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ABSTRACT

The role of ‘‘neutral vectors’’ in midlatitude air–sea interaction is studied in a simple coupled model. Neutral
vectors—the right singular vectors of the linearized atmospheric model tendency matrix with the smallest singular
values—are shown to act as pattern-specific amplifiers of ocean SST anomalies and dominate coupled behavior.

These ideas are developed in the framework of a previously developed analytical coupled model, which
described the mutual interaction across the sea surface of atmospheric and oceanic Rossby waves. A numerical
model with the same physics is developed that permits the consideration of nontrivial background conditions.
It is shown that the atmospheric modes that are least damped, and thus the patterns most easily energized by
stochastic forcing, are neutral vectors.

1. Introduction

Low-frequency variability of the atmosphere in the
midlatitudes, generated primarily by internal atmospher-
ic dynamics, is dominated by a small number of char-
acteristic patterns, of which the North Atlantic Oscil-
lation (NAO) and the Pacific–North America (PNA) pat-
tern are the most prominent (see, e.g., Wallace and Gut-
zler 1981; Barnston and Livezey 1987; Kushnir 1994).
The underlying ocean is driven by these stochastic-in-
time but coherent-in-space patterns of air–sea flux var-
iability (see Cayan 1992). The ocean integrates over the
(almost) white temporal ‘‘noise’’ producing a ‘‘red’’
power spectrum in oceanic variables (see, e.g., Fran-
kignoul and Hasselmann 1977; Deser and Blackmon
1993; Sutton and Allen 1997; Czaja and Marshall 2001).
If midlatitude SSTs can feed back on the modes of var-
iability themselves, then coupled interactions can occur,
thus reddening atmospheric spectra, too. Observations
suggest that SST does have a small but discernible im-
pact on, for example, the NAO (Czaja and Frankignoul
1999; Czaja and Marshall 2001), in agreement with the
modeling studies of Rodwell et al. (1999), Mehta et al.
(1999), and Watanabe and Kimoto (2000).

On seasonal to interannual timescales, thermodynam-
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ic aspects of the coupled system can be rather well
described by stochastic climate models appropriately
modified to allow for (i) feedback between SST and air
temperature, as in Barsugli and Battisti (1998) or Breth-
erton and Battisti (2000); and (ii) reduced damping time-
scales of air–sea interaction resulting from the reemer-
gence process1 (e.g., Watanabe and Kimoto 2000). Sev-
eral authors have developed simplified coupled models
that, in addition to thermodynamics, also include at-
mosphere and/or ocean dynamics (Frankignoul et al.
1997; Jin 1997; Weng and Neelin 1998; Neelin and
Weng 1999; Goodman and Marshall 1999; Cessi 2000;
Gallego and Cessi 2000; Marshall et al. 2001; Ferreira
et al. 2001).

The research described here attempts to identify what
characterizes those dynamical modes of the atmosphere
that couple most strongly with the underlying ocean.
We find that ‘‘neutral vectors’’—the right singular vec-
tors of the linearized atmospheric model’s tendency ma-
trix with the smallest eigenvalues (see Marshall and
Molteni 1993; Navarra 1993)—act as pattern-specific
amplifiers of ocean SST anomalies and dominate the
coupled behavior. We believe that this is a rather general
result that pertains not just to the simple model studies
here, but to more complex models and perhaps also to
the real coupled system.

We begin with a review of the mathematical devel-

1 Thick winter ocean mixed layer temperature anomalies are cov-
ered in the summertime by a thin seasonal mixed layer. The following
fall, these anomalies are exposed as the summer mixed layer erodes.
Thus, winter SST anomalies seem to disappear in summer, and ‘‘re-
emerge’’ the following winter.
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opment of neutral vectors and the ‘‘optimal forcing pat-
terns’’ that excite them (section 2). This section recasts
the work of Marshall and Molteni (1993) and Navarra
(1993) in the light of coupled atmosphere–ocean inter-
action. In section 3, we illustrate the connection between
neutral vectors and coupled modes using a numerical
formulation of the coupled model considered (in ana-
lytical form) by Goodman and Marshall (1999, hereafter
GM99). A substantial review of the dynamics of the
GM99 model may be found in the appendix, along with
our procedure for discretizing and solving the numerical
model. This numerical model enables us to consider
coupled dynamics in more complicated geometries and
background states than the analytical GM99 model; we
discuss the effect of these elaborations in section 3a. In
section 3b, we analyze the behavior of the coupled mod-
el using singular vectors and find that the atmosphere’s
first neutral vector is the atmospheric component of the
least-damped coupled mode; as a result, it dominates
the stochastically forced system. These ideas suggest
ways to use neutral vectors to investigate interannual
atmosphere–ocean coupling in the observations and in
more complex models, as described in section 4.

2. Neutral vectors and coupled modes

We begin by presenting the concepts underlying neu-
tral vectors. The mathematical formalism presented here
is a review of that found in Marshall and Molteni (1993)
and Navarra (1993); our contribution here is the dem-
onstration that these patterns are important in under-
standing atmosphere–ocean coupled modes.

a. Neutral vectors

Marshall and Molteni (hereafter MM) were interested
in atmospheric wave patterns that tended to persist in a
given state for long periods of time. They attempted to
compute patterns of maximum persistence by beginning
with a forced three-layer quasigeostrophic potential vor-
ticity (QGPV) model, which we schematize as

]
q 5 M (C) 1 f,

]t

where C is a vector representing the model stream-
function, q is the model potential vorticity, M is a non-
linear tendency operator, and f is a potential vorticity
source term. The model can be linearized by expressing
q and C as the sum of a given time-mean basic state
plus a perturbation. The first-order perturbation equation
can be written as

]
q 5 MC 1 f, (1)

]t

where q and C now represent perturbations about a
specified basic state, and M is a perturbation tendency
matrix. Marshall and Molteni were interested in the free,

unforced perturbations that displayed the smallest time
tendency. Free, unforced waves obey

]
q 5 MC. (2)

]t

To find the modes with the smallest time tendency, MM
attempted to minimize this expression:2

] ]
q, q7 8]t ]t

2l 5 , (3)
^C, C&

where the angle brackets ^a, b& represent the inner prod-
uct of a and b. This expression minimizes the size of
the mode’s tendency, normalized by the magnitude of
the mode itself. Inserting (2) into (3), we seek to min-
imize

†^MC, MC& ^M MC, C&
2l 5 5 ,

^C, C& ^C, C&

where M† is the adjoint of M. The C that minimize l
will be the eigenvectors Cn of M†M with minimum ei-
genvalue :2ln

2†^M MC , C & ^l C , C &n n n n n2l 5 5 .
^C , C & ^C , C &n n n n

Marshall and Molteni call these smallest eigenvectors
of M†M the neutral vectors of the atmospheric model.
They are the right singular vectors of M with the smallest
singular values. At least one of the neutral vectors close-
ly resembles a leading empirical orthogonal function
(EOF) of the observed wintertime streamfunction fields
(i.e., the NAO). We demonstrate and discuss the con-
nection between EOFs and neutral vectors in a com-
panion paper (Goodman and Marshall 2002). Neutral
vectors are important because they identify the most
prominent patterns of variability in the system from a
dynamical framework. EOFs identify the most prevalent
patterns in the data, but do not explain why those pat-
terns appear. That neutral vectors have a close connec-
tion to EOFs is perhaps not surprising: the neutral vec-
tors are, by design, the most stable and persistent wave
patterns, so it makes sense that these patterns should be
prevalent in observations. In fact, one can demonstrate
(Goodman and Marshall 2002; Navarra 1993) that sub-
ject to certain restrictions, a mathematical identity exists
between neutral vectors and the EOFs of a stochastically
forced linearized model.

What are the dynamics of a neutral singular vectors?
The matrix M describes Rossby wave propagation,

2 Actually, MM wrote their equations as streamfunction tendencies,
and minimized ^(]/]t)C, (]/]t)C&/^C, C&. This has the advantage of
allowing l to be interpreted as an inverse timescale, but since modes
with small streamfunction tendency must also have small PV ten-
dency, the difference should be otherwise unimportant. The technique
used here is computationally simpler and faster, and will make further
developments more lucid.
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downstream advection, and dissipation terms of the
QGPV equation. For MC to be small, dissipation must
be weak (implying large-scale patterns), and there must
be a near balance between the propagative and advective
terms. Thus we can expect that neutral vectors will be
‘‘resonant’’ structures that can readily be excited.

Singular vectors are often applied to investigate the
role of nonnormal growth to the production and main-
tenance of transient perturbations to the atmosphere,
beginning with the study of Farrell (1982). A related
problem considers the problem of optimal excitation
patterns (see Farrell 1989; Molteni and Palmer 1993).
The linear version of the principal interaction pattern/
principal oscillation pattern (PIP/POP) techniques in-
troduced by Hasselmann (1988) also use singular vec-
tors to find patterns that best describe a system’s ten-
dency. The technique has also been used to find optimal
amplification patterns in classic, nonrotating fluid dy-
namics (Andersson et al. 1999; Luchini 2000). However,
in all the aforementioned applications the focus is on
the singular vectors with the largest singular values—
the most rapidly evolving and changing modes. Here
our emphasis is on the physical relevance of the singular
vectors with the smallest singular values.

b. Relevance of neutral vectors to coupled interaction

While MM were interested in the long-term stability
of atmospheric wave patterns, we are interested in at-
mospheric patterns that are involved in coupled air–sea
interaction. In particular, we wish to consider the pos-
sibility of a mutually coupled interaction, in which
ocean SST anomalies force the atmosphere, which then
feeds back on the ocean through wind stress, generating
variability on interannual timescales. This type of in-
teraction has been explored in simple models by GM99,
Marshall et al. (2001), Gallego and Cessi (2000), Neelin
and Weng (1999), and many others. We believe that
neutral vectors are prime candidates for involvement in
this class of interaction. Our reasoning is simple: if cou-
pled modes are to occur, the atmosphere must respond
strongly to the relatively small variations in atmospheric
forcing generated by sea surface temperature anomalies.
As we will now demonstrate, neutral vectors are the
atmospheric modes that respond most strongly to PV
forcing anomalies in a linearized model.

We return to the model in (1), but now we look at
the forced, stationary response to an applied PV forc-
ing f:

0 5 MC 1 f.

What pair of forcing and response will have the largest
response per unit forcing? We want to find the C and
f that will maximize

^C, C&
22l 5 .

^f, f&

Since f 5 2MC, this is equivalent to minimizing

^MC, MC&
2l 5 .

^C, C&

This is exactly the condition required for the neutral
vectors. Thus, the neutral vectors are not only the most
stationary modes in the unforced time-evolving model,
they are also the forced, stationary modes that exhibit
the largest response to external forcing.

Interestingly, this means we can not only find the
neutral vectors, Cn, but also the optimal forcing patterns
fn that maximally excite them, by solving MCn 1 fn 5 0.
The Cn are the right singular vectors of M; the fn are
the left singular vectors.

3. Neutral vectors and coupled modes in a simple
coupled model

We now consider neutral modes in the context of a
particular model of coupled interaction: that of GM99.
A summary of this model maybe be found in the ap-
pendix. In brief, the model describes the linear inter-
action of traveling oceanic Rossby waves with forced
stationary atmospheric planetary waves. The ocean is
driven by wind stress and heat fluxes, while the at-
mosphere responds to thermal forcing from SST anom-
alies. The model produces a spontaneously growing
coupled wave of subdecadal period and basin-filling
horizontal wavelength. The positive feedback that pro-
duces this self-amplifying coupled mode is discussed in
the appendix and at length in GM99.

As discussed in GM99, the coupled mode’s atmo-
spheric behavior is close to that of an atmospheric ‘‘free
mode’’ in which there is an approximate balance be-
tween westward Rossby wave propagation and eastward
PV advection by the mean atmospheric flow. This only
occurs at a narrow range of wavelengths, so the coupled
growth mechanism is highly scale selective.

Note that the balance exhibited by the atmospheric
part of the coupled mode is exactly the balance satisfied
by the neutral vectors. The M operator in (1) in large
part describes the advection of PV anomalies by the
mean flow and the advection of mean vorticity by the
anomalous flow. The C is a neutral vector when it caus-
es cancellation of these terms, resulting in a small MC.
Thus, only a small forcing is necessary to excite a large
atmospheric response for this mode.

Of course, a large atmospheric response is only part
of the story. In order to produce a mutually coupled
interaction, SST anomalies must be actually able to pro-
duce a forcing that resembles the optimal forcing pat-
terns. Moreover, the atmospheric response must drive
the ocean in such a way as to enhance the original SST
anomalies. The large atmospheric response to forcing
exhibited by neutral vectors is a necessary but not suf-
ficient condition for a coupled mode.

We will now demonstrate that the atmospheric com-
ponent of the GM99 coupled model has neutral vector
structure. This is not very remarkable (and has already
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been described) for the extremely simplified case of
uniform basic-state winds, as used in the GM99 model;
however, we will also demonstrate a connection between
neutral vectors and a coupled mode in the more realistic
case of nonuniform basic-state winds. We will also dem-
onstrate that when this model is excited by stochastic
forcing, the atmospheric response is dominated by the
coupled mode/neutral vector behavior. To enable this
comparison, we have formulated the GM99 dynamics
as a numerical model, discussed in the appendix.

a. Coupled dynamics with coastlines and varicose
background flow

Before computing neutral vectors and comparing
them with the coupled modes, it is important to note
that the more realistic geometry enabled by the numer-
ical coupled model causes some differences in behavior
from the simple GM99 scheme. These extensions be-
yond GM99 must be understood in order to proceed,
and are interesting in their own right.

The new features of the numerical model are the ad-
dition of coastlines to the ocean domain and the use of
a nonuniform, varicose background flow in the atmo-
sphere. We will consider the effects of these changes
one at a time.

1) OCEAN BASIN

GM99’s ocean and atmosphere had no boundaries.
Here, we restrict the ocean domain to a basin 6000 km
wide. The atmosphere lies within a 25 000-km zonally
reentrant channel. ‘‘SST’’ anomalies over land are de-
fined to be zero. Basic-state winds in the model’s two
atmospheric levels are 14 and 5 m s21. Other parameters
are as specified in GM99.

We compute the eigenvalues of the model tendency
operator for this single-basin model. Figure 1 shows the
eigenvalues with the most positive real part. The growth
rate of each eigenvector is given by its position on the
x axis of the top panel; its frequency is given by its
position on the y axis. Each complex-conjugate pair of
eigenvalues corresponds to a pair of eigenvectors that
are identical but for a 908 phase shift; phase propagation
is always westward. Below the eigenspectrum, we dis-
play the eigenvector pattern corresponding to the right-
most eigenvalue pair. While the original GM99 model
contained coupled growing modes (which would appear
to the right of the origin in this figure), we see that when
coastlines are added, all modes are damped. However,
the structure of the rightmost, ‘‘least-damped’’ mode is
quite similar to the coupled mode predicted by GM99.
It displays equivalent barotropic wavenumber-3 struc-
ture in the atmosphere with matching wavelengths in
the ocean, and high pressure over warm water—pre-
cisely the arrangement that grows most quickly in the
analytical model. The wavelength of the mode seen in

Fig. 1 matches the wavelength of maximum growth of
the GM99 model.

The process that causes damping is easy to under-
stand. SST anomalies in the GM99 model are dynam-
ically connected to propagating oceanic baroclinic Ross-
by waves, and thus propagate westward. These Rossby
waves are dissipated by interaction with the western
boundary. A warm SST patch at the western side of the
basin will excite the wavenumber-3 pattern character-
istic of the atmosphere’s equilibrated mode. This pattern
will provide a wind stress forcing at the eastern side of
the basin that creates a cool ‘‘child’’ SST anomaly to
the west of the ‘‘parent.’’ For a growing mode to occur,
the parent must bring the amplitude of the child up to
its own amplitude before the parent is destroyed at the
western boundary. This condition cannot be met with
the choice of so narrow a basin (we have found that the
critical basin width for these parameters is about 15 000
km), and so each parent produces a child weaker than
itself, and the mode gradually dies away.

There are now no growing modes in this system; it
only supports damped modes. However, if this system
is excited with white stochastic forcing (as from at-
mospheric synoptic eddies), the least-damped mode
should retain the most energy, and be the most prom-
inent. Thus the feedback mechanism described in GM99
remains important in understanding the behavior of the
present system. We will test this claim in section 3a(3).

