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1  Introduction

Since the 1970s, a dramatic reduction in stratospheric 
ozone over Antarctica has occurred in response to chloro-
fluorocarbon emissions. Associated with this ozone deple-
tion is a poleward shift and strengthening of the surface 
westerlies associated with the mid-latitude jet of the south-
ern hemisphere (e.g. Thompson and Wallace 2000). This 
occurs primarily in late spring and summer and projects 
onto the positive polarity of the Southern Annular Mode 
(SAM), which exhibits a positive trend over the late twen-
tieth century in the December to February seasonal mean 
(e.g. Marshall 2003). These SAM trends have the ability to 
influence Antarctic surface climate through wind-forcing of 
the Southern Ocean. For example, evidence from the his-
torical record suggests that SAM variability is related to 
variations in sea ice (e.g. Stammerjohn et al. 2008; Pezza 
et al. 2012; Simpkins et al. 2012) and surface temperatures 
(e.g. Kwok and Comiso 2002; Thompson and Solomon 
2002) among other properties.

Model simulations indicate that in response to a positive 
SAM, increased northward surface Ekman drift occurs with 
enhanced downwelling near 45S and upwelling near the 
Antarctic continent (Hall and Visbeck 2002; Lefebvre et al. 
2004). Relationships determined from interannual variabil-
ity suggest a dipole-like response in sea ice area to SAM 
variations, with positive anomalies in the Ross Sea region 
and negative anomalies along the Antarctic peninsula that 
extend into the Atlantic (e.g. Lefebvre et  al. 2004). This 
pattern bears some similarity to the observed long-term sea 
ice trends, leading to the speculation that SAM trends are in 
part responsible. The increases in observed total Antarctic 
sea ice extent are seemingly consistent with modeling work 
that suggests that the total Antarctic sea ice cover increases 
following a positive SAM anomaly (e.g. Hall and Visbeck 
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2002; Sen Gupta and England 2006). However several 
other modeling studies seem to contradict these results and 
suggest that sea ice extent declines in response to a positive 
SAM anomaly induced from ozone loss (e.g. Sigmond and 
Fyfe 2010; Bitz and Polvani 2012; Smith et al. 2012).

Ferreira et al. (2015) reconciled these various studies by 
showing that the modeled Antarctic sea surface tempera-
ture and sea ice exhibit a two-timescale response to SAM 
variations. This includes a fast response in which a posi-
tive SAM anomaly and associated enhanced westerlies lead 
to increased equatorward Ekman transport in the ocean 
surface and sea ice. This increases the sea ice cover both 
dynamically, due to direct wind forcing, and thermodynam-
ically, due to colder sea surface temperatures (SSTs). On 
longer timescales, the deeper ocean circulation responds to 
the changes in wind forcing leading to increased upwelling 
of deeper and warmer ocean waters. This provides a ther-
modynamic forcing to the sea ice and leads to reduced 
ice growth and/or enhanced melting. As such, the sea ice 
extent anomalies associated with a positive SAM exhibit 
an increase in the short term but a decrease on longer 
timescales.

The presence of this two-timescale response has been 
explicitly documented in two different models that apply 
an abrupt loss of stratospheric ozone (Ferreira et al. 2015). 
Questions remain however on how robust these relation-
ships are within climate models, including the magnitude 
of the sea ice response, the timescales associated with the 
fast and slow response, and the switch-over from cooling 
to warming. Additionally, the simulations discussed in Fer-
reira et  al. (2015) and other related previous work (Sig-
mond and Fyfe 2010; Bitz and Polvani 2012) were subject 
to abrupt changes in ozone. Work using twentieth cen-
tury single forcing ozone experiments (Sigmond and Fyfe 
2014) provide insights on the transient response to ozone 
loss and support a general decrease in ice associated with 
transient ozone loss. However, uncertainties remain in the 
mechanisms relating SAM forcing to sea ice conditions 
during the late twentieth–early 21st century. Finally, while 
some studies have documented regional variations in SAM-
driven sea ice conditions (Lefebvre et al. 2004; Stammer-
john et al. 2008), little work has been done to diagnose how 
these differ across models and on longer timescales. Given 
that the twentieth century sea ice trends have large regional 
variations, it is useful to consider possible spatial variations 
in the sea ice response to SAM for longer timescales and 
across multiple models.

Here, we explore these issues by assessing the relation-
ships between SAM and sea ice variability in a large num-
ber of Coupled Model Intercomparison Project 5 (CMIP5; 
Taylor et al. 2012) models. A complementary paper (Kos-
tov et al. 2016) provides an assessment for sea surface tem-
peratures within the Southern Ocean. Our analysis includes 

the influence of SAM variability on both the total hemi-
spheric and regional sea ice in pre-industrial control simu-
lations at various timescales. We also consider whether the 
relationships derived from these unforced pre-industrial 
runs can explain some aspects of sea ice trends, and their 
across-model scatter, within the twentieth century.

2 � Model simulations

Our analysis makes use of the pre-industrial (Table 1) and 
twentieth century (Table  2) simulations from 29 differ-
ent CMIP5 models. We assess multiple twentieth century 
ensemble members for individual CMIP5 models, where 
available. These calculations come from multiple modeling 
centers and generally have differences across the model 
components. As noted by Knutti et  al. (2013) however, 
some of the models are not strictly independent. We do 
assume independence when computing the significance of 
results and as such, the significance of some of our results 
may be overstated.

Our analysis also makes use of a large ensemble of 
simulations performed with the Community Earth System 
Model (referred to as CESM-LE; Kay et al. 2015), which 
uses the CESM-CAM5 model (Hurrell et  al. 2013; note 
that this is also one of the CMIP5 models). The CESM-LE 
encompasses 40 members for the 1920–2100 time period 
and a 2000  year pre-industrial control run. The twentieth 
century members differ only in a round-off level perturba-
tion in their initial 1920 atmospheric state and so any dif-
ference in their simulation is purely due to the model’s 
internal variability.

3 � Pre‑industrial control runs analysis

We assess CMIP5 pre-industrial (PI) control runs as listed 
in Table  1. As shown, the timeseries length is different 
across the various models. For our analysis, we use the 
longest timeseries possible from the different simulations. 
A number have sizable sea ice extent trends over the length 
of the PI timeseries indicating that they are not well equili-
brated (Table 1; see also Turner et al. 2013a). We remove a 
linear trend from the ice extent timeseries prior to analysis. 
This may be problematic in some cases given that the equi-
libration may not be linear. In general though, it does not 
qualitatively affect the results.

The annual cycle of pre-industrial southern hemisphere 
ice extent from the collection of CMIP5 simulations is 
shown in Fig. 1. As is clear, and noted in other studies (e.g. 
Turner et al. 2013a, 2015; Shu et al. 2015), the models differ 
considerably in their simulation of the mean Antarctic sea 
ice cover. Indeed considerable biases exist in climate model 
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simulations of the Southern Ocean more generally. For 
example, the models differ greatly in numerous Southern 
Ocean properties including, the atmospheric energy budg-
ets (Previdi et al. 2015), cloud conditions (Hwang and Fri-
erson 2013), surface air temperature (Schneider and Reusch 
2016), and ocean properties (e.g. Downes and Hogg 2013; 
Sallée et  al. 2013) among others. In terms of sea ice, the 
simulations exhibit considerable internal variability with 
a typically red spectrum. The characteristics of simulated 
internal variability differ across the models, as is clear from 
the monthly standard deviation of ice extent (Fig. 1b). Dif-
ferences extend to other variability metrics as well.

In addition to total southern hemisphere ice extent, we 
assess regional characteristics of ice area. This regional 
ice variability is analyzed using the timeseries of ice area 
as a function of longitude. The simulated ice area is com-
puted for 5-degree longitude sectors around the Antarctic 

continent for comparison. The ice area regional mean 
and standard deviation for the various models is shown in 
Fig. 2 and indicates that, for these properties, there is also 
considerable across-model scatter. The models also differ 
from observations. Most notably, all of the CMIP5 mod-
els simulate larger winter and spring variability in total ice 
extent (Fig.  1b) than is present in observations. Although 
this comparison is between pre-industrial climate simula-
tions and observations, a similar discrepancy is found when 
analyzing present-day conditions from the climate models 
as has been previously noted by Zunz et  al. (2013). The 
large modeled ice extent variability is primarily due to dis-
crepancies in ice area variability in the Weddell Sea region 
(Fig.  2b) and also a lack of a regional compensation of 
sea ice area anomalies in some models when compared to 
observations. This is a further indication of the challenges 
involved in simulating the Southern Ocean and as noted by 

Table 1   Models used in the analysis. The short name is used to designate the various models on figures

The ice model metrics are computed for the pre-industrial control simulations and ice extent values are shown in 106 km2. Ice extent trends are 
for annual mean values and are in units of 106 km2 per century

Model name Short name PI model years/timeseries length Max/min/mean ice extent Ice extent trend

ACCESS1-0 A 300–549/250 2.1/20.0/11.8 −0.21

ACCESS1–3 B 250–749/500 5.6/21.0/14.2 0.11

Bcc-csm1-1 C 1–500/500 3.9/25.0/16.5 0.04

CanESM2 D 2015–3110/1095 4.4/24.2/14.6 0.07

CCSM4 E 800–1300/500 11.6/25.4/20.2 0.10

CESM1-WACCM F 96–295/200 8.2/21.4/16.4 −0.19

CESM1-CAM5 G 1–319/319 6.4/21.4/15.5 −0.08

CMCC-CESM H 4324–4600/277 2.7/22.3/12.7 0.10

CMCC-CM I 1550–1819/270 3.5/21.3/13.0 0.02

CMCC-CMS J 3684–4183/500 2.7/21.9/12.7 −0.07

CNRM-CM5 K 1850–2699/850 0.1/19.2/9.4 −0.11

CSIRO-Mk3-6-0 L 1–500/500 9.6/21.1/15.9 −0.07

EC-EARTH M 2100–2551/451 2.5/19.8/11.5 0.05

GISS-E2-H N 2410–2949/540 0.9/11.0/6.2 −0.27

GFDL-CM3 O 1–500/500 0.4/13.3/7.0 −0.49

GFDL-ESM2G P 1–500/500 0.9/15.7/8.7 −0.05

GFDL-ESM2 M Q 1–500/500 0.2/13.3/7.1 −0.09

HadGEM2-CC R 1860–2099/240 2.2/16.7/9.6 0.05

Inmcm4 S 1850–2349/500 1.3/13.1/7.2 0.07

IPSL-CM5A-LR T 1800–2799/1000 1.1/21.8/11.1 −0.08

IPSL-CM5A-MR U 1800–2099/300 0.4/18.3/8.6 −0.17

IPSL-CM5B-LR V 1830–2129/300 0.1/10.1/4.3 −0.31

MIROC5 W 2000–2699/700 0.2/7.1/3.5 −0.24

MIROC-ESM X 1800–2330/531 2.9/22.3/13.6 −1.04

MIROC-ESM-CHEM Y 1850–2100/251 3.6/24.2/15.0 −0.82

MPI-ESM-LR Z 1850–2849/1000 1.5/17.6/8.6 0.01

MPI-ESM-MR a 1850–2849/1000 1.3/18.0/8.9 0.01

MRI-CGCM3 b 1851–2350/500 3.9/19.5/13.0 −0.03

NorESM1-M c 700–1200/500 5.6/19.9/13.6 −0.11
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Zunz et  al. (2013) may limit the utility of the models for 
understanding observed sea ice variability and trends.

Following on previous work (e.g. Hall and Visbeck 2002; 
Lefebvre et  al. 2004; Sen Gupta and England 2006), we 
investigate the relationship of sea ice to variability in the 
SAM. Here we define a SAM index as the principal com-
ponent of the first empirical orthogonal function (EOF) of 
sea level pressure (SLP) for 20–90S (following Thompson 
and Wallace 2000). To compute the SAM index we use the 
Climate Variability Diagnostic Package described in Phil-
lips et al. (2014). The principal component timeseries from 
the respective models is normalized such that a one unit 
SAM variation denotes a one-sigma change. We assess sea 
ice relationships with both an annual mean SAM index and 

an austral summer (DJF) index. The austral summer analy-
sis is used because that is the time period that is influenced 
by ozone loss and exhibits SAM trends in the late twentieth 
century. As with sea ice metrics, the simulation of SAM vari-
ability differs across the models both in the spatial pattern 
of SAM anomalies and characteristics of the SAM time-
series. For example, as shown in Fig. 3 for several illustra-
tive models, some simulate considerable regional asymmetry 
in SAM-related SLP anomalies whereas others have a more 
zonal structure. The location of maximum SAM-related 
SLP gradients, and hence zonal wind anomalies, also dif-
fers across the models. This is consistent with previous 
work (Raphael and Holland 2006; Swart et al. 2015) that has 
assessed SAM variability within CMIP5 and other models.

To assess the relationship between sea ice and SAM var-
iations, we use the method of Kostov et al. (2016), which 

Table 2   Information on the twentieth century CMIP5 simulations 
used in the analysis

Model name Number of members Ozone forcing

ACCESS1-0 2 P (Cionni et al. 2011)

ACCESS1-3 3 P (Cionni et al. 2011)

Bcc-csm1-1 3 P (Cionni et al. 2011)

CanESM2 5 P (Cionni et al. 2011)

CCSM4 6 P (Lamarque et al. 
2011)

CESM1-WACCM 1 Interactive

CESM1-CAM5 2 P (Lamarque et al. 
2011)

CMCC-CESM 1

CMCC-CM 1 P (Cionni et al. 2011)

CMCC-CMS 1

CNRM-CM5 5 Interactive

CSIRO-Mk3-6-0 8 P (Cionni et al. 2011)

EC-EARTH 5 P (Cionni et al. 2011)

GISS-E2-H 2 P (Hansen et al. 2007)

GFDL-CM3 5 Interactive

GFDL-ESM2G 1 P (Cionni et al. 2011)

GFDL-ESM2 M 1 P (Cionni et al. 2011)

HadGEM2-CC 1 P (Cionni et al. 2011)

Inmcm4 1 P (Cionni et al. 2011)

IPSL-CM5A-LR 5 P (Szopa et al. 2013)

IPSL-CM5A-MR 3 P (Szopa et al. 2013)

IPSL-CM5B-LR 1 P (Szopa et al. 2013)

MIROC5 5 P (Kawase et al. 2011)

MIROC-ESM 3 P (Kawase et al. 2011)

MIROC-ESM-CHEM 1 Interactive

MPI-ESM-LR 3 P (Cionni et al. 2011)

MPI-ESM-MR 3 P (Cionni et al. 2011)

MRI-CGCM3 3 P (Cionni et al. 2011)

NorESM1-M 3 P (Lamarque et al. 
2011)

CESM-LE 40 P (Marsh et al. 2013)
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Fig. 1   The a mean and b standard deviation of monthly Antarctic sea 
ice extent from pre-industrial control simulations of the CMIP5 mod-
els listed in Table 1. The color legend for the various models can be 
found on Fig. 4. The 1979–2012 average from satellite observations 
(Fetterer et al. 2002) are denoted by the diamonds
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was applied to the sea surface temperature (SST) response 
to SAM variability. This method assumes that the sea ice 
response to SAM forcing can be estimated from the convo-
lution of an impulse response function with a previous his-
tory of time-varying SAM anomalies (see also Hasselmann 
et al. 1993). This is estimated for a discrete timeseries as:

where SI is the estimated sea ice variable response at time 
t, ε is residual noise, τi is the time lag which is cut off at 

(1)SI(t) =

I∑

i=0

G(τi)SAM(t − τi)�τ + ε, with τI = τmax

some maximum value τmax (set to 20  years), and �τ is 
the time interval which is equal to one year. G(τi) is the 
impulse response function (a quasi Green’s function) of sea 
ice following an impulse perturbation of the SAM index. It 
is estimated using a linear least-squares regression of the 
sea ice variable against the lagged SAM index such that 
G(τi) equals the regression coefficient of a sea ice variable 
on the SAM index at a time lag of τi.

To assess the sea ice response (SI) to a one-sigma step 
change in the SAM, Eq.  (1) is solved subject to a SAM 
value of one (e.g. SAM(t − τi) = 1) and hence the G(τi) 
values are just summed over the τ time lags. We refer to 
this as the “step function response”. This analysis is done 
separately for each of the CMIP5 models using the entire 
length of the pre-industrial control simulation timeseries, 
resulting in a different estimated SI for each model. For sea 
ice variables, we assess the response function for both the 
total southern hemisphere sea ice extent and the longitude-
dependent sea ice area. More information on the method 
of analysis and error estimates is available in Kostov et al. 
(2016).

The step function response of the total annual mean 
southern hemisphere sea ice extent to annual SAM anom-
alies is shown in Fig.  4a. All the models except for two 
(models F and E) tend to simulate an expansion of sea 
ice during a year with a positive SAM perturbation (the 
zero lag response shown in Fig. 4b). If monthly ice extent 
anomalies and the DJF SAM are considered (not shown), 
all models (including F and E) simulate increased sea ice 
extent within the months following an austral summer 
(DJF) SAM perturbation. This increase in sea ice is con-
sistent with an increased equatorward Ekman transport due 
to enhanced westerly winds. This is identified by Ferreira 
et al. (2015) as the fast timescale response. Here we diag-
nose the SAM westerly wind response in the models from 
the maximum gradient in the zonal mean SAM-related SLP 
anomalies. Differences in the SAM-related westerly wind 
strength are significantly correlated (R = 0.46) to the mag-
nitude of the initial annual sea ice extent increase. This 
indicates that models with stronger SAM related westerly 
wind anomalies tend to have a larger initial ice increase.

At a five year time lag, just over half of the models 
simulate a decrease in annual Antarctic ice extent associ-
ated with a positive step change in the SAM (Fig. 4c). At 
lags longer than 10  years, over 70% of the models simu-
late a loss of sea ice extent associated with a positive SAM 
(Fig.  5a). About 25% of the models never exhibit a tran-
sition from ice gain to ice loss. In general, models which 
have an earlier cross-over time have a greater propensity to 
lose ice at a given time lag. The simulated loss of sea ice 
extent at longer timescales agrees with the long timescale 
response identified in Ferreira et al. (2015) which is related 
to increased vertical ocean heat transport in ice covered 
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regions. However, the magnitude of this low-frequency 
sea ice response (e.g. Fig. 4c) and the timescale at which 
the models transition from a positive to a negative sea ice 
response (Fig.  5b) differs considerably across the mod-
els. This is in general agreement with the results for SST 
anomalies shown by Kostov et  al. (2016) for a somewhat 

different subset of models. Indeed, if the 21 models which 
are common to both studies are considered, the ice and 
SST step function responses are significantly correlated at 
all time lags. For example, at the 5-year time lag, they are 
correlated at R = −0.81 indicating that models with a ten-
dency to lose ice following a positive SAM anomaly also 

Fig. 4   a The response of the 
total annual mean southern 
hemisphere sea ice extent to a 
one-sigma step perturbation in 
the annual mean SAM for the 
CMIP5 models analyzed. The 
values are shown as a function 
of time lag in years where the 
ice lags the SAM. b The step 
response in year 0 across the 
various CMIP5 models. c The 
step response in year 5 across 
the various CMIP5 models. 
Note that in panels b and c, 
the model values are shown in 
increasing order. The colors on 
the two panels indicate different 
models with the models desig-
nated on the x-axis. The colors 
for different models are consist-
ent across the panels and for dif-
ferent figures. A key is provided 
in Table 1 enabling individual 
models to be identified
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have a propensity for SAM-induced surface warming. As 
compared to the sea ice extent response, where the majority 
of models transition from ice expansion to ice contraction 
following the SAM, fewer of the models exhibit an actual 
crossover in the SST response from cooling at short time-
scales to warming at longer timescales. This may be related 
to the different region associated with the analysis as the 
SST is averaged from 55–70S and includes areas north of 
the ice edge. As discussed by Kostov et al. (2016), some of 
the discrepancies across the models in their SAM response 
are associated with different mean ocean conditions, which 

influence how wind anomalies modify ocean heat transport. 
As indicated by the high correlation between the ice and 
SST step function response, mean ocean simulation biases 
almost certainly also affect the sea ice extent response 
within these models.

The sea ice step function response to a SAM pertur-
bation is not spatially uniform but varies with longitude 
(Fig.  6). At short timescales, in the multi-model mean, 
ice area increases around most of the Antarctic continent 
except near the Antarctic Peninsula. The increases are larg-
est around 220E in the Pacific sector. Some aspects of the 
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Fig. 6   Metrics of the longitude-dependent annual mean ice area 
response to a one sigma step increase in the annual mean SAM 
including, the a CMIP5 multi-model mean ice area response and b 
across-model standard deviation in the ice area response. Values are 
shown as a function of longitude and time lag. The continental outline 
of Antarctica is shown on the bottom of the figure for reference. In a 
red colors indicate expansion of ice and blue colors indicate contrac-
tion



Sensitivity of Antarctic sea ice to the Southern Annular Mode in coupled climate models

1 3

spatial character of the sea ice area response are retained 
for all timescales. For 200–240E, increases in sea ice are 
present in the multi-model mean at all time lags analyzed, 
although this differs across the individual models. At 
longer timescales, the Weddell Sea region exhibits the larg-
est multi-model mean ice loss associated with the SAM but 
also the largest across-model uncertainty. The ice response 
in the Weddell Sea is significantly correlated to the total 
ice extent response, indicating that this region is a large 
contributor to the total ice extent step function response at 
longer timescales (Fig. 7).

The spatial structure of the ice response to a SAM 
perturbation is associated with the non-zonal character 
of SAM anomalies. In observations and many models, 
SAM anomalies project onto variability in the Amundsen 
Sea Low (ASL), which is a climatological feature in the 
region between the Antarctic Peninsula and the Ross Sea 
(for more information on the ASL see Fogt et al. 2012 and 
Turner et al. 2013b). This leads to anomalous local merid-
ional winds, with enhanced northward winds in the Ross 
and Amundsen Sea and enhanced southward winds in the 
Bellingshausen and Weddell Seas. These anomalous winds 
modify ice, ocean, and atmospheric transport and affect the 
spatial distribution of the sea ice area response. The mod-
els differ in their simulation of these non-annular aspects 
of the SAM and are typically more annular than the obser-
vationally-based reanalysis data (Fig.  8a), although this 
may be influenced by the different length of the timeseries 
available. To quantify the non-annular SAM variations, we 
assess the departures of the SAM-related SLP anomalies 
from their respective zonal means within each model at 
60S (Fig. 8a). This is interpolated to a 5-degree longitude 
grid for consistency. A measure of the non-annular compo-
nent of the SAM is computed as the standard deviation of 
these SLP anomalies with longitude. This metric is strongly 
related to the strength of the low SLP anomalies that are 
associated with the ASL and to the associated anomalous 
geostrophic meridional winds.

Differences across the models in the spatial pattern of 
sea ice response are significantly correlated to this metric of 
the non-annular component of the SAM (Fig. 8b). Models 
with a less annular SAM tend to exhibit increased ice in the 
Ross and Amundsen Sea and reduced ice near the Antarctic 
peninsula immediately following a SAM anomaly. Signifi-
cant correlations are also retained within the Pacific sector 
for longer timescales, with negative correlations emerging 
in the western Ross Sea at a 5-year time lag. This analy-
sis suggests that the meridional component of the SAM-
associated winds, which are related to the ASL variation, 
is important for the resulting spatial structure of sea ice 
anomalies. This has some consistency to observed relation-
ships between sea ice and SAM variability (Fig. 8c), which 
indicates similar regional sea ice anomalies associated 

with SAM variations on interannual timescales. This sug-
gests that those models with a less annular SAM structure 
may exhibit a more realistic sea ice response on short time-
scales. However, within the models, this has little impact 
on the total southern hemisphere sea ice extent, because in 
models with a stronger projection of SAM anomalies onto 
the ASL and hence a less zonal structure, both enhanced 
northerly and southerly winds occur and lead to compen-
sating sea ice area anomalies.

4 � Twentieth century simulations

4.1 � SAM and sea ice conditions

Over the late twentieth century, significant increases in the 
SAM have been observed in austral summer. This is associ-
ated with reductions in stratospheric ozone caused by the 
use of chlorofluorocarbons (CFCs) and to a lesser extent, 
with rising greenhouse gases (e.g. Arblaster and Meehl 
2006; Thompson et al. 2011). Here we consider twentieth 
century climate model simulations that prescribe histori-
cal forcings, including greenhouse gases, volcanic emis-
sions, solar variability at the top of the atmosphere, and 
ozone concentrations. For the stratospheric ozone changes, 
the models either prescribe or simulate ozone based on the 
observed record, although the datasets and time evolution 
of ozone change can differ among the models (Table  2). 
Eyring et  al. (2013) further discuss the ozone changes 
within the CMIP5 models and some associated impacts. 
Here we consider whether simulated changes in the DJF 
SAM during the twentieth century, which are affected by 
ozone loss, can influence Antarctic sea ice trends within the 
climate models.

Climate models suggest that there is considerable inter-
nal variability due to the chaotic nature of the climate sys-
tem even on multi-decadal timescales (e.g. Deser et  al. 
2012). This is true for many climate metrics and modes of 
variability, including the SAM. For example, Fig. 9a shows 
multi-decadal DJF SAM trends from the CESM-CAM5 
Large Ensemble (CESM-LE; Kay et al. 2015) simulations 
for the pre-industrial and twentieth century climates. In 
the twentieth century, the CESM-LE runs use prescribed 
ozone as calculated by a high-top coupled chemistry–cli-
mate model (Marsh et al. 2013). This ozone forcing agrees 
well with observations. The simulations also apply time-
varying greenhouse gas concentrations, volcanic emissions, 
and solar variability at the top of the atmosphere based on 
the historical record. The differences among the twentieth 
century runs from the CESM-LE are purely attributable 
to simulated internal variability as all runs use the same 
model and same forcing and only differ slightly at a round-
off level perturbation in their initial state in 1920.
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Fig. 7   The non-annular component of the annual SAM from the 
twentieth century reanalysis (upper left panel) for 1979–2012 and 
some select models consistent with Fig. 3. The non-annular compo-

nent is computed as the difference of the SAM-related SLP anomalies 
from their zonal mean. The lined contour interval is 0.5 hPa and the 
zero contour is not shown. The dotted line indicates 60S latitude



Sensitivity of Antarctic sea ice to the Southern Annular Mode in coupled climate models

1 3

In response to anthropogenic forcing, the CESM-LE DJF 
SAM trends exhibit a discernible shift to positive values 
in the late twentieth century, which is consistent with the 
observed trend (Fig. 9a). The simulated mean trend for the 

1975–2004 period is significantly different from zero at the 
95% level. However, internal variability as diagnosed from 
the spread of trends across different ensemble members is 
still considerable, with a range of trends from −0.009 to 

Fig. 8   a The SAM-associated 
SLP at 60S for the PI control 
simulations of the CMIP5 
models (colored lines) and from 
the twentieth Century reanalysis 
(black dash line) and the ERA-
Interim reanalysis data (Dee 
et al. 2011; black line). The 
reanalysis data are computed for 
1979–2012. b The correlation 
of the ice area step function as 
a function of longitude with a 
metric of the non-annular com-
ponent of the SAM as described 
in the text. Analysis is shown 
for the step function at 1 year 
lag (black) and 5 years lag 
(red). Values significant at the 
95% level are indicated by the 
diamonds. c The correlation of 
the observed annual 1979–2012 
detrended longitudinal ice area 
with the annual detrended SAM 
index obtained from the ERA-
Interim reanalysis (solid) and 
the twentieth century reanalysis 
(dash). The dashed line indi-
cates the 95% significance level
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0.066 standard deviations per year across the members for 
1975–2004. The CMIP5 models as a group also simulate 
a significant shift in the 30-year trends to positive values 
for the 1975–2004 period as compared to trends in their 
pre-industrial climates (Fig. 9b). The late twentieth century 
trend distribution is wider than the CESM-LE, with a range 
of −0.034 to 0.079 standard deviations per year for the 
1975–2004 period. This wider spread is likely due in part 
to different prescribed forcing, including ozone, among 
the models and different model physics. However, as the 
comparison to CESM-LE suggests, internal variability also 
likely plays a large role in the variation in DJF SAM trends 
across the CMIP5 ensemble.

The distribution of annual sea ice extent trends from the 
CESM-LE and CMIP5 ensembles are shown in Fig. 10. As 
discussed in previous studies (Mahlstein et al. 2013; Turner 
et al. 2013a), the scatter in twentieth century sea ice trends 
across the climate models is large, with most simulations 
(and all members of the CESM-LE) showing ice loss over 
the 1975–2005 time period. This is in contrast to observa-
tions, which show a small increasing trend in the total Ant-
arctic sea ice extent over the satellite record since 1979 
(e.g. Simmonds 2015). As indicated by the CESM-LE, 
internal variability can have a strong impact on the spread 
of trends from individual climate model realizations (see 
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Fig. 9   The frequency of occurrence of 30  year trends in the DJF 
SAM timeseries from the a CESM-LE runs and b CMIP5 runs. The 
trends are in units of standard deviation per year. Shown are all pos-
sible trends from the pre-industrial control runs (light grey), trends 
from ensemble members for 1975–2004 (black lines), and the 1979–
2008 trend from the observationally-based twentieth century reanaly-
sis (Compo et al. 2011) in red
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Fig. 10   Thirty year trends in annual mean total Antarctic sea ice 
extent from a the CESM-LE and b the CMIP5 ensemble. The ice 
trends are in units of 106 km2 per year. The grey shading indicates the 
distribution of all possible 30 year trends in the pre-industrial control 
simulations. The black bars are the distribution of trends from 1975 
to 2004. The red line shows the 1979–2008 observed trend (Fetterer 
et al. 2002) for reference. The dotted line indicates a trend of zero
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also Polvani and Smith 2013). This likely contributes to 
an important fraction of the spread in sea ice extent trends 
among the different CMIP5 models. However, given the 
wider spread in trends from the CMIP5 simulations, differ-
ences in the prescribed external forcing and model struc-
ture also likely contribute.

4.2 � How are the twentieth century SAM timeseries 
and sea ice trends related?

Figure  11 shows the correlation of DJF SAM trends and 
annual mean sea ice extent trends from the CESM-LE and 
from the CMIP5 simulations. In general, for the CESM-LE, 

Fig. 11   The a correlation of 
the annual mean sea ice trends 
and DJF SAM trends from the 
CESM-LE (black) and CMIP5 
simulations (red) for differ-
ent length trends. All trends 
run through 2005 and start at 
the year shown on the x-axis. 
b A scatter plot of the annual 
mean 1970–2005 sea ice trends 
relative to the DJF SAM trends 
in the CESM-LE. c Similar 
to panel b but for the CMIP5 
simulations
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the spread in DJF SAM trends across the ensemble mem-
bers is negatively correlated with the ice extent trends for 
timescales longer than about 25 years in the late twentieth 
century. These correlations only reach about 0.4, which is 
significant at the 95% level, but still quite small. Clearly 
other factors contribute to the spread in long-term sea ice 
trends across the CESM-LE members, but internal low-fre-
quency variations in the SAM do appