Note that the boundary layer is
active wherever the fluid is leaving the boundary and entering the
interior uI 5 2(1/ f )(]D/]y) . 0.

(DB, hB) for large x0 should smoothly merge with the
interior solution [DI(y), hI(y)] immediately outside of
the boundary layer. This requirement can be compactly
written as

ˆlim (D, ĥ ) 5 0, (14)
x →`0

where (D̂, ĥ) 5 [DB(x0, y) 2 DI(y), hB(x0, y) 2 hI(y)]
is the difference between the boundary layer and interior
solutions.

Consider the transition region of large x0 where, ac-
cording to (14), (D̂, ĥ) K [DI(y), hI(y)]. When the
boundary layer equations in (13) are written in terms
of (D̂, ĥ), [DI(y), hI(y)], and only the linear [in (D̂, ĥ)]
terms are retained, we obtain

2b ] ]ˆ ˆ2 (h ĥ 1 D D) 5 D andI I2 2f ]x ]x0 0

2ˆ ˆ]D ] D 2 h ]D 1 ](D 2 ĥ ) ]I I I ˆ2 5 (D 2 ĥ ). (15)
21 2]x ]y f ]y f ]x ]x0 0 0

The general solution for this system of linear ordinary
(with respect to D̂, ĥ) differential equations is given by

1 D̂  5 C exp(l x )21 1 0l f D 1 2 1 Iĥ  2 2
h b h I I

1  C3 1 C exp(l x ) 1 , (16)22 2 0l f D  1 22 I C4 2 2
h b h I I

where Ci depend only on y, and li(i 5 1, 2) are the
two roots of the quadratic eigenvalue equation:

3 2f f ]DI2l 1 l 1 (h 1 D ) fI I[ ]b b ]y

b ]h ]DI I1 h (D 2 h ) 1 h 1 D 5 0. (17)I I I I I[ ]f ]y ]y

Requirement (14) immediately sets C3 5 C4 5 0 and
the question of whether the remaining two terms are
finite depends on the sign of Re(l i). If Re(l i) . 0, then
the corresponding term in (16) increases with x0 and
(14) requires Ci to be 0.

The asymptotic behavior of the solution in this tran-
sition region indicates whether the boundary layer is
passive, in the sense that it can be appended to any
interior solution, or active (e.g., Pedlosky 1996). If both
Re(l i), i 5 1, 2, are negative, then for any interior flow
we can find an appropriate boundary layer solution that
would satisfy the boundary conditions at x0 5 0 and
smoothly connect to the interior. Consider a different
situation when, say, Re(l1) . 0 . Re(l2). In this case
C1 5 0 and there is only one free coefficient (C2) in
(16). Consequently, there is only one degree of freedom
to be realized, and a boundary layer solution that would

satisfy both matching conditions for D and h cannot be
found in general for a given (DI, hI). This implies that
such a boundary layer is active and can directly affect
the interior flow by selecting a specific ‘‘preferred’’ in-
terior solution.

To determine whether our leaky boundary layer is
active or passive, we numerically computed the eigen-
values li(i 5 1, 2) for the flow field in Fig. 2; DI and
hI were approximated by the values of D and h at the
distance Dx 5 0.02 from the western boundary, and the
eigenvalues, for each y, were computed using (17). The
results in Fig. 4a indicate that in the southern part ( y
, yA 5 0.3) both eigenvalues are negative, Re(l1,2) ,
0, which corresponds to a passive boundary layer. How-
ever in the northern part of the gyre ( y . yA), there is
one negative and one positive eigenvalue. Hence, the
boundary layer is active, which has a very significant
dynamical implication for gyres. It is a first indication
that the sought after relation between PV and the stream
function in the second layer may be set at the western
boundary in the outflow region ( y . yA).

It is important to emphasize that the boundary layer
becomes active exactly at the location ( y 5 yA) where
the second-layer zonal flow reverses its direction (see
Fig. 4b). There is a simple theoretical explanation. Re-
call that the interior flow is assumed to be, at leading
order, adiabatic, and the potential thickness is a function
of depth in the pool region:

D 2 hI I 5 F(D ).If

Differentiating this equation in y, we obtain
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1 ]D 1 ]h b ]DI I I2 2 (D 2 h ) 5 F9(D ) . (18)I I I2f ]y f ]y f ]y

When it is evaluated at the point y 5 yA, where

1 ]DIu 5 2 5 0, (19)I f ]y

(18) reduces to

1 ]h bI 1 (D 2 h ) 5 0 at y 5 y . (20)I I A2f ]y f

Using (19) and (20), we considerably simplify the
eigenvalue equation in (17) at y 5 yA:

b
2l 1 (h 1 D )l 5 0 at y 5 y . (21)I I A2f

The two roots of (21) are

l 5 0 at y 5 y and1 A

b
l 5 2 (h 1 D ) at y 5 y ,2 I I A2f

which shows that l1 changes sign (and the boundary
layer becomes active) exactly at the same point ( y 5
yA) where the zonal velocity (uI) reverses its direction.

The ability of the boundary layer to actively control
the interior in the northern part of the boundary layer
can be rationalized by considering the direction of the
Rossby wave propagation immediately outside of the
boundary layer. These waves transmit the ‘‘informa-
tion’’ about the remote boundary conditions that affect
the interior structure. A simple calculation (not shown)
confirms that in the northern part of the pool ( y . yA),
one of the wave modes is directed eastward, which sug-
gests that the western boundary is active and, hence,
can significantly affect the interior structure.

The general suggestion that the interior is controlled
by the western boundary layer leads to more specific
questions. If the Rhines and Young theory is not relevant
for our problem, then what is the correct relation be-
tween PV and D in the second layer, and how big is the
difference between our results and predictions of the
homogenization theory? Strong nonlinearity of the gov-
erning equations makes it difficult to address these ques-
tions on a theoretical level in the most general case.
Nevertheless, as we now show, the problem is tractable
in two limits: (i) when the Ekman pumping We is suf-
ficiently strong, and (ii) when it is sufficiently weak.
The precise conditions will be specified below. For now,
we mention in passing that the ranges of validity for
these two asymptotic limits overlap, and the common
parameter range includes the oceanographically relevant
scales.

d. Case of strong pumping

The second-layer potential thickness (R) equation for
the western boundary region (13) is rewritten as

b ]D 1 ]D ]h 1 ]h ]DB B B B B2 (D 2 h ) 1 2B B2f ]x f ]x ]y f ]x ]y0 0 0

2]
5 (D 2 h ). (22)B B2]x0

To determine the dominant balance in (22), we compare
the scales of the first and second terms. Their ratio is

b(D 2 h ) b(D 2 h ) 1 bB B 0 0; ; , (23)
]h Dh 10 DhBf f
]y Dy

where Dy is the meridional scale of the return flow from
the boundary layer into the interior. The characteristic
scale for the variation in the depths of the interfaces
(DD, Dh) is deduced from the Sverdrup relation (11)
for the interior assuming that DD and Dh are compa-
rable:

WeDD 5 (D 2 D ) ; Dh 5 (h 2 h ) ; , (24)max 0 max 0 b

in apparent agreement with the range of depths observed
in Fig. 2.4

When (24) is used to simplify (23), it becomes clear
that the first term in (22) is negligible if

2b
K 1.

10We

This scaling argument identifies an important parameter
range in which the change in R following a Lagrangian
particle passing through the boundary layer is mostly
caused by the variation in layer thickness, rather than by
meridional variation of the Coriolis parameter. In dimen-
sional units this condition translates to g9 /2 2b Ddim 0dim

(10 Wedim) K 1. In this regime the boundary layer3f 0

equations reduce to

2b ] ]
2 22 (h 1 D ) 5 D andB B B2 22 f ]x ]x0 0

21 ]
2 J (D , h ) 5 (D 2 h ). (25)0 B B B B2f ]x0

We now search for a solution of this simplified (but
still highly nonlinear) system in the active part of the
boundary layer, yA , y , Ly, where only one boundary
condition on (DB, hB) could be imposed at x0 → `. The
choice of the single boundary condition at infinity is
clear. The interior depths (DI, hI) are connected by the
Sverdrup relation (11), and therefore matching the in-
terior and exterior solutions according to (14) requires
that

4 Strictly speaking, this expression is valid only as long as We does
not significantly exceed b, and a different scaling appears for We k
b, but that case will not be discussed herein.
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22 f py
2 2 2 2lim (h 1 D ) 5 h 1 D 1 W sin . (26)B B 0 0 e 1 2b Lx →` y0

Boundary conditions at x0 5 0 are given by (1), and
these are rewritten below in our boundary layer nota-
tion:

D | 5 D 5 1 and h | 5 h 5 0.5. (27)B x 50 0 B x 50 00 0

Structure of the governing equations in (25) suggests
looking for a solution in a form hB 5 DB 1 const, in
which case the second equation in (25) is trivially sat-
isfied. The boundary conditions at x0 5 0 require that

h 5 D 1 (h 2 D ),B B 0 0 (28)

and substitution of (28) in the first equation in (25)
yields

2 2b ]D ]D ]B B2 2 (D 2 h ) 5 D .0 0 B2 2[ ]f ]x ]x ]x0 0 0

Integrating once in x0 reduces this equation to

b ]
22 [D 2 (D 2 h )D ] 5 D 1 const(y),B 0 0 B B2f ]x0

and the second integration (Abramovitz and Stegun
1964) results in an explicit expression for D:

b D 2 h0 0D 5 M tanh M(x 1 N ) 1 , (29)B 02[ ]f 2

where M(y) and N(y) are the constants of integration.
These constants are determined from the boundary con-
ditions on DB at x0 5 0, ` in (26) and (27):

2 2D 1 h f py0 0M 5 1 W sin ande1 2 1 2! 2 b Ly

2f D 1 h0 021N 5 tanh .1 2bM 2M

The interior depths (DI, hI) are then given by

2 2D 2 h D 1 h f py0 0 0 0D 5 1 1 W sin andI e1 2 1 2!2 2 b Ly

2 2h 2 D D 1 h f py0 0 0 0h 5 1 1 W sin ,I e1 2 1 2!2 2 b Ly

(30)

which sets a unique relation between the second-layer
potential thickness R and the depth of lower interface D.

We now check (for consistency) that the boundary
layer is indeed active at the origin of all the streamlines
in the pool region (see Fig. 3), and therefore (30) de-
termine the flow pattern everywhere in the pool area.
As before, we consider the boundary layer transition
region (large x0), and form an eigenvalue equation that
describes the asymptotic behavior of the solution in that
region:

3 2f f ]DI2l 1 l 1 (h 1 D ) fI I[ ]b b ]y

]h ]DI I1 h 1 D 5 0. (31)I I1 2]y ]y

Since the solution (30) is characterized by ]hI/]y 5
]DI/]y, we rewrite (31) in the following form:

1 ]D bI2l 1 l 1 (h 1 D )I I2[ ]f ]y f

b 1 ]DI1 (h 1 D ) 5 0.I I2[ ]f f ]y

The two roots of this quadratic equation are

1 ]D bIl 5 2 and l 5 2 (h 1 D ). (32)1 2 I I2f ]y f

Although l2 is always negative, l1 is positive wherever
the second-layer flow is directed from the boundary
layer into the interior [uI 5 2(1/ f )(]DI/]y) . 0] and
negative otherwise, confirming that the boundary layer
is active at the origin of all the streamlines in the pool
region.

e. Case of weak pumping

We now turn to the opposite limit of relatively weak
Ekman pumping. Recall that the boundary layer equa-
tions in (13) reduce to a particularly simple form (15) in
the transition region, where the terms that are quadratic
in D̂, ĥ can be neglected. Thus, analytical progress is
expected for the parameter regime in which these terms
are small everywhere in the boundary layer. To identify
the corresponding range of We, we rewrite the governing
equations in (13) in terms of (DI, hI) and (D̂, ĥ):

2ˆ ˆb ]ĥ ]D ]ĥ ]D ]ˆ ˆ2 h 1 D 1 ĥ 1 D 5 D andI I2 21 2f ]x ]x ]x ]x ]x0 0 0 0 0

ˆ ˆb ]D b ]D 1 ]D ]ĥIˆ2 (D 2 h ) 2 (D 2 ĥ ) 1I I2 2f ]x f ]x f ]y ]x0 0 0

2ˆ1 ]h ]D 1 ]I ˆ ˆ2 2 J (D, ĥ ) 5 (D 2 ĥ ).0 2f ]y ]x f ]x0 0

(33)

Since | D̂ | , DD, | ĥ | , Dh [Ds are defined above in
(24)], the criterion for neglecting the terms that are qua-
dratic in (D̂, ĥ) is

DD, Dh K D ,0 (34)

and these terms are singly underlined in (33).
The range of We for this regime is obtained by sub-

stituting (24) in (34):
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FIG. 5. Comparison of the theoretical (solid line) and numerical
(dashed line) solutions for DI(y) in the northern part of the basin.

We
K 1, (35)

b

and, apparently, parameters used for the calculation in
Fig. 2 (We 5 0.2, b 5 1) satisfy this requirement. A
subtle difference between this regime and the widely
used quasigeostrophic approximation is that no as-
sumption is made as to the value of b that could be of
order 1 in the theory.

Although all the terms underlined in (33) are, for-
mally, of the order O[(DD)2], analysis of the solution
in Fig. 2 indicates that the scales for some of them
involve rather large numerical factors O(10). These
terms, which are asymptotically small but turn out to
be numerically significant, are marked by the double
lines in (33) and will be retained in the following anal-
ysis. Neglecting the terms underlined only once we im-
mediately recover the linearized set of equations in (15)
and (16) discussed in section 3c.

As previously, we concentrate on the active part of
the boundary layer ( yA , y , Ly), in which case the
solution (16) reduces to

1 
ˆ  D

25 C exp(l x ), (36)l f D 2 2 02 I1 2ĥ  2 2
h b h I I

where l2 is the negative root of the eigenvalue equation
(17). Boundary conditions on (D̂, ĥ) at x0 5 0 are

D̂ | 5 D 2 D and ĥ | 5 h 2 h , (37)x 50 0 I x 50 0 I0 0

and when these are substituted in the general solution
(36), we obtain

b D (D 2 D ) 1 h (h 2 h )I 0 I I 0 Il 5 2 . (38)2 2f D 2 D0 I

The Sverdrup relation (11) immediately outside of
the western boundary reduces to

22 f py
2 2 2 2h 1 D 5 h 1 D 1 W sin . (39)I I 0 0 e 1 2b Ly

Differentiation of this relation in y yields

2]h ]D f p py pyI Ih 1 D 5 W cos 1 2 f W sin ,I I e e1 2 1 2]y ]y b L L Ly y y

(40)

which we use to simplify the eigenvalue equation in
(17). When l2 is substituted in (17), the result is an
ordinary differential equation in DI:

]D 1 p pyI 2 4 2 35 2 l f 1 b h (D 2 h ) 1 f W cos2 I I I e3 1 2[]y l f L L2 y y

py
2 21 2 f bW sin 1 l b f (h 1 D ) ,e 2 I I1 2 ]Ly

(41)

which, combined with the expressions for l2 in (38) and
for hI in (39), can be integrated in y, given one boundary
condition y 5 yA. The derivation of [ yA, DI( yA), hI( yA)]
is given in appendix B, and for the parameters in Fig. 2,
we obtain yA 5 0.31, DI( yA) 5 1.18, and hI( yA) 5 0.68,
in agreement with the numerical solution in Fig. 2.

Using this boundary condition at yA we numerically
integrate the ordinary differential equation in (41) from
y 5 yA to y 5 Ly, and the resulting relation DI(y) is
shown in Fig. 5 by solid line. Comparison with the
corresponding DI(y) from the numerical solution of the
original equations (dashed line) indicates a very close
agreement between the two, thereby supporting our
‘‘weak pumping’’ approximation. Function DI(y) in the
interval yA , y , Ly determines a unique relation F
between the potential thickness and the depth of the
lower interface (12) in the pool area. Knowledge of F,
in turn, makes it possible to compute the complete so-
lution from the Sverdrup relation

2 2[D 2 fF(D)] 1 D
22 f py

2 25 D 1 h 1 (1 2 x)W sin .0 0 e 1 2b Ly

This algebraic equation implicitly determines D for each
(x, y), although in general it has to be solved numeri-
cally.

f. Comparison of the asymptotic and numerical
solutions

Each of the two models discussed above has its ad-
vantages and limitations. The strong pumping limits
yields an explicit analytical solution, whereas the weak
pumping model ultimately requires a numerical inte-
gration. On the other hand, the formal range of validity
for the weak pumping regime (35) seems to better match
the oceanographically relevant parameters. In order to
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FIG. 6. Comparison of the theoretical predictions for the relation
between the potential thickness R and the depth of the lower interface
D with the corresponding numerical realizations. Numerical results
are shown by dots, solid line corresponds to the weak pumping ap-
proximation, and the strong pumping model is shown by dashed line.
Nondimensional values of the Ekman pumping velocity are (a) We

5 0.1, (b) We 5 0.2, and (c) We 5 0.3.

objectively determine which of the two closure schemes
is more adequate in resolving the nonuniqueness of
Sverdrup dynamics in the pool region, we now compare
results of both theories with the numerical solution of
the original equations in (2) over a range of We.

Since the foregoing boundary layer analysis focused
on the relation between the potential thickness (R) and
depth (D) in the pool region, we now examine how
close our theoretical predictions for R 5 F(D) are to
the corresponding numerical realizations. The scattered
dots in (R, D) space in Fig. 6 represent the numerical
data from the interior of the pool region. The numerical
criterion for specifying the pool area in the numerics
has been conveniently (although rather arbitrarily) cho-
sen as

1
(D 2 D ) . DD, x . 0.02.0 4

The solid curves in Figs. 6a–c represent the theoretical
relation R 5 F(D) from the weak pumping model, while
the predictions from the strong pumping approximation
are shown by dashed curves. In all cases considered (We

5 0.1, 0.2, 0.3), the weak pumping theory agrees better
with the numerics than does the strong pumping model,
as one could have anticipated from their formal ranges
of validity (22), (35). Nevertheless, the much simpler
analytical ‘‘strong pumping’’ model is also able to cap-
ture the characteristic features of the numerical R 5
F(D) dependence, such as an increase in R in the deeper
regions of gyre, and explain the relative variation in R
over the extent of the pool area.

g. Downgradient diffusion of potential thickness

In addition to the ‘‘thickness diffusion’’ closure used
above, we also examine a very important case in which
it is assumed that eddies result in a downgradient trans-
fer of the potential thickness (in the quasigeostrophic
approximation this is identical to PV diffusion). As we
now show, this parameterization results in a very similar
solution, also characterized by the active control of the
interior flow by the dynamics of the western boundary
layer.

In the case of potential thickness diffusion, the Rhines
and Young solvability condition, which assumes that the
eddy effects are uniformly small along every closed
streamline, would trivially yield R 5 F(D) 5 const.
The RY model is now compared with the results of our
analytical theory and numerics. One simple way to
achieve a downgradient potential thickness diffusion in
our model is to modify the parameterization of the cross-
layer buoyancy transfer (5) as

h D
2 2w* 5 e¹ and w* 5 e¹ , (42)1 21 2 1 2f f

in which case the governing equations reduce to
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FIG. 7. The same as in Fig. 6 but for the closure (42), which
corresponds to the downgradient diffusion of the potential thickness.
Numerical results are shown by dots, solid line corresponds to the
weak pumping approximation, the strong pumping model is shown
by dashed line, and the horizontal dash–dotted line shows the (er-
roneous) result of the application of the homogenization theory.

b ] D
2 2 22 (h 1 D ) 1 w 2 e¹ 5 0 ande2 1 22 f ]x f

D 2 h D 2 h
2J D, 2 e¹ 5 0. (43)1 2 1 2f f

Fortunately, such a modification in the governing
equations does not cause any significant changes in our
boundary layer theory: the final results of both ‘‘weak’’
and ‘‘strong’’ pumping models can be reinterpreted to
describe the flow governed by (43). This can be readily
shown by introducing a new boundary layer variable x1

defined as

e
x 5 x .1f

When the boundary layer models are reformulated in
terms x1, it becomes clear that the modification of our
theories for the potential thickness diffusion simply in-
volves replacing x0 in the earlier derivations by x1. Such
an isomorphism is a consequence of the separation be-
tween the along- and cross-flow scales in the western
intensification zone.

In Fig. 7 we present the R 5 F(D) relations (i) from
the numerical solution of (43), shown by scattered dots;
(ii) from the strong and weak pumping models (solid
and dashed lines correspondingly); and (iii) by applying
the homogenization theory (indicated by horizontal
dashed–dotted line). Distribution of the numerical (R,
D) points in Fig. 7 clearly favors our boundary layer
models, especially the one based on the weak pumping
approximation (solid line in Fig. 7). These results con-
clusively support our main thesis about the active con-
trol of the boundary layers over the interior PV distri-
bution.

An important question arises as to why the RY mech-

anism appears to be so inefficient in setting, or even
affecting, the PV distribution in the pool region in our
numerical calculations. One of the reasons is due to the
delicate nature of the homogenization theory. In se-
lecting the particular interior solution, the RY model
relies on weak high-order effects. Therefore, as pointed
out by Pedlosky (1983), even a very weak violation of
the assumptions of the homogenization theory may ren-
der it fundamentally invalid. The present model, on the
other hand, is based on the leading-order expansion,
which generally leads to more robust results. Not sur-
prisingly, it is our zero-order solution that is realized in
the numerics for small values of e.

On a more positive note, we would like to point out
that the relative variation of PV over the pool area is
rather small in our model, about 15% (see Figs. 6, 7).
Thus, our results are not inconsistent with the afore-
mentioned observational and numerical evidence for ex-
istence of regions with relatively uniform PV. It should
be realized, however, that their formation in our model
is not caused by the homogenization effect (RY), but
is related to the active nature of the western boundary
layers.

The scale for the relative variation in the second layer
PV can be estimated as follows. In both weak and strong
pumping cases (and for both thickness and PV diffusion
closures) the solution satisfies a condition DI 2 hI 5 D0

2 h0 at y 5 yA. Thus, the difference in PV at y 5 yA

and y 5 Ly immediately outside the boundary layer is

D 2 h D 2 h0 0 0 0DPV 5 2 .
f (y ) f (L )A y

Thus, the relative variation in PV over the subtropical
gyre is equal to the relative variation of the Coriolis
parameter across the width of the return flow DPV/PV
; [ f (Ly) 2 f ( yA)]/ f (Ly), which is small (;15%) in our
idealized models and even less in the ocean.

4. Ventilated model

a. Numerical solution

Consider the model shown in Fig. 8. As previously,
the lower interface intersects all the basin boundaries at
finite depth D0 5 1, whereas the upper layer is present
only in the southern part of the basin: 0 , y , yh.
Correspondingly, the upper-layer depth vanishes at the
southern and zonal boundaries (h0 5 0), and along the
outcrop latitude y 5 yh. Such a setup is probably one
of the simplest thermocline models that include the ef-
fect of ventilation (Luyten et al. 1983).

Numerical integration of the governing equations in
(7) yields a steady solution shown in Fig. 9. Parameters
for this run are similar to those used above (section 3):
Ly 5 0.5, e 5 0.003, We 5 0.2; the outcrop is located
at yh 5 0.7Ly. The structure of the flow field is consistent
with the classical view (Luyten et al. 1983) of the adi-
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FIG. 8. Schematic diagram for the ventilated model. Meridional
cross section.

FIG. 9. Depths of the (a) lower and (b) upper density interfaces
from the numerics. The first layer is present only in the southern part
of the basin ( y , yh).

abatic interior flow sliding along the density interfaces
from the surface down into the central thermocline.

For this setup we will not present the detailed math-
ematical description of the solution, although it should
be mentioned that the limit e → 0 can be treated using
the same techniques as employed above for the case of
a shielded model (section 3). The major difference be-
tween the two models is, of course, in the presence of
the ventilated region separating the pool area from the
shadow zone. The unique R 5 F(D) relation in the
ventilated region is set at the outcrop latitude (y 5 yh).
For the pool area, we again find that the relation R 5
F(D) can be deduced from the internal boundary layer
dynamics, since the boundary layer there is active in
the outflow region yA , y , yh. The only technical
complication in deriving an analytical solution for the
ventilated model is caused by a meridional boundary
layer at the outer edge of the pool area, which results
from imposing a downstream boundary condition (h 5
0 at y 5 yh) for the northward flow (see Fig. 9b).

b. Integral balances

A principal conceptual value of our idealized solu-
tions is related to their ability to explicitly satisfy some
of the key global balances such as appear in the vorticity
and buoyancy budgets. Existence of a steady state in
our problem implies that the influx of buoyancy in each
of density layers is exactly balanced by the detrainment
of the warm water by eddies. One can easily confirm
this simple idea by integrating the volume equations in
(2), which yields, for a setup in Fig. 8,

w dS 5 w* dS andE e E 1

y,y y,yh h

w dS 1 w* dS 5 w* dS. (44)E e E 1 E 2

y.y y,yh h

Note that while the Ekman pumping is distributed uni-
formly in x, the eddy-driven diapycnal fluxes are dra-
matically intensified to the west. Thus, at the leading
order, the interior flow is adiabatic, and the contribution
to the integrals in (44) from comes mostly from thew*i
narrow western boundary layers. It is interesting to note
that some structurally similar integral balances were
used by Tziperman (1986) to determine the thermocline
stratification. However, the diapycnal fluxes in this mod-
el were due to the small scale vertical mixing, whereas
we discuss, and accordingly parameterize, the eddy-in-
duced diapycnal fluxes—a very different physical pro-
cess.

A set of important constraints can be derived for the
integrals along the closed mean flow contours in each
layer. For instance, change in the planetary potential
vorticity PV 5 f /H (H is a thickness of a density layer)
at a point advected by a mean flow is caused, in our
problem, only by the cross-layer volume fluxes:

D Dw*
PV 5 2PV , (45)

Dt H

where Dw* is the diapycnal volume flux per unit area
into the layer from both interfaces (see, e.g., Pedlosky
1996). Since, after making a full cycle around the gyre,
a Lagrangian particle regains its original PV, the time
integral of (45) must be 0. When this simple idea is
expressed in terms of the line integrals along the pres-
sure contours C1 and C2 in the first and second density
layers correspondingly, we obtain
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f f
21 21w |v | dl 5 w*|v | dl ande 1 1 1R Rh h2C C1 1

f f
21 21w |v | dl 1 w*|v | dle 2 1 2R R 2D (D 2 h)2C C2 2

y.y y,yh h

f
215 w*|v | dl, (46)2 2R 2(D 2 h)

C2

and, of course, similar balances could be derived for
any function of PV, including such important quantities
as the potential enstrophy and potential thickness.

In a companion paper (RM04) we diagnosed a set of
numerical models of characteristic oceanic flows and
showed that the integral balances discussed in this sec-
tion (or, more accurately, their continuously stratified
counterparts) are indeed realized in the direct eddy-re-
solving simulations.

5. Conclusions

We have presented a simple two-and-one-half-layer
model that extends the classical ideal thermocline the-
ories to include the effects of the cross-layer eddy buoy-
ancy transfer. The intensity of this transfer is not uni-
form, but depends on the local strength of the mean
current allowing a closed solution to be found including
a western boundary layer. The resulting steady-state so-
lutions consist of a quasi-adiabatic Sverdrupian interior
bounded on the west by a narrow intensification region
where most of the buoyancy transfer occurs, which
thereby balances the total influx of warm water from
the Ekman pumping.

Detailed analysis of the ‘‘leaky’’ boundary layers in-
dicates that they are active and therefore can directly
affect the flow pattern in the gyre interior. Thus, the full
solution forms as a result of the interplay between the
interior and boundary layer dynamics, in contrast with
the commonly accepted notion that the western bound-
ary layers are passive and can be appended to any given
interior solution. The flow pattern in our model is char-
acterized the relatively uniform (varying by about 15%)
second-layer PV in the pool area attached to the western
boundary layer. While the existence of such regions in
the ocean and in the numerical simulations is usually
related to the homogenization effect (RY), in our model
this PV distribution is a direct consequence of the active
nature of the boundary layers.

Probably the most questionable assumption of our
boundary layer model is related to the neglect of non-
linearity in the momentum equations. This approxi-
mation is, however, rather conventional (e.g., Salmon
1986; Samelson and Vallis 1997; Ierley and Young
1986), and the linear model is clearly a prerequisite for
developing a complete fully nonlinear theory.
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APPENDIX A

Discussion of the Ierley and Young (1983) Model
of an Active Boundary Layer

Ierley and Young (1983, hereinafter IY) addressed
the question of the active/passive nature of western
boundary layers using frictional quasigeostrophic two-
layer equations, written (in standard notation) thus:

2J(c , q ) 5 w 1 n¹ (c 2 c )1 1 E 2 1

q 5 y 1 F(c 2 c ),1 2 1

2 2J(c , q ) 5 n¹ (c 2 c ) 2 d¹ c2 2 1 2 2

q 5 y 1 F(c 2 c ). (A1)2 1 2

Mathematically, these equations are very similar to
those studied in the present paper [see (6) or (7)]. The
solution suggested by IY is, however, very different. In
our case the flow pattern is characterized by approxi-
mately uniform PV in the second layer, whereas IY
observe a dramatic departure from homogenization.
Thus, an interesting question arises as to the reason for
the apparent disagreement between the two models. Be-
low we argue that the cause is a technical flaw in IY.

Ierley and Young (1983) look for a solution in the
boundary layer of the form

c } c ,2 B (A2)

where cB 5 c1 1 c2 is the barotropic streamfunction.
Unfortunately, this assumption immediately leads to an
internal inconsistency, since the ‘‘ansatz’’ in (A2) is
incompatible with the continuous equations of motion
(A1). A simple way to demonstrate this is by focusing
on the return point yA where the second-layer interior
velocity uI changes sign. Conservation of the second-
layer PV implies that the interior flow immediately out-
side the boundary layer satisfies a functional relation
q2I 5 q2I(c2I). Differentiating this in y, we arrive at
(]/]y)q2I 5 2(dq2/dc2)uI. Thus, at the return point
[uI(yA) 5 0], any continuous solution should satisfy

]
q | 5 0. (A3)2I y5yA]y

That the second-layer PV reaches an extremum at y 5
yA is clear even from the topological structure of the
PV field (see the schematic in Fig. 3). The ansatz in
(A2), however, yields (]/]y)q2I | 5 1 1 F[(]/]y)c1y5yA

2 (]/]y)c2] 5 1, obviously contradicting the necessary
condition (A3).

The ansatz in (A2) has further consequences for the
theory in IY. The active versus passive character of the



JULY 2004 1661R A D K O A N D M A R S H A L L

boundary layer can be determined by considering the
asymptotic behavior of the solution in the transition
region where the boundary layer connects to the ideal
interior. We now apply the technique used in section 3
to IY solution. The boundary layer flow is separated
into two components: the interior solution immediately
outside of the boundary layer c1I(y), c2I(y) and the
residual part ( 1, 2), which varies in x. Linearizingĉ ĉ
(A1) with respect to 1,2 in the narrow transition regionĉ
where ]/]x k ]/]y, we obtain

2](ĉ 1 ĉ ) ] ĉ1 2 25 2d and
2]x ]x

2 2]ĉ ]c ]ĉ ]c ]ĉ ] (ĉ 2 ĉ ) ] ĉ2 1I 1 2I 2 1 2 2F 2 F 1 5 n 2 d ,
2 2]x ]y ]x ]y ]x ]x ]x

(A4)

which is a direct counterpart of our (15) for the IY prob-
lem. The spatial stability characteristics for this linear
system are determined by the standard normal mode anal-
ysis in which we focus on the modes given by 1 5 c10ĉ
exp(lx), 2 5 c20 exp(lx). Consider properties of thisĉ
system in the vicinity of the return point y 5 yA, where
]c2I/]y 5 2u2I → 0 and, according to the ansatz in (A2),
]c1I/]y is also small. The spatial growth rates of the nor-
mal modes in (A4) then reduce to

1
2l 5 2 (1 1 2a 6 Ï1 1 4a ),1,2 2n

where a 5 n/d. Both eigenvalues (l1,2) are negative
(even for y . yA) which corresponds to the passive
boundary layer, as explained in section 3.

Thus, the solution in IY cannot be considered a valid
conceptual model for an active boundary layer because
(i) it violates the equations of motion, and (ii) it de-
scribes a fundamentally passive regime, at least in the
central part of the pool region.

APPENDIX B

Condition at y 5 yA for the Weak Pumping Case

Our goal is to determine, for any given parameters,
location of the point yA that separates the northern active
part of the boundary layer from the southern passive
part, and the interior depths [DI(yA), hI(yA)] at this point.
As explained in section 3c, two significant events occur
at this point. First is the reversal of the second-layer
u velocity immediately outside of the western boundary
layer:

1 ]DIu 5 2 5 0, (B1)I )f ]y y5yA

so that the flow is directed from the boundary layer into
interior for y . yA and into the boundary layer for y ,
yA. At the same location the eigenvalue l1 changes its
sign:

l 5 0, at y 5 y ,1 A (B2)

so that in the northern part (y . yA) there is only one
negative eigenvalue, whereas in the southern part both
eigenvalues are negative. Substitution of (B1) and (B2)
in the eigenvalue equation in (17) results in

b ]hIh (D 2 h ) 1 h 5 0 at y 5 y . (B3)I I I I Af ]y

Equations (B1) and (B3) greatly simplify the eigenvalue
equation in (17) at y 5 yA resulting in an explicit an-
alytical expression for l2:

b
l 5 2 (h 1 D ) at y 5 y . (B4)2 I I A2f

Comparing (38) and (B4) results in

D 2 D 5 h 2 h at y 5 y . (B5)I 0 I 0 A

When (40) is evaluated at y 5 yA, we obtain, using
(B1), (B3), and (B5),

2b f ] py py
2 h (D 2 h ) 5 W cos 1 2 f W sinI 0 0 e e1 2 1 2f b L L Ly y y

at y 5 y . (B6)A

The system of three algebraic equations (39), (B5), and
(B6) in three unknowns, yA, DI(yA), and hI(yA), can be
easily solved numerically for any given parameters. For
instance, parameters used in Fig. 2 result in yA 5 0.31,
DI(yA) 5 1.18, and hI(yA) 5 0.68, in apparent agreement
with the numerical solution of the original equations
(see Fig. 2).
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