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ABSTRACT

The authors explore the use of the ‘‘neutral vectors’’ of a linearized version of a global quasigeostrophic
atmospheric model with realistic mean flow in the study of the nonlinear model’s low-frequency variability.
Neutral vectors are the (right) singular vectors of the linearized model’s tendency matrix that have the smallest
eigenvalues; they are also the patterns that exhibit the largest response to forcing perturbations in the linear
model. A striking similarity is found between neutral vectors and the dominant patterns of variability (EOFs)
observed in both the full nonlinear model and in the real world. The authors discuss the physical and mathematical
connection between neutral vectors and EOFs.

Investigation of the ‘‘optimal forcing patterns’’—the left singular vectors—proves to be less fruitful. The
neutral modes have equivalent barotropic vertical structure, but their optimal forcing patterns are baroclinic and
seem to be associated with low-level heating. But the horizontal patterns of the forcing patterns are not robust
and are sensitive to the form of the inner product used in the singular vector decomposition analysis. Additionally,
applying ‘‘optimal’’ forcing patterns as perturbations to the full nonlinear model does not generate the response
suggested by the linear model.

1. Introduction

a. Background

A large body of observational evidence documents the
presence of preferred modes of variability of the mid-
latitude atmosphere (see, e.g., Walker and Bliss 1932;
Barnston and Livezey 1987; Cayan 1992; Kushnir 1994;
Hurrell 1995; White and Peterson 1996; Thompson and
Wallace 1998; Czaja and Marshall 2001). A relatively
small number of patterns explain a large fraction of the
variability of atmospheric flow on timescales from weeks
to decades. The most well known of these are the North
Atlantic Oscillation (NAO), a dipole mode in the North
Atlantic (Walker and Bliss 1932), and the Pacific–North
America pattern (PNA), extending from the tropical Pa-
cific to North America (Wallace et al. 1993). Patterns that
are receiving increasing attention are the zonally sym-
metric ‘‘annular modes’’ of Thompson and Wallace
(1998) in the Northern and Southern Hemispheres.

In this study we investigate the dynamical nature of
these modes of variability by developing a description
that is rooted in dynamics rather than statistics. We con-
tinue a line of enquiry begun by Marshall and Molteni
(1993) and Navarra (1993), who associate preferred
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modes of variability with ‘‘neutral vectors’’—singular
vectors of the tendency matrix of a linearized model
that have the smallest singular values.

Our work extends that of Marshall and Molteni by
considering both the neutral vectors and their forcing,
and by studying their connection to empirical orthogonal
functions (EOFs). We expand on Navarra’s work by
using a model that includes baroclinic dynamics and
that is capable of producing patterns similar to those
seen in nature.

b. Introduction to neutral vectors

Marshall and Molteni (hereafter MM) were interested
in atmospheric patterns that tended to persist in a given
state for long periods of time. They attempted to com-
pute patterns of maximum persistence by beginning with
a forced three-layer quasigeostrophic potential vorticity
(QGPV) model, which we write as

]
C 5 M (C) 1 f ,

]t

where C is a vector representing the model stream-
function, M is a nonlinear tendency operator, and f is a
potential vorticity (PV) source term. Linearizing this
model about some basic state gives

]
C 5 MC 1 f , (1)

]t
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where M is a tendency matrix, C now represents stream-
function perturbations upon some specified basic state,
and f is now a perturbation in the steady-state model
forcing field.

MM were interested in the free, unforced perturba-
tions that displayed the smallest time tendency. Free,
unforced waves obey

]
C 5 MC. (2)

]t

To find the modes with the smallest time tendency, MM
minimized the expression

] ]
C, C7 8]t ]t

2l 5 , (3)
^C, C&

where ^a, b& is an inner product of a and b. This ex-
pression minimizes the size of the mode’s tendency,
normalized by the magnitude of the mode itself. In-
serting (2) into (3), the minimization condition can be
rewritten

†^MC, MC& ^M MC, C&
2l 5 5 ,

^C, C& ^C, C&

where M† is the adjoint of M. The C that minimize l
will be the eigenvectors Cn of M†M with minimum ei-
genvalue :2ln

2†^M MC , C & ^l C , C &n n n n n2l 5 5 .
^C , C & ^C , C &n n n n

These Cn are the neutral vectors.
What are the dynamics of a neutral vector? The matrix

M encapsulates the Rossby wave propagation, down-
stream advection, and dissipation terms of the QGPV
equation. For MC to be small, dissipation must be weak
(implying large-scale patterns), and there must be a near
balance between the propagative and advective terms.

Suppose we took the model in (1) and looked at the
forced, linear, stationary response to a thermal forcing f:

0 5 MC 1 f. (4)

What pair of forcing and response will have the largest
response per unit forcing? We want to find the C and
f that will maximize

22l 5 ^C, C&/^f, f &.

Since f 5 2MC, this is equivalent to minimizing

^MC, MC&
2l 5 .

^C, C&

This is exactly the condition satisfied by the neutral
vectors. Thus, the neutral vectors are not only the most
stationary modes in the unforced time-evolving model,
they are also the forced, stationary modes that exhibit
the largest response to external forcing. Such a strong

response to forcing is necessary if a mutually coupled
atmosphere–ocean interaction is to occur.

Interestingly, this means we cannot only find the neu-
tral vectors, Cn, but also the ‘‘optimal forcing patterns’’
fn that maximally excite them, by solving MCn 1 fn 5
0. The C are the right singular vectors of M; the fn are
the left singular vectors.

The linearized system (1) posesses unstable growing
modes. In addition, the full model dynamics is strongly
nonlinear. One may wonder whether these complications
render the neutral vector analysis moot. We address this
issue in section 5. By studying the dynamics of simple
unstable nonlinear systems, we demonstrate that the lin-
ear analysis described above remains relevant in these
systems.

Singular vectors are often applied to investigate the
role of nonnormal growth in the production and main-
tenance of transient perturbations to the atmosphere (be-
ginning with the study of Farrell 1982), and their inter-
actions with the mean flow (Whitaker and Sardeshmukh
1998). A related problem considers the problem of op-
timal excitation patterns; see Farrell (1989) and Molteni
and Palmer (1993). The linear version of the Principal
Interaction Pattern (PIP)/Principal Oscillation Pattern
(POP) techniques introduced by Hasselmann (1988) also
use singular vectors to find patterns that best describe a
system’s tendency. The technique has also been used to
find optimal amplification patterns in classical, nonro-
tating fluid dynamics (Andersson et al. 1999; Luchini
2000). However, in all the aforementioned applications
the focus is on the singular vectors with the largest sin-
gular values, the most rapidly evolving and changing
modes. Here our emphasis is on the physical relevance
of the singular vectors with the smallest singular values.

c. Goals of this study

In this work we study neutral vectors and their con-
nection EOFs using the three-layer quasigeostrophic
(QG) model of MM, which was designed to produce
mean flows and patterns of variability resembling those
found in nature. The principal questions to be answered
are the following.

1) Is there a connection between the leading modes of
variability of the model and the neutral modes of a
linearized version of the model?

2) Why should such a connection exist?
3) Do the model’s neutral modes resemble observed

modes of strong variability?
4) What forcing patterns optimally excite these modes?

An affirmative answer to the first question establishes
neutral vectors as a useful tool for studying model var-
iability. MM gave a rough answer to this question, in-
spiring the more detailed analysis presented here. An
affirmative answer to the third question establishes neu-
tral vectors as a useful tool for studying observed pat-
terns of variability. The last question is particularly rel-
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evant to understanding coupled modes. If our model can
identify, for example, an SST forcing pattern that
strongly excites a pattern that resembles an observed
mode of variability, then it becomes more likely that
SST can drive interannual variability of this mode, and
we can check for correlations between amplitude of the
SST forcing pattern and of the response. The role of
neutral vectors in air–sea interaction is studied in detail
in Goodman and Marshall (2002, hereafter GM02).

The three-layer QG model used here lacks some of
the dynamics and physics of a full primitive equation
GCM, but provides a useful and computationally in-
expensive tool to develop and test our procedure. The
analysis developed here can easily be applied to a full
GCM, with additional (but not prohibitive) computa-
tional cost. We chose the three-layer model mainly be-
cause the model and its linearized version are well de-
veloped; in addition, a three-layer model enables us to
investigate the vertical structure of heating that excites
a model response. In a two-layer model, temperature is
defined at the single layer interface, and one cannot
distinguish between low- and high-level heating.

The model, neutral vector, and EOF computations are
described in section 2. The neutral vectors are discussed
in section 3, and the connection between neutral vectors
and EOFs is discussed in section 3b. We consider the
model’s optimal forcing patterns in section 4, including
an attempt to discover whether the optimal forcing pat-
terns remain optimal in the full nonlinear model in sec-
tion 4c. Discussion of the relevance of our linear ap-
proach to nonlinear dynamical systems is found in sec-
tion 5.

2. Molteni’s three-layer quasigeostrophic model

Molteni’s model is discussed in some detail in his
thesis (Molteni 1994) and in MM. The model is a three-
layer, global, spectral model at T21 resolution, with
pressure as a vertical coordinate. The QGPV equations
are discretized at the three pressure levels (200, 500,
and 800 mb), giving prognostic equations for PV:

]
q 5 2J(c , q ) 2 D (c , c ) 1 S ,1 1 1 1 1 2 1]t

]
q 5 2J(c , q ) 2 D (c , c , c ) 1 S ,2 2 2 2 1 2 3 2]t

]
q 5 2J(c , q ) 2 D (c , c ) 1 S .3 3 3 3 1 2 3]t

The cn and qn are the streamfunction and QGPV at each
level, Dn encapsulate various linear dissipative pro-
cesses (see Molteni 1994), and the Sn are a constant PV
source term. PV is defined as:

2 22q 5 ¹ c 2 R (c 2 c ) 1 f1 1 1 1 2 cori

2 22 22q 5 ¹ c 1 R (c 2 c ) 2 R (c 2 c ) 1 f2 2 1 1 2 2 2 3 cori

2 22q 5 ¹ c 1 R (c 2 c ) 1 f (1 1 h /H ),3 3 2 2 3 cori 0

where R1 and R2 are (spatially constant) Rossby radii
of deformation, h is the height of topography, H0 is a
topographic scaling factor, and f cori is the Coriolis pa-
rameter.

The model covers the entire globe, so it does not have
artificial ‘‘walls’’ at the equator that may spuriously
reflect planetary waves. However, since QG dynamics
is not really appropriate near the equator (and the con-
stant values chosen for the Rossby radii are certainly
inappropriate there), the model’s behavior in the Tropics
should not be taken too seriously. In the midlatitudes,
however, the model’s dynamics are more reasonable,
and it can produce a very good mean flow field through
careful specification of the constant forcing fields Sn.
This is done by setting the Sn equal to the opposite of
the average PV tendencies obtained by inserting ob-
served streamfunction fields into a version of the model
equations from which the Sn are omitted. This technique
has been found to give the model a stable climatology
that is near the observed fields used to generate the Sn.
The technique is similar to the ‘‘flux correction’’ used
to eliminate climate drift in coupled GCMs. The Sn used
for this study are computed from European Centre for
Medium-Range Weather Forecasts streamfunction anal-
yses, using data from December through March for 1983
through 1993 (Michelangeli and Vautard 1998). As a
result, the model attempts to simulate the Northern
Hemisphere winter climatology.

Figure 1 presents mean fields computed from a 5000-
day integration of the model. Comparisons with ob-
served wintertime mean streamfunction (not shown)
show that the model does a very good job at reproducing
the mean flow of the observations used to compute S.
The midlatitude jets are of realistic strength, and their
pattern of confluence/diffluence relative to the under-
lying continents and oceans is captured. Generally, the
model’s mean state differs from observations by only a
few percent. Eddy activity, as shown by streamfunction
standard deviation in the lower panel, is less well cap-
tured in the model. Eddy activity is of the correct mag-
nitude, with storm tracks over the Northern Hemisphere
oceans, much as observed. The Pacific storm track is
captured rather well. However, the modeled Atlantic
storm track does not have a sharp northern boundary,
and eddy activity over the pole is somewhat stronger
than observed.

We use this 5000-day run to compute empirical or-
thogonal functions (North 1984) of the model output.
The EOFs are computed over the entire model domain,
using monthly mean data. EOFs computed with weekly
averaged data were found to be quite similar.

a. Computing neutral vectors

The linearized form of the model equations is

]
q 5 2J(c , q) 2 J(c, q) 2 D(c) 1 S, (5)

]t
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FIG. 1. Three-layer QG model mean climatology, based on 5000
daily fields. Top panel: mean streamfunction, 200 mb, contour interval
20 3 106 m2 s21. Middle panel: mean streamfunction, 500 mb, con-
tour interval 10 3 106 m2 s21. Lower panel: Model streamfunction
standard deviation, 500 mb, contour interval 106 m2 s21.

where overlined terms represent the basic state and un-
marked terms represent perturbation quantities. Note the
presence of a linearized PV forcing anomaly S. The
nature of this forcing is left unspecified: it could be a
sea surface temperature anomaly, anthropogenic forc-
ing, or some other source. We perform a PV inversion
to express the equation in units of streamfunction ten-
dency:

]
21c 5 2Q [J(c , q)) 1 J(c, q) 1 D(c)] 1 f, (6)

]t

where f 5 Q21(S) is the streamfunction forcing field.
We now discretize and write this in vector form thus:

]
C 5 MC 1 f . (7)

]t

Here, M is the streamfunction tendency operator, and f
is the streamfunction forcing perturbation. We now min-
imize the tendency (for the unforced problem) or the
forcing (for the steady problem)

] ]
C C7 8]t ]t

2l 5 unforced, time evolving; (8)
^C, C&

^ f , f &
2l 5 forced, steady; (9)

^C, C&

by computing the left and right singular vectors of M
as described in section 1b. The l may be interpreted as
inverse timescales; the corresponding mode will remain
relatively unchanged for a time #l21.

One can make various choices for the inner product
in Eq. (3); this boils down to the question, ‘‘We want
to find the patterns whose tendency is smallest. . . but
what do we mean by smallest?’’ To begin, we choose
an inner product identical to that used by MM: the norm
of a streamfunction vector is chosen to be proportional
(in our spherical domain) to the kinetic energy of the
flow. We refer to this as the ‘‘KE norm’’; a different
choice will be considered in section 4a.

The only remaining difficulty is to construct the M
matrix. This job is made much simpler by the existence
of a linearized version of the Molteni model code. We
linearize about the mean state of the 5000-day run
shown in Fig. 1. Using this linearized code, we simply
compute the tendencies of a complete set of orthonormal
spectral Green’s function perturbations and use those
tendencies to build up an explicit matrix M, column by
column. That is, we build a matrix whose first column
contains the normalized response of the linearized mod-
el to a perturbation of the model’s first spherical har-
monic, whose second column contains the response to
perturbation along the second harmonic, and so on for
all 1518 degrees of freedom. The eigenvalues and ei-
genvectors of this matrix are then computed using Mat-
lab’s built-in dense matrix eigensolver.

b. Empirical orthogonal functions

The first few EOFs of the model’s monthly mean
streamfunction fields are shown in Fig. 2. The EOFs are
different from those described by, for example, Molteni
et al. (1988); this is probably because Molteni et al.
computed hemispheric EOFs of the eddy fields (i.e.,
zonal mean components are removed), while here global
EOFs of the full streamfunction are computed. Also,
Molteni’s patterns are EOFs of observed fields, while
we compute EOFs of the model output. Nonetheless,
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FIG. 2. Empirical orthogonal functions computed from monthly means of a 5000-day integration of the Molteni QG
model. EOFs are computed on global model output at all three levels; EOF amplitude at 500 mb is shown here.

the model EOFs do resemble observations. The first
EOF, explaining 35% of the variance of monthly means,
has the dipolar nature of the NAO in the Atlantic, but
is much more zonally extensive. It more closely resem-
bles an annular mode, or the ‘‘Arctic Oscillation’’ (AO;
Thompson and Wallace 1998), which are commonly
seen in full-hemisphere EOF analyses of observations
and models. Wallace (2000) argues that the NAO and
the AO are really the same phenomenon: an annular
mode that is somewhat stronger in the Atlantic than
elsewhere.1

The second EOF of the model strongly resembles the
planetary wave pattern associated with the PNA pattern
(Wallace et al. 1993). We see a wave train extending
from the subtropical Pacific near the date line over the

1 We note that papers that use EOFs localized to the Atlantic domain
(Cayan 1992, e.g.) tend to find a more localized NAO pattern, while
hemispheric EOF calculations (Thompson and Wallace 1998) tend to
find the annular AO pattern. A possible reason for this is given in
appendix B of Goodman (2001).

Gulf of Alaska and Canada, and ending in the subtrop-
ical west Atlantic.

The third EOF displays a wave train extending from
the midlatitude Pacific west of the dateline over the pole
to western Europe and has wavelengths similar to the
first two EOFs.

3. Neutral vectors

When we computed neutral vectors for the three-layer
model in the manner discussed in section 2a, patterns
were found in both hemispheres, whereas the EOFs were
confined to the Northern Hemisphere. The reason for
this difference will be discussed in section 3b. We feel
it is unlikely that a dynamical connection exists between
wave patterns in alternate hemispheres; it is more likely
that two separate neutral patterns in the two hemispheres
share similar eigenvalues. The singular vector decom-
position (SVD) analysis cannot distinguish between two
modes with similar eigenvalues and will return two ar-
bitrary orthogonal linear superpositions of the two
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modes. A ‘‘rotated neutral vector analysis,’’ along the
lines of rotated EOFs (Richman 1986), might help to
separate the modes.

Instead of rotating the modes, we focus on the Northern
Hemisphere by adding an artificial damping term to the
M matrix. This term is proportional to sin(f/2 2 p/4)6

(where f is latitude in radians) and damps PV anomalies
with a timescale of 5 days at the South Pole, 8 days at
458S, 40 days at the equator, and 1500 days at 458N.
Thus, any otherwise neutral mode in the Southern Hemi-
sphere will have a significant tendency due to this damp-
ing effect, making it less neutral. The effect is to reorder
the neutral mode patterns, giving preference to Northern
Hemisphere modes.

a. Neutral vector structure

In Figs. 3–5, we show neutral vectors and optimal
forcing patterns computed using the ‘‘kinetic energy’’
norm used by MM. We describe the neutral vectors
(right-hand column) in detail in this section; the optimal
forcing patterns are discussed in section 4a.

The first neutral vector (Fig. 3, right column) shows
a roughly zonally symmetric pattern, with a negative
center over the pole surrounded by a positive annulus
near 508N. This annulus has enhanced energy over west-
ern Siberia and the North Atlantic. The whole pattern
is equivalent barotropic and broadly resembles the first
model EOF, although its midlatitude annulus is farther
north than in EOF 1.

The second neutral vector shows a similar banded
structure, but the maxima and minima are shifted south-
ward relative to neutral vector 1. The positive annulus
for this pattern lies at 408N, with a minimum at 708.
Once again, the mode is barotropic, with amplitude in-
creasing with height. The projection of this pattern onto
the NAO pattern is quite strong.

The third neutral vector displays a pattern resembling
the PNA pattern. We see a barotropic wave train ex-
tending from the subtropical Pacific over the Gulf of
Alaska, northern Canada, and into the subtropical east
Atlantic. The subtropical Pacific maximum is shifted
west across the date line compared to the observed PNA,
but elsewhere, the resemblance between neutral vector
3, EOF 2, and the PNA is very strong.

It should be clear that these patterns strongly resemble
the model EOFs and observed patterns of low-frequency
variability. To emphasize this point, and to demonstrate
that these resemblances are not the result of chance
correlations in a low-dimensional system, Fig. 6 shows
the cross correlations between the shapes of the model
EOFs (Fig. 2) and the neutral vectors (Figs. 3–5). Cor-
relation is computed over all vertical levels. The ab-
solute value of the correlation for each pair is indicated
by the size of the dots. Correlations less than 0.2 are
not plotted.

The observations discussed above are borne out in
this figure: neutral vectors 1 and 2 project onto EOF 1,

and neutral vector 3 projects onto EOF 2. We also see
that neutral vector 1 projects onto EOF 3. But more
importantly, the strongest correlations are among the
first few EOFs and neutral vectors (the large dots are
clustered in the upper left corner). If the correlations
arose by chance, we would expect this figure to show
a random scattering of small points throughout the do-
main.

We have visually compared these patterns with the
results of d’Andrea (2002), who sought patterns which
minimize the tendency of a nonlinear model, using a
method of steepest descent. We find good agreement
between some of the neutral vectors shown here and
some of d’Andrea’s patterns. Interestingly, in some cas-
es, the neutrality of a mode in the nonlinear model is
sign dependent: the ‘‘positive’’ phase of a neutral vector
may appear in d’Andrea’s set of patterns with minimal
tendency, while the ‘‘negative’’ phase may not.

Since the first few neutral vectors project strongly
onto the EOFs, we should expect that a substantial
amount of the model’s natural variability resides in the
subspace of the first few neutral vectors. Figure 7 dem-
onstrates that this is indeed the case. The three most
neutral vectors explain more of the variance of a 5000-
day model run than any other singular vector. The first
three EOFs explain 50% of the variance of monthly
means, while the first three neutral vectors explain 37%
of the variance—almost as much.2

Many papers have been written that project observed
variability onto the first few EOFs to study its statistics
(Hannachi 1997; Haines and Hannachi 1995; Molteni
et al. 1988), or that use EOFs to generate a reduced-
subspace model that encapsulates most of the system’s
variability (Achatz and Branstator 1999; Kaplan et al.
2000). We find here that neutral vectors are almost
equally good for these purposes. They also have the
advantage over EOFs that they represent dynamically
important modes of the system, rather than being em-
pirically selected.

b. Relationship between neutral vectors and EOFs

In the previous section, we observed a close connec-
tion between EOFs and neutral vector patterns. We now
explore the reasons for this connection. Some of the
results presented in this section have been published by
Navarra (1993), but because our discussion of the im-
portance of the form of the ff † matrix goes beyond
Navarra’s study, we present the derivation in full here.

Up to this point, we have ignored the effects of the
nonlinear synoptic eddies. Synoptic systems can create
a time mean eddy potential vorticity flux that drives the
mean flow. Variations in this flux can be incorporated
in our linearized system through the external forcing
term f .

2 Since EOFs, by definition, maximize explained variance, the var-
iance explained by neutral vectors must be smaller.
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FIG. 3. Right column: Neutral vector 1 for model climatology, KE inner product. Left column: corre-
sponding optimal forcing pattern. Contour interval is arbitrary, but consistent from level to level for U;
contour spacing is halved for V at 800 mb to show details of near-surface structure.

Suppose the atmosphere consists of a number of
‘‘slow modes’’ (stationary planetary wave patterns like
the NAO and PNA), which respond in a linear way to
stochastic forcing generated by ‘‘fast modes’’ (transient

eddy forcing), such that during any observation period
n, the stochastic forcing fn excites a planetary wave
response Cn. We assume that the observation period is
sufficiently long that initial transients die out, and a
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FIG. 4. Same as Fig. 3, but for neutral vector 2. Right column: neutral vector; left column: corresponding
optimal forcing pattern.

steady-state balance exists between forcing and re-
sponse:

21MC 5 f → C 5 M f ,n n n n

or, defining matrices C and f whose columns are the
Cn and fn:

21C 5 M f.

The EOFs are defined as the eigenvectors of the coz-
variance matrix CC†:

† 21 † 2†CC 5 M ff M ,
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FIG. 5. Same as Fig. 3, but for neutral vector 3. Right column: neutral vector; left column:
corresponding optimal forcing pattern.

where M2† is shorthand for (M†)21. Consider for a mo-
ment the case where the eddy forcing is isotropic (uni-
form variance everywhere) and spatially uncorrelated.
If f has unit amplitude, then ff † 5 I so that

† 21 2†CC 5 M M . (10)

We may decompose the M matrix using its singular vec-
tors thus:

†M 5 ULV . (11)

The columns of V are the right singular vectors (the
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FIG. 6. Cross correlations between model EOFs (vertical axis) and
neutral vectors computed using a KE norm (horizontal axis). The
absolute value of the correlation is indicated by the size of the dots.
Correlations less than 0.2 are not plotted.

neutral vectors); the columns of U are the left singular
vectors (the optimal forcing patterns); and L is a di-
agonal matrix of singular values. Inserting this into (10),
and using the fact that V21 5 V† and U21 5 U†, we
obtain

† 21 21 222† 21 2† 21 †CC 5 V L U U L V 5 VL V .

Since VL22V† is in diagonalized form, its eigenvectors
are V and its eigenvalues are the diagonal elements of
L22. Thus, when ff † 5 I, the EOFs (which are the ei-
genvectors of the covariance matrix CC†) are identical
to the singular vectors of the tendency matrix. Since L
is raised to the -2 power, the dominant EOFs correspond
to the smallest singular vectors, that is, to the neutral
vectors.