The NAO and other observed patterns of interannual
variability do not exhibit the rapid growth and pure-
tone oscillations observed in GM99; instead, the NAO’s
time series spectrum (Hurrell and van Loon 1997) is
predominantly reddish, with some apparent enhance-
ment of power at interannual frequencies. In GM99, we
noted the unrealistically rapid growth, and speculated
that the unmodeled damping processes would counteract
it. Such damping processes are readily observed in the
present model.

2) VARICOSE ATMOSPHERIC BACKGROUND FLOW

We now attempt to study the effect of a more realistic
atmospheric background flow on the model physics and
proceed with a schematic formulation for the atmo-
spheric stationary wave pattern. The midlatitude at-
mospheric flow at intermediate height exhibits a jet that
constricts over the western shores of the Atlantic and
Pacific, and is spread out over the eastern shores of the
basins. We schematize this pattern by specifying a basic-
state wind field that looks like Fig. 2. The zonally or
meridionally averaged wind speed is constant and iden-
tical to the values used in the previous experiment.

For this experiment, we illustrate the behavior of the
coupled model by integrating it forward in time. The
model is initialized with random SST and ocean stream-
function anomalies of arbitrary amplitude, and stepped
forward using a simple Euler forward scheme, with a
30-day time step. Figure 3 shows the evolution of the
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FIG. 1. GM99 model with parallel channel atmospheric background flow, ocean confined to
6000-km-wide basin. (a) Eigenvalues of the coupled model’s tendency matrix. (b)–(e) Real part
of eigenvector associated with the eigenvalue with largest real part.

model with an ocean basin identical to that in section
3a(1), and with basic-state winds as shown in Fig. 2.
The upper four panels of Fig. 3 show a snapshot of
anomalies of upper- and lower-layer atmospheric
streamfunction, SST, and ocean streamfunction. The
Hovmoeller diagrams in the lower left show the evo-
lution of SST anomalies and of lower-level atmospheric
perturbations. Perturbations decay to zero, as before,
due to the destruction of oceanic anomalies at the west-
ern boundary. Oscillation and damping rates are similar
the parallel-flow model, and the atmospheric wave pat-
tern again generally shows equivalent barotropic wave-
number-3 behavior, although some additional elements
are present. The atmospheric wave no longer propagates
westward in phase with SST anomalies; instead, it re-
mains more or less fixed at a particular longitude, and

fluctuates in sign. The varicose background flow locks
the atmospheric response to a particular longitude,
which is more reminiscent of observed patterns of low-
frequency variability.

The SST pattern of this system is more complex than
the simple propagating wave pattern of previous ex-
periments, but generally shows westward-propagating
patches of warm and cool water.

3) RESPONSE TO STOCHASTIC FORCING

In section 3a(1), we noted that when confined to a
basin, the coupled mode no longer grew, but remained
the least-damped mode. We argued that the least-
damped mode would be most susceptible to excitation
by stochastic forcing. In this section, we test this claim.
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FIG. 2. Basic-state streamfunction pattern used in the varicose back-
ground flow experiment. The basic-state streamfunction is given by the
relation c 5 U0y 1 0.1UO(Ly/2)F(x, y), where F(x, y) 5 sin(2py/Ly)
sin2(py/Ly) sin[4p(x 2 x0)/Lx] sin2[2p(x 2 x0)/Lx] when x . x0 and
x , (Lx/2 1 x0), and F(x, y) 5 0 elsewhere. Here UO is the wind velocity
in either level from the uniform-flow experiment, x0 is 106 m, and Lx and
Ly are the zonal and meridional extents of the channel.

We consider the case of a varicose background at-
mospheric flow over an ocean basin, as in section 3a(2),
and carry out a long forward integration of the model,
as in Fig. 3. But now, at each time step, after computing
the atmospheric response to SST (c1, c2), we randomly
generate an additional stochastic streamfunction com-
ponent (c1s, c2s), add it to the response, and use the
result to force the SST and dynamic ocean parts of the
coupled model [Eq. (A3) and Eq. (A4) in appendix,
respectively].

The stochastic components of the atmospheric fields
are chosen to very roughly mimic the structure and am-
plitude of transient eddies in the atmosphere. At each
model time step (Dt 5 1 month) we generate a Gaussian
random streamfunction field, spectrally truncated to
zonal wavenumber 8 and meridional wavenumber 3.
Thus the smallest wavelengths are around 3000 km. We
multiply this by sin(py/Ly)0.7 to bring the eddy amplitude
to zero at the northern and southern walls, thus avoiding
boundary condition problems. We multiply this field by
an amplitude factor of 180 geopotential meters (gpm)
in the upper layer and 120 gpm in the lower layer, to
create an equivalent barotropic streamfunction pattern.
These fields drive the ocean through the air–sea heat
flux term and wind stress curl.

In Fig. 4, we show snapshots of the model state, and
its evolution through time. The atmospheric components
plotted here are only the deterministic responses to SST;
the additional random component is not shown in these
figures. As we would expect, the stochastic model’s evo-
lution is much less orderly. However, the patterns of
atmospheric response show the wavenumber-3 by wave-
number-1 mode previously identified as a coupled mode,
though the resemblance is not always as strong as in
this snapshot. SST anomalies show westward propa-
gation, and both atmospheric and oceanic variables
show strong interannual variability. The amplitude of
SST anomalies is of the order of a degree or so, with
atmospheric responses of a few tens of geopotential me-
ters; these amplitudes are similar to, but somewhat larg-
er than, those observed on interannual timescales in the
Atlantic (see Czaja and Marshall 2001). These ampli-
tudes are determined entirely by the strength of sto-

chastic forcing, but we chose a stochastic amplitude
based on observed wintertime synoptic activity, and did
not tune it to improve the resemblance of the coupled
response to observations.

To more clearly isolate the dominant patterns of var-
iability, we perform an EOF analysis on the upper-at-
mospheric streamfunction field—the EOFs are shown
in Fig. 5. The first EOF explains 56% of the nonsto-
chastic part of the atmospheric variability; the second
EOF explains 35%, and the third EOF, 5%. The first
EOF shows a predominantly zonally symmetric pattern,
with no clear pattern to its variability and only a weak
covarying oceanic pattern (not shown). This mode reacts
strongly to SST anomalies, but is unable to excite a
mutually coupled interaction. We will revisit this pattern
in section 2a. The second and third EOFs are much more
interesting. They show wavenumber-3 structure; the pat-
terns are essentially identical to the atmospheric com-
ponent of the least-damped coupled mode depicted in
Fig. 3. [The shape of the atmospheric pattern in section
3a(2) varies periodically; it tends to oscillate between
a state resembling EOF 2 and a state resembling EOF
3.] A 5-yr cycle is apparent in the amplitude timeseries
of EOF 2, the timescale set by the propation speed of
SST anomalies in the ocean controlled here by Rossby
wave dynamics; a similar frequency is present (though
less obvious) in the time series of EOF 3. The amplitude
of EOF 2 is about 10% of the total atmospheric am-
plitude, including both stochastic and deterministic con-
tributions. As anticipated, the least-damped coupled
mode previously discussed does, in fact, explain a large
amount of the stochastic model’s variability.

We now discuss how the coupled interaction can be
interpreted and understood in terms of neutral vectors.

b. Interpretation of coupled interaction in terms of
neutral vectors

To compute the neutral vectors of the atmospheric
component of the model, in both constant zonal flow
[section 3a(1)] and varicose flow [section 3a(2)] ar-
rangements, we use an Arnoldi (Lehoucq et al. 1998)
technique to yield the smallest five singular vectors of
the model atmosphere’s tendency matrix M. To perform
this computation, we must specify a particular inner
product in (3): here, we define ^a, b& as the sum over
all model grid points of the products of a and b evaluated
at each grid point. Other, differently weighted inner
products are possible, but our results are not sensitive
to this choice.

The first five neutral vectors for the constant zonal
flow model (not shown) only vary meridionally, and
have no zonal structure. As such, they are unaffected
by zonal advection or Rossby wave propagation: they
are ‘‘neutral’’ in a rather trivial way. The first neutral
vectors with zonal structure are the sixth and seventh
ones; they display wavenumber-3 structure zonally, and
wavenumber-1 zonally, and are 908 out of phase with
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FIG. 3. Snapshots and evolution of the numerical model, run with a basin ocean and varicose background
flow. The model was initialized with random values in SST and ocean streamfunction. (a), (b) The upper-
and lower-atmospheric streamfunction anomalies (c1, c2), expressed as geopotential height (in m) of pressure
surfaces. (c), (d) The SST anomalies, in K, and ocean streamfunction anomalies, in m2 s21. (e), (f) Time–
longitude sections of SST and c2, taken at the latitude of the small ‘‘3’’ in the upper panels. (g), (h) A
time series of SST and c2, taken at the 3.

each other. Their structure matches that of the coupled
mode found in section 3a(1).

In Fig. 6, we show the three leading neutral modes
for the atmosphere with a varicose background flow
discussed in section 3a(2). The first neutral vector is a
zonal mode analogous to the modes with no zonal struc-
ture found above. The second and third neutral vectors
display structures nearly identical to the structure of the

coupled mode in section 3a(2). Neutral vectors 1, 2, and
3 are identical in pattern and order to the EOFs of the
stochastically forced coupled model (see Fig. 5).

This provides a demonstration that the neutral vectors
continue to determine the behavior of the atmospheric
component of the coupled system, even when the at-
mosphere has a complicated background flow.

How are these neutral vectors excited in the coupled
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FIG. 4. Same as Fig. 3, but with stochastic forcing added. The rms amplitude of stochastic atmospheric
perturbations is 180 gpm in upper layer, 120 gpm in lower layer. Only the deterministic part of the at-
mospheric perturbation is shown here. Atmospheric perturbations are expressed in gpm; units of SST are
K, units of ocean streamfunction are m2 s21.

model? This model has a very simple atmospheric heat-
ing scheme: there is a linear connection between SST
and baroclinic PV forcing as discussed in the appendix.
Thus, when the coupled model’s SST has a strong pro-
jection onto the baroclinic part of an optimal forcing
pattern fn, we see a corresponding strong atmospheric
response of the corresponding neutral vector.

Figure 7 more clearly displays the interaction between
atmospheric neutral vectors and evolving SST anoma-
lies in the GM99 model. At the top of the figure, we

show the upper-level streamfunction of neutral vectors
2 and 3 for the varicose background flow model; these
are the neutral vectors that resembled the coupled mod-
el’s behavior. The upper time series shows the projection
of the model’s atmospheric state onto the first five neu-
tral vectors. Since the model ocean has a western bound-
ary, the model response is damped. We have thus mul-
tiplied the projection values by et/3 (where t is given in
yr), to counteract the exponential decay and zoom in on
the longer-term variations. We clearly see the oscillation
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FIG. 5. EOFs of the upper-layer atmospheric streamfunction for the stochastically forced coupled model run depicted
in Fig. 4. (a)–(c) EOF patterns; (d)–(f) corresponding amplitude time series. (a), (d) Pattern and time series for first
EOF, which explains 56% of the deterministic variability. (b), (e) Second EOF, explaining 35% of the deterministic
variability. (c), (f) Third EOF, explaining 5% of the deterministic variability.

of the model state between neutral vectors 2 and 3, as
described in the previous section. The lower pair of
contour plots show the baroclinic part of the optimal
forcing pattern associated with these neutral vectors.
The lower time series shows the projection of the ther-
mal forcing anomalies generated by SST onto the first
five optimal forcing patterns, rescaled as with the neutral
vector time series. The match is identical, as a conse-
quence of the linearity of the atmospheric response op-
erator.

From Fig. 7, we can describe the behavior of the
coupled mode. As the model’s SST pattern evolves ac-
cording to ocean dynamics, it projects alternately onto
two different optimal forcing patterns. This projection
excites a large atmospheric neutral vector response,
which then provides a wind stress to further modify the
SST.

Neutral vectors 2 and 3 are active in the coupled
interaction. Patterns that are less neutral (modes 4 and
up) respond only weakly to SST forcing, undergo a
much weaker coupled interaction, and are more rapidly
damped. As mentioned earlier, a strong atmospheric re-

sponse to thermal forcing is a necessary, but not suf-
ficient, condition for a mutually coupled mode: neutral
vector 1 responds strongly to SST forcing, but does not
feed back onto the model ocean in a way that leads to
positive feedback.

One point of concern regarding this description is the
robustness of the optimal forcing patterns. In Fig. 7, the
optimal forcing patterns show complicated fine structure
in some areas (particularly near x 5 5000 km, y 5 3200
km, in the ‘‘pinched’’ part of the background flow; there,
we find an alternating positive/negative banded pattern
at the grid-scale level). This may be due to the minimal
eddy viscosity used in this model. If most of the SST
forcing pattern’s projection onto this pattern occurs in
this fine-structure region, we should be concerned that
the stability of the coupled mode is sensitive to small
changes in the model domain. However, we find (figure
not shown) that the bulk of the projection of SST onto
the forcing pattern occurs in the broad ‘‘wings’’ to the
north and south in forcing pattern 2, and to the northeast
and southeast in pattern 3.
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FIG. 6. Maps of the first three neutral vectors of the atmospheric model with a varicose background flow as
pictured in Fig. 2. (a)–(c) Upper-level streamfunction. (d)–(f) Lower-level streamfunction.

4. Conclusions

Neutral vectors are the singular vectors of a linearized
model’s tendency matrix with smallest singular value.
We have demonstrated mathematically that neutral vec-
tors are also the patterns that respond most strongly
when the model is externally forced. Moreover we have
shown that neutral vector dynamics (an approximate
balance between advection of the mean PV by a flow
perturbation and advection of the perturbation’s PV field
by the mean flow) are responsible for the atmospheric
part of the coupled growing mode found in Goodman
and Marshall’s (1999) simple atmosphere–ocean cou-
pled model.

We proceeded to illustrate the generality of this con-
nection by building a numerical model that obeys the
coupled physics desribed in GM99, but that allows for
more complex geometry and nonuniform basic-state
flows. The added complexities change the system’s be-
havior (a western boundary current damps the mode;
varicose atmospheric background flow locks the at-
mospheric mode to particular longitudes), but the cou-
pled mechanism described by GM99 remains important.
The atmospheric patterns involved in the coupled in-
teraction are still neutral vectors.

In our coupling mechanism, the optimal forcing pat-
tern/neutral vector pair can be viewed as a mechanism
that accepts a small SST thermal forcing from the ocean
and returns a large atmospheric response, which may
translate into a large feedback onto the ocean. However,
this is only half the story: the ocean must be able to
accept the forcing provided by the atmosphere and re-
turn (some nontrivial projection onto) the neutral vec-

tor’s optimal forcing pattern in order for a mutually
coupled interaction to occur. Optimal forcing pattern/
neutral vector pairs may play a key role as pattern-
selective amplifiers in a coupled atmosphere–ocean sys-
tem.

The atmospheric model used in this study is linear
and steady state. High-frequency variability and the
nonlinear feedback of this variability onto the mean flow
are not modeled explicitly. However, synoptic variabil-
ity is crucial to the coupling mechanism. It stochastically
forces the slowly varying coupled system; the coupled
mode responds most strongly to this forcing, and be-
comes prominent. More complicated eddy–mean flow
interactions lie outside the scope of this simple model.
We discuss the feasibility of incorporating eddy–mean
flow interaction into a neutral vector calculation in a
companion paper (Goodman and Marshall 2002).

The ocean component of the numerical coupled model
developed for this work could easily be extended to let
us impose nonzero basic-state currents (a double-gyre
flow, for example), but we have not considered this
important case here. An imposed ocean current would
advect SST and oceanic PV anomalies around the ocean
basin. Even if the ocean currents dominate the Rossby
wave propagation seen here, a coupled oscillation is still
possible. As SST anomalies are transported around a
gyre, they will excite neutral vector responses from the
atmosphere. If the surface fluxes caused by any neutral
vector act to enhance the original SST anomaly pattern,
a growing coupled mode will still occur, with the mode’s
oscillation period now given by the gyral recirculation
time, rather than the Rossby wave period.
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FIG. 7. Projections of neutral vectors and optimal forcing patterns onto a forward model run. (a), (b) Upper-layer
streamfunction pattern for neutral vectors 2 and 3; respectively, of the atmospheric model with a varicose jet background
flow. (c) The projection of the time evolution of the coupled model’s atmosphere onto singular vectors 1–5. (d) the
projection of SST-induced atmospheric thermal forcing onto the first five optimal forcing patterns. (e), (f) The baroclinic
part of the PV forcing that excites neutral vectors 2 and 3 (‘‘optimal forcing patterns’’; see text).

Our model is extraordinarily crude, and so we should
not expect the particular shapes and patterns of the cou-
pled mode and the atmospheric neutral vectors to cor-
respond in detail with observed patterns, although the
broad correspondence is promising. However, the phys-
ical mechanism of coupling (excitation of neutral vec-
tors by SST forcing) can be applied in much more re-
alistic situations. Our results suggest that neutral vectors
are likely to be important for atmosphere–ocean inter-
action in a very general sense.

In a companion paper (Goodman and Marshall 2002),
we return to Marshall and Molteni’s (1993) three-layer
QG model, to look more closely at the connection be-
tween neutral vectors and EOFs, and to compute optimal
forcing patterns associated with neutral vectors. If we
can identify a forcing pattern that induces a particular
mode of atmospheric variability, then it can be used to
see whether the patterns of SST that covary with, for
example, the NAO pattern, are those that are capable
of exciting that pattern.
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FIG. A1. Vertical structure of the coupled model defining the key
variables of the GM99 model.

The identification of neutral vectors is not limited to
simple QG models with trivial model physics. The ten-
dency matrix M can be arbitrarily complex: it could even
represent an entire atmospheric general circulation mod-
el, linearized about some suitable basic state. The M†

matrix is then the adjoint of this model. It is thus pos-
sible to find the neutral vectors of an entire linearized
GCM, along with the corresponding optimal forcing pat-
terns. This is, as one might imagine, a computationally
intensive task. However, the implementation could be
made easier through the use of an automatic tangent
linear/adjoint compiler (Marotzke et al. 1999), which
can automatically generate adjoint model code from the
forward source.

The neutral vector concept can be generalized to al-
most any model physics, and will be relevant to the
investigation of atmosphere–ocean coupled modes
whenever the atmosphere responds to SST forcing
anomalies in an essentially linear way, and when a large
atmospheric response will produce a large forcing of
the ocean by the atmosphere.

Neutral vectors will respond strongly to any forcing
source, regardless of its origin. Thus, they may shed
some light on observations that the same observed pat-
terns of variability (NAO, PNA, etc.) dominate atmo-
spheric variability on both short (intramonthly) and long
(interannual) timescales. It is possible that the long-term
variability is simply the low-frequency tail of a high-
frequency stochastic process, but it is also possible that
these patterns represent atmospheric neutral vectors re-
sponding both to random high-frequency forcing by
synoptic eddies and to coherent low-frequency forcing
driven by SST.
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APPENDIX

The GM99 Coupled Model

a. Dynamical framework

In this section, we summarize the results of Goodman
and Marshall (1999, hereafter GM99), which provides
the foundation upon which our ideas are developed.

The GM99 model (Fig. A1) incorporates a 1½-layer
quasigeostrophic ocean anomaly model in an unbounded
domain. In this model, undulations of the layer interface
lead to surface currents and propagating Rossby waves.
A basic state at rest is prescribed. The QG ocean forces
a simple mixed layer model, which incorporates storage,
advection, air–sea transfer, and mixed layer entrainment
processes. The sea surface temperature anomalies pro-
duced by this mixed layer model thermally excite a two-
level quasigeostrophic atmospheric anomaly model,
whose basic state has constant uniform zonal winds of
differing magnitudes in the two layers. Basic-state

winds are chosen to resemble wintertime conditions: the
annual cycle is not resolved. The atmospheric pressure
anomalies drive the QG ocean through surface wind
stress, allowing mutual coupling of atmosphere and
ocean.

This physics is expressed in the following set of linear
partial differential equations that represent first-order
balances for linear perturbations about a basic state.

• Atmosphere (upper level):

J(c , Q ) 1 J(C , q )1 1 1 1

g SSTa5 (c 2 c ) 2 . (A1)1 22 [ ]L ra a

• Atmosphere (lower level):

J(c , Q ) 1 J(C , q )2 2 2 2

g SSTa5 2 (c 2 c ) 2 . (A2)1 22 [ ]L ra a

• SST:

]
SST 5 2g [SST 2 r (c 2 c )]o a 1 2]t

2 J(c , SST) 2 g (SST 2 r c ). (A3)o e o o

• Dynamic ocean:

] ] 3 1
2q 1 b c 5 a¹ c 2 c . (A4)o o 2 11 2]t ]x 2 2

In the above, C1 and C2 are the basic-state atmo-
spheric streamfunctions; c1, c2, co are the streamfunc-
tion anomalies in the upper- and lower-atmospheric lay-
ers and in the ocean; ua 5 ra(c1 2 c2) is the atmospheric
temperature; Q1 and Q2 are the basic-state atmospheric
PV fields; and q1, q2, and qo are the QG potential vor-
ticity anomalies in the atmosphere and ocean. andSST
SST are the unperturbed and anomalous sea surface tem-
perature; the term on the right-hand side of Eq. (A4) is
the mechanical forcing of the ocean by the winds ex-
trapolated down to the surface (a is a drag coefficient);
terms on the right-hand sides of Eqs. (A1) and (A2)
represent a baroclinic thermal forcing via relaxation of
the atmospheric temperature anomaly ua to a value set
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FIG. A2. Phase relationships between ocean and atmosphere for
the fastest growing coupled mode found by GM99. The symbols H
and L denote highs and lows of atmospheric pressure, with the am-
plitude of the pressure anomaly increasing with height. The symbols
W and C denote warm and cold SST, and the undulating line indicates
the depth of the thermocline. Note the high (low) pressure above
warm (cold) water, and the phase match between wind stress and
current.

by SST; and the forcing terms for SST represent air–
sea heat flux, advection of the mean SST gradient, and
entrainment, in that order. The parameters ra and ro are
conversion constants for translating streamfunctions
into temperatures via the thermal wind equation, in the
atmosphere and ocean, respectively. All notations and
definitions are identical to those in GM99.

In GM99, simplifications are made such that this set
of equations is linear and has constant coefficients.
Thus, they can be solved by inserting plane-wave so-
lutions and solving for the dispersion relation. Within
a narrow band of wavelengths, a coupled growing wave
is possible. As discussed in GM99, this wave has a
frequency of about 5–8 yr and an e-folding growth time-
scale of about 2 yr, given plausible (but rather uncertain)
parameters.

Figure A2 illustrates the structure and physics of this
growing mode. The mixed layer entrains fluid from the
stratified ocean interior into itself. When the thermocline
is bowed upward, this fluid will be anomalously cool;
when the thermocline is bowed downward, it will be
warm. This leads to a correlation between a deep ther-
mocline and warm SST, and vice versa. Even in the
absence of entrainment, this correlation still exists due
to geostrophic advection in the mean SST gradient—
see section 3b(1) of GM99 for details.

Suppose the thermocline is bowed upward, causing
a cold SST anomaly. For particular zonal and meridional
wavelengths, this will generate an equivalent-barotropic
low pressure anomaly in the atmosphere, centered above
the cool SST. This low pressure anomaly will induce a
cyclonic wind stress curl to the ocean, causing upward
Ekman pumping, raising the already shallow thermo-
cline, and making SST even colder. This is a coupled
positive feedback. While this feedback is occurring, the

thermocline anomaly propagates westward as a Rossby
wave.

The growth mechanism can only operate when the
atmospheric response is characterized by equivalent bar-
otropic highs (lows) over warm (cold) water. This occurs
only in a rather narrow band of wavelengths for which
downstream advection balances upstream Rossby wave
propagation; that is, for winds, potential vorticity gra-
dients, and scales that are close to that of a neutral state
of the atmosphere (i.e., free stationary Rossby waves).
For reasonable parameter choices, this scale-selective
growth mechanism selects a wavelength close to that of
the NAO pattern.

In order to allow solution by hand, the GM99 model
is oversimplified in many ways. Among these are its
constant zonal basic-state winds, the lack of a reentrant
atmospheric geometry, the use of only two levels in the
atmosphere, the lack of coastal boundaries in the ocean,
and the absence of basic-state currents in the ocean. In
the next section, we develop a model in which we can
relax some of these simplifications.

b. Numerical model formulation

We begin with the same differential equations (A1)–
(A4) as in GM99. In GM99, we assumed that C1, C2,
Q1, and Q2 were linear functions of the meridional co-
ordinate (i.e., the basic-state flows were constant and
purely zonal) to make analytic solution tractable. Here
we allow for the possibility that the ocean is of restricted
east–west extent, and study the effect of nonuniform
atmospheric flows. The important case of nonzero basic-
state ocean currents will not be considered here.

For arbitrary basic states, the system of Eqs. (A1)–
(A4) must be solved numerically. We do this by forming
finite-difference forms of the equations above. To allow
solution in a rectangular oceanic domain, we must add
a Stommel (1948) frictional term to Eq. (A4), permitting
a western boundary current to form. We must also be
careful to write the finite-difference forms of the ad-
vection operators in (A1) and (A2) so that they conserve
PV exactly. We also added a small amount of vorticity
diffusion and dissipation of PV anomalies into the mod-
el atmosphere for numerical stability.

The model is discretized using a standard finite-dif-
ference scheme, with c- and q-points coincident, and
using a centered difference scheme for first derivatives
and a five-point stencil for the Laplacian operator. We
specify a periodic channel geometry in the atmosphere
whose zonal and meridional extents are 25 000 and 7200
km, respectively. The north and south boundary con-
ditions in the atmosphere are designed to allow no PV
flux through the walls. The meridional grid spacing is
360 km; the zonal grid spacing is 550 km in the at-
mosphere and 275 km in the ocean. Upon discretization,
the SST and ocean streamfunction equations can be writ-
ten in the form
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 C1 ] SST C25 P , (A5) [ ]]t C SSTo  
Co 

where SST, Co, C1, and C2 are vectors containing the
discretized elements of the SST, ocean streamfunction,
and atmospheric upper- and lower-layer streamfunction
anomaly fields. The matrix P is a sparse matrix repre-
senting the finite-differenced forms of the differential
operators in (A4) and (A3). We must find C1 and C2

using the side constraints provided by (A1) and (A2):

C g 2SST1 aM 5 , (A6)
2[ ] [ ]C L r SST2 a a

where M is a matrix incorporating discretized forms of
the advection and dissipation operators acting on the
atmospheric state vectors. It is identical to the M used
in (1) and throughout section 2.

c. Time evolution and eigenspectrum

We can step the system forward in time by inverting
(A6) to find C1 and C2 at each time step from SST,
then plugging those into (A5) to get the rate of change
of SST and Co, which can then be advanced to the next
time step using a simple Euler forward scheme.

We can also solve for the eigenvectors of the system’s
tendency matrix; this allows us to compute frequencies
and growth/decay rates for the coupled mode, as done
in GM99 for the simpler case of plane-parallel flow. We
need not write out the tendency operator as an explicit
matrix: the Arnoldi (Lehoucq et al. 1998) algorithm can
compute the eigenvectors and eigenvalues of a sparse
linear operator that is specified as an algorithm like that
described in the previous paragraph. In addition, the
Arnoldi technique can solve for a small number of ei-
genvalues of desired characteristics, rather than finding
the entire eigenspectrum. Since coupled modes that are
rapidly damped will not be observable in nature, we
solve for the eigenvalues with the most positive real
part.
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