What happens when the transient eddy forcing co-
variance is not proportional to the identity matrix, as
we assumed above? Then we have

† † 21 21†CC 5 (M (ff ) M) . (12)

The matrix (ff †)21 is the inverse of the eddy forcing
covariance matrix. It is symmetric and positive definite
(assuming the inverse exists). It can thus be interpreted
as a weight matrix for the inner product between the M
matrix with itself. Thus, in the presence of nonuniform
stochastic forcing, we can compare the EOFs to the
singular vectors of M computed using this unusual
weight matrix (ff †)21. We demonstrate this by perform-
ing an SVD decomposition of M [Eq. (11)], where now
the orthonormality of the V and U are defined using the
inner products

† 21† †V V 5 I U (ff ) U 5 I.

Then, using (11):

21 21 2† † † † † †M ( ff ) M 5 VLU ( ff ) ULV 5 VL V .

And so, returning to (12):

† † 21 21 22†CC 5 (M (ff ) M) 5 VL V.

Thus, the principal EOFs of this system are the neutral
vectors (V), where the SVD analysis used to compute
the neutral vectors employs the inverse of the stochastic
forcing correlation matrix as a weight matrix to nor-
malize the optimal forcing patterns (U).

What is the significance of this unusual weight matrix
(ff †)21? Consider the simple case where each vector
element represents a location in space, and the eddy
forcing is spatially uncorrelated but has nonuniform var-
iance. Then the eddy forcing covariance matrix is di-
agonal, with larger elements on the diagonal where forc-
ing is strong. Thus the weight (ff †)21 is small where the
eddy forcing is large. In computing neutral vectors, we
want to minimize the forcing needed to excite them. A
forcing pattern will be ‘‘small’’ with respect to this
weighted norm when it has small amplitude where the
weight is large, and vice versa. Thus, the SVD analysis
selects neutral vectors whose forcing patterns are lo-
calized at the site of large eddy forcing.

This allows us to explain and formalize, for example,
the observation made in section 3a that the dominant
EOFs all lie within the Northern Hemisphere, while the
neutral vectors reside in both hemispheres, unless we
force them into the north using an artificial hemispheric
damping. High-frequency eddy activity, and thus eddy
forcing, are far stronger in the Northern Hemisphere
(where it is wintertime). Thus, neutral vector patterns
sensitive to Northern Hemisphere forcing will be driven
more strongly, and so Northern Hemisphere modes will
be more prominently visible in the model output, even
though they are no more ‘‘neutral’’ than Southern Hemi-
sphere modes.

To observe a closer connection between EOFs and
neutral vectors, we should compute neutral vectors us-
ing a norm weighted with the inverse eddy forcing co-
variance, rather than any more traditional norm. One
approximate way forward would be to use the covari-
ance of high-frequency eddy streamfunction.

4. Optimal forcing patterns

a. Optimal forcing pattern structure

The pattern that maximally excites neutral vector 1
(left column of Fig. 3) shows two broad regions of
sensitivity of opposite signs: one focused on Kamchatka
and extending over the eastern Pacific and Siberia, and
a second focused on the tropical Pacific and covering
Africa, Europe, the North Atlantic, and North America.
The pattern is baroclinic, with an out-of-phase response
in the lower two layers and nearly zero sensitivity at
the upper level. This implies a sensitivity to low-level
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FIG. 7. Comparison of fractional variance of monthly mean model output explained by EOFs
(dots) with variance explained by neutral vectors (3).

heating, which hints that this mode may be sensitive to
forcing by SST anomalies.

The second optimal forcing pattern (left column of
Fig. 4) shows a sensitivity to low level PV forcing over
much of the North Pacific, particularly the Sea of
Okhotsk, and to an opposite sign of forcing over the
North Atlantic and the Arctic. Once again, the mode is
sensitive to low-level heating.

The optimal forcing pattern for neutral vector 3
(Fig. 5) also shows a global-scale dipole, with sen-
sitivity to low-level baroclinic forcing. The forcing
centers lie at the beginning and end of the PNA-like
wave train.

If we stopped here, we would conclude that the
optimal forcing patterns are most sensitive to broad-
scale, low-level thermal forcing. In some cases (like
Fig. 5, in which forcing centers lie at the beginning
and end of the wave train), the spatial relationship of
forcing to response makes sense, while in others (such
as Fig. 3, in which an east–west dipole pattern gives
rise to a zonally symmetric structure), it is much less
clear.

However, this analysis has chosen to use an inner
product in (8) in which the norm of a streamfunction
vector is proportional to its kinetic energy. This is only
one of a wide array of sensible choices of inner product.
For example, we could choose an inner product where
the norm of C was proportional to the root-mean-square
streamfunction rather than the kinetic energy. We could
also attempt to minimize the PV tendency rather than
the streamfunction tendency, or use an inner product

that applied different weights to different geographical
areas or vertical levels.

After considerable experimentation, we find that
while the neutral vectors are relatively insensitive to the
choice of inner product, the optimal forcing patterns
look very different for different inner products. This is
demonstrated in Fig. 8, which shows the first neutral
vector and optimal forcing pattern using an inner prod-
uct in which \C\ is proportional to the root-mean-
square streamfunction anomaly, which we call the ‘‘psi
norm.’’

The first neutral vector for the psi norm looks virtually
identical to the first neutral vector of the KE norm.
However, the optimal forcing pattern is not the same.
Rather than being characterized by a planetary sized
dipole structure, we see many narrow, closely spaced
zones of positive and negative sensitivity. These tend
to be strongest in the Tropics, where, as we have already
mentioned, the model’s dynamics are the least believ-
able; they also occur to some extent in the Southern
Hemisphere (not shown in this polar projection). The
tendency for the optimal forcing to be low-level heating
remains but is much less prominent. Many of the high
and low centers of sensitivity are in similar locations,
but generally, the first optimal forcing patterns of the
KE and psi norms look quite different.

We have tried several other choices of norm, includ-
ing an attempt to minimize PV tendency rather than
streamfunction tendency; the neutral vectors are not
strongly dependent on the norm we choose, while the
optimal forcing patterns are highly norm sensitive.
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b. Norm sensitivity of optimal forcing patterns

Why do the two norms display identical neutral vec-
tors if their optimal forcing patterns are so different?
Consider the atmospheric response equation MC 5 f.
A neutral vector has small f, so the singular vector de-
composition selects the components of C to ensure the
near-cancellation of the various terms in the M matrix.
This cancellation is independent of the norm selected,
so the neutral vector pattern is not norm sensitive. How-
ever, relatively large changes in f can result from rel-
atively small changes in C, since the left side of the
equation is a small difference of large terms. If the norm
penalizes one sort of pattern more heavily, the amplitude
of that pattern in f can be made small with only small
changes to C. The psi norm applies equal weight to all
wavenumbers, while the KE norm penalizes high wave-
numbers (for which =c is large) more heavily. As a
result, the KE optimal forcing patterns are more broad
scale. However, this analysis cannot tell us whether one
norm is ‘‘better’’ than another.

This phenomenon can also be explained in terms of
the condition number of the M matrix (defined as the
ratio of the largest and smallest singular values). When
this number is large, the matrix is ‘‘poorly conditioned,’’
and the response C is sensitive to small perturbations
in f or M. A singular matrix has an infinite condition
number. For our M, the condition number is of the order
104, implying rather large sensitivity to forcing, but we
must stress that the matrix is not close to being singular
to within machine precision.

Navarra (1993) performed an essentially identical
neutral vector analysis on a barotropic model, using the
January 300-mb climatological flow. His neutral vector
patterns look completely different from those found in
this analysis and are much less similar to observed pat-
terns like the NAO, PNA, and AO. However, Navarra’s
work agrees that the neutral vectors strongly resemble
the model’s EOFs, and that the condition number of the
M matrix is relatively large, leading to large sensitivity
to forcing. Interestingly, Navarra’s optimal forcing pat-
terns have some properties similar to those shown in
Fig. 8: they are finescale, zonally oriented bands of sen-
sitivity in the Tropics.

c. Response of the nonlinear model to ‘‘optimal’’
forcing

We have found in section 4a that the optimal forcing
patterns are difficult to define unambiguously, since they
are not consistent between different definitions of the
inner product. Nevertheless, it is useful to find out
whether these patterns, which are optimal in forcing the
linearized stationary planetary wave model, are also op-
timal in forcing the full nonlinear time-evolving model.
If this model were quasi-linear, we would expect to see
a large neutral vector response to optimal forcing. How-
ever, nonlinear effects may come into play. If the op-

timal forcing patterns found using the linear model do
not excite a strong response in the nonlinear model, we
cannot expect them to tell us much about the sensitivity
of the true atmosphere to PV forcing.

We want to find the time mean perturbation response
to a constant ‘‘optimal’’ forcing perturbation. We pro-
ceed by running three integrations of Molteni’s model.
First, we create a pair of control runs (runs 1 and 2),
where Sn in (5) are unchanged from the specification
described in section 2. These two runs are initialized
with very slightly different initial conditions and so pro-
duce different instances of synoptic eddies. The differ-
ence between the mean state of these two runs will give
us some idea of the uncertainty of the mean, with which
we can compare the experimental run.

In the experimental run (run 3), we perturb Sn by a
small amount in the direction of the first optimal forcing
pattern for the KE norm (left column of Fig. 3). We use
a PV operator to convert the optimal forcing pattern
from a streamfunction forcing to a PV forcing. The am-
plitude of this forcing amounts to about 4% of the basic-
state value of S. We expect that the difference in the
mean states of runs 1 and 3 should look like KE neutral
vector 1 (right column of Fig. 3).

All three runs are performed for 10 000 days of in-
tegration; the run length was increased in order to reduce
the uncertainty of the sample mean fields.

The top panel of Fig. 9 shows the difference in the
means of the two unperturbed runs. We see differences
in the means of order 105 m2 s21. The bottom panel
shows the difference between the means of perturbed
and unperturbed runs. The differences are likewise of
order 105 m2 s21. Thus, any response seen is indistin-
guishable from the noise. One might argue that while
the amplitude is small, a structure reminiscent of neutral
vector 1 is seen in the response. However, this same
structure is seen in the top panel too,3 even though no
forcing perturbation was applied there.

The linearized model responds to the forcing with the
first neutral vector pattern (right column of Fig. 3), with
an amplitude4 of about 6 3 107 m2 s21. The upper limit

3 Why does the difference between unperturbed runs show neutral
vector structure? The uncertainty of the sample mean is s/ , whereÏN
s is the standard deviation and N is the number of independent ob-
servations. Most atmospheric patterns show little persistence on time-
scales longer than a week. But the neutral vectors evolve very slowly,
persisting for months or longer. Thus the number of independent
observations of the neutral vectors is abnormally small; the sample
mean amplitude of the fast modes converges more quickly than the
sample mean amplitude of the neutral vectors as we integrate for
longer. In the limit of very long integrations, the residual of sample
means will have its structure dominated by the neutral vectors.

4 This is more than 30% of the amplitude of the model’s mean
state. While the forcing perturbation is a small fraction of the basic-
state forcing, the linear response is a large fraction of the basic-state
streamfunction, precisely because the forcing perturbation is optimal.
We recognized that a response this large would not fully satisfy lin-
earity conditions; the experiment shown here was a ‘‘first try,’’ with
an intentionally large forcing to make the response as obvious as
possible.
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FIG. 8. Right column: Neutral vector 1 for model climatology, psi inner product. Left column: corre-
sponding optimal forcing pattern. Compare with Fig. 3. As in Fig. 3, contour interval is halved for V at
800 mb.

on the nonlinear model’s response to the forcing is less
than 1% of this. Thus, we conclude that the optimal
forcing patterns are ineffective at exciting the nonlinear
model.

Why? Take the time average of the PV equation
solved by the model (5):

J(c , q) 5 2D(c ) 1 S 2 J(c9, q9). (13)



15 NOVEMBER 2002 3219G O O D M A N A N D M A R S H A L L

FIG. 9. Response of the nonlinear model to optimal forcing. Top:
Streamfunction difference between 10 000-day means of two unper-
turbed model runs at 500 mb is shown; contour interval is 0.4 3 105

m2 s21. Bottom: 500-mb streamfunction response to forcing with the
KE optimal forcing pattern 1.

Barred terms represent time means; primed terms rep-
resent time-fluctuating terms with zero time mean. Now,
consider the time-average balance of PV when we apply
a forcing perturbation, Snv. We denote the streamfunc-
tion and PV of the response to forcing as cnv and qnv:

J(c 1 c , q 1 q )nv nv

5 2D(c 1 c ) 1 S 1 S 2 J(c9, q9). (14)nv nv

We expand the terms in (14) and take the difference
between it and (13). We assume the perturbation is small
enough that the eddy forcing is unchanged:J(c9, q9)

J(c , q ) 1 J(c , q) 1 J(c , q ) 5 2D(c ) 1 S .nv nv nv nv nv nv

Perform a PV inversion to convert all terms into stream-
function tendencies, as in (6):

21Q [J(c , q ) 1 J(c , q) 1 D(c )]nv nv nv

211 Q [J(c , q )] 5 f .nv nv nv

Here, f nv 5 Q21(Snv) as in (6). The terms that are linear
in cnv are just the terms that make up the linearized
tendency operator M in (7):

212M(c ) 1 Q (J(c , q )) 5 f .nv nv nv nv (15)

This equation differs from the linear forcing response

equation by the presence of the term Q21(J(cnv, qnv)).
Traditionally, for small forcing perturbations, this term
is small. However, we are supplying a forcing that ex-
cites a neutral vector. Therefore, both M(cnv) and f nv

are unusually small. In fact, if we assume the response
is linear, and use 2M(cnv) 5 f nv to calculate cnv and
then check our assumption by plugging that cnv into the
nonlinear Jacobian term, we find that the Jacobian term
is 600 times larger than the forcing. The nonlinear dy-
namics cannot be ignored when forcing is this large.
Since the linearized streamfunction response is propor-
tional to the amplitude of the forcing, while the ampli-
tude of the Jacobian term is proportional to the square
of the streamfunction, we must make the forcing (and
thus the linearized response) 600 times smaller to make
J(cnv, qnv) ; Snv. This means that the nonlinear self-
advection of the response dominates the forcing unless
the linearized response amplitude is smaller than 105

m2 s21. This amplitude is indistinguishable from the
sample error of the mean. This means that if we reduce
the amplitude of forcing until the response is linear, that
response will be too weak to be observed.

A possible solution to this problem was suggested by
F. Molteni (2000, personal communication). One could
add a quantity to the forcing perturbation Snv that cancels
out the contribution of the nonlinear Jacobian term in
(15). Thus a large neutral vector response could be ex-
cited that did not imbalance the PV equation. One dif-
ficulty here is that we carefully selected the optimal
forcing pattern to maximally excite a response, but when
we add this extra forcing term, the resulting pattern is
no longer necessarily optimal in either its linear or non-
linear response. The correct solution to this problem is
to perform a nonlinear optimization of the response to
forcing.

5. Nonlinearity, time dependence, and unstable
modes

We have formed our conclusions about the relevance
of neutral vectors based on arguments about a system
linearized about a mean climate state. In our discussion
of the relationships among EOFs, neutral vectors, and
optimal forcing patterns, we have often dropped the
time-tendency term and considered a steady-state bal-
ance, as in (4). But models and the real atmosphere are
highly nonlinear systems. They do not settle down into
a stable fixed equilibrium with negligible tendency, but
continue to fluctuate. Also, the linearized system M po-
sesses unstable, rapidly growing modes. From the dis-
cussion so far, it is not clear why the linearized, steady-
state model should be relevant to systems with these
properties. In this section, we discuss a pair of simple
systems that share the above properties of atmospheric
models and demonstrate that neutral vector/optimal
forcing pattern dynamics remains relevant.

A substantial precedent exists for studying the steady
linear response of a system using a linearized equation
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FIG. 10. Amplitude of response of (16) to forcing, as a function
of variations in the amplitude of l. Solid line: amplitude of response
to forcing f 5 0.1 relative to f 5 0. Dashed: f /\l\ . In all experiments,
g 5 1.

like (4): this technique was first used to study orographic
and thermal forcing of planetary waves by Charney and
Eliassen (1949) and Smagorinsky (1953). Models of this
sort are able to describe the dominant time mean plan-
etary wave patterns of the atmosphere, even in the pres-
ence of nonlinearity, growing modes, and absence of
stable fixed equilibria.

However, we need not appeal entirely to precedent.
Let us consider the simplest possible system with con-
tinual fluctuation about a mean ‘‘climate,’’ with an un-
stable growing mode and nonlinear limitation of the
growing mode:

]
y 5 ly 2 gy|y| 1 f . (16)

]t

Here, l may be complex, but g is real and positive.
Also, f represents some forcing of the system, which
is either constant or much more slowly varying than the
internal dynamics.

For f 5 0, this system has a fixed point at y 5 0.
When Re(l) . 0, this fixed point is unstable, and the
system converges onto a limit cycle, making circular
orbits about the origin in the complex plane. The time
mean of y is zero. When a forcing f is applied, the
center of the orbit shifts away from the origin.

We may linearize the model about this time mean,
obtaining

]
y 5 ly 1 f 5 My 1 f. (17)

]t

The above equation is written to resemble (7); the matrix
M is 1 3 1. In this one-dimensional system, we have
only one singular vector, so we cannot test whether neu-
tral vectors are preferred modes of variability; however,
we can test the claim that greater neutrality (a smaller
singular value of M) leads to increased sensitivity to
forcing. The linear system’s singular value is simply
\l\; as \l\ becomes smaller, our earlier discussion
claims that response to forcing will increase.

We have performed a large number of forcing response
experiments with this system. In each experiment, we
choose a different value of l (we vary the magnitude of
l while keeping the phase angle constant at 458) and
compute the time mean state of the system with and
without a constant forcing f 5 0.1. The difference be-
tween the means of the forced and unforced systems is
plotted in Fig. 10, as a function of \l\. As predicted, the
response amplitude is largest when \l\ is small, so that
the linearized system is most neutral. Indeed, the ampli-
tude of the response is not far from f /\l\, which is what
a steady-state linear balance [Eq. (17), with ]y/]t 5 0]
would predict.

Why do our linear, steady-state ideas work so well
in this nonlinear, fluctuating system? While a lineari-
zation is only a good approximation near the point where
it was performed, the physical processes it represents
(spiralling growth through l in this example) have an

influence over a wide range of phase space. When l is
reduced in this example, the tendency and nonlinear
terms must diminish as well, to allow balance. The
whole system evolves more sluggishly and weakly. As
a result, a forcing f has a greater influence on the system
when l is small.

This one-dimensional system is so simple as to be
almost trivial, and its stable limit cycle is very dissimilar
to the chaotic phase-space trajectories of the atmo-
sphere. We cannot compare neutral vectors to nonneutral
patterns in a system with only one singular vector. The
Lorenz (1963) system of equations provides a stepping
stone toward the full complexity of the atmosphere. Be-
fore tackling the three-layer QG model, Marshall and
Molteni (1993) performed a neutral vector analysis on
the Lorenz system. Linearizing about the time mean of
the system, they found that the first neutral vector iden-
tifies an axis passing through the two unstable fixed
points of the attractor; it is along this line that the Lorenz
model exhibits its long-term variability. In addition,
Palmer (1999) demonstrated that the maximal response
to external forcing in the Lorenz system also lies along
this axis. The Lorenz model’s long-term variability and
response to forcing are complicated and fundamentally
nonlinear; nevertheless, the neutral vector accurately
identifies their patterns. This increases confidence in
neutral vector analysis as a tool for analyzing nonlinear
systems.

6. Conclusions

1) Is there a connection between the leading modes of
variability of the model and the neutral modes of a
linearized version of the model?
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Yes. The neutral vectors of Molteni’s three-layer mod-
el closely resemble the EOFs of that model, even though
the EOFs are computed from data generated by a non-
linear model integration and the neutral vectors arise
from singular vector decomposition of a linearized mod-
el. The neutral vectors explain almost as much of the
nonlinear model’s variance as the EOFs do; this indi-
cates their importance in understanding model vari-
ability and makes them useful in constructing reduced-
subspace models of atmospheric variability.

We have computed our neutral vectors using a model
linearized using the model’s time mean as a basic state.
However, the time mean is a statistical construct: we
will never actually observe the atmosphere in this state,
and it may not even lie on the attractor of this chaotic
system. Thus, it is rather surprising that we get such a
strong similarity between our neutral vectors and the
model’s EOFs. However, other reasonable choices of
basic state (for instance, a snapshot of the nonlinear
model state at a single time point) produce neutral vec-
tors with no similarity to EOFs of the model or obser-
vations.

2) Why should such a connection exist?

Neutral vector patterns exhibit a maximal response
to forcing perturbations. If one assumes that the EOFs
result from linear excitation of relatively slow modes
by transient eddy PV forcing, then one can demonstrate
that the patterns of EOFs and neutral vectors are math-
ematically identical. This is an exact identity only if the
neutral vectors are computed using an inner product
weighted by the inverse of the eddy forcing covariance,
but remains approximately true for other inner products.

3) Do the model’s neutral modes resemble observed
modes of strong (and possibly coupled) variability?

Yes. We find neutral-vector analogues to the PNA,
AO, and (to a lesser extent) NAO patterns.

Since neutral vectors resemble EOFs of the model
and of observed fields, they are a very useful concept
in studying the low-frequency variability of the atmo-
sphere. Their advantage over EOFs is that they have a
simple physical interpretation: they are the most slowly
evolving patterns within the atmosphere, the patterns
for which advection of PV anomalies nearly balances
their tendency to propagate as Rossby waves.

These results lead to the following tempting, though
speculative, chain of logic: Fluctuations of EOF patterns
like the NAO and PNA account for much of the at-
mosphere’s interannual variability. The EOFs of the ob-
served atmosphere look like this model’s neutral vec-
tors. Since the neutral vectors are, in the linear model,
the patterns that most strongly respond to forcing, we
are led to suspect that if any atmospheric modes are
involved in interannual atmosphere–ocean coupled in-
teractions, the NAO and its relatives should be.

We have previously discussed a simple model of in-

terannual coupled variability (Goodman and Marshall
1999; GM02). The prominent coupled modes generated
within that model obey neutral vector dynamics in the
model atmosphere, in accordance with the argument
above. However, even if the specific coupled dynamics
described in (Goodman and Marshall 1999; GM02) are
not active in the real world, the high linear sensitivity
of the neutral vectors makes them a useful paradigm for
the study of atmosphere–ocean interaction; this is dis-
cussed in detail in GM02.

Observations (Walker and Bliss 1932; Hurrell 1995)
show that the same patterns of variability dominate both
the intraseasonal and the interannual variability of the
atmosphere. The neutral vector paradigm gives one of
several possible explanations for this. Neutral vectors
are the patterns that respond most strongly to forcing
in the linear model. High-frequency forcing from tran-
sient eddies will generate short-term variability, while
low-frequency forcing from SST anomalies or other pro-
cesses will lead to interannual variability. The same pat-
tern is easily excited by both intrinsic and extrinsic forc-
ing of the atmosphere. Hurrell (1996) finds that much
of the recent Northern Hemisphere warming can be ex-
plained by a secular change in the amplitude of naturally
occurring patterns like the NAO and PNA. Some in-
terpret this as evidence that global warming is simply
random variation in a natural phenomenon, but the pre-
sent work suggests that if these patterns are preferred
modes of variability, they may be easily excited by an-
thropogenic forcing. Intraseasonal variability and long-
term climate change may have the same distinctive pat-
terns, but be excited by different processes.

4) What forcing patterns optimally excite these modes?

While neutral vectors are a powerful tool for under-
standing the atmosphere’s variability, the optimal forc-
ing patterns appear to be much less useful. While their
structure suggests that the neutral vectors may be easily
excited by low-level baroclinic forcing, such as would
arise from heating generated by SST anomalies, their
patterns are not robust. We can get very different op-
timal forcing patterns by using a different inner product
in our singular vector decomposition. This is because
the optimal forcing patterns are the small residual dif-
ferences between large terms in the atmospheric re-
sponse equation, so small differences in the analysis can
make huge differences in the results. The neutral vectors
do not display this sensitivity. Even worse, the optimal
forcing patterns are ineffective in exciting a large re-
sponse in the full nonlinear model. This is because the
nonlinear self-interaction of the response to forcing
dominates over the forcing itself, unless that response
is tiny.

This may make it difficult to generalize the coupled
atmosphere–ocean interaction that was discussed in
Goodman and Marshall (1999) and GM02 to more com-
plicated models of air–sea interaction. While the neutral
vectors are the most sensitive to forcing (including forc-
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ing arising from SST anomalies) in linear models, they
are not very responsive in the nonlinear model discussed
in section 4c. In addition, the discussion of the coupled
interaction between neutral vectors and the ocean in
GM02 hinged on the idea that, as SST anomalies moved
around, they projected onto first one, then another of
the optimal forcing patterns. Each strong projection ex-
cited a neutral vector response, which fed back onto the
ocean. Here, we find that the shape of the optimal forc-
ing patterns is not very robust. As a result, the regular
alternation of projection necessary for the coupled wave
may be difficult to identify, if it occurs at all.
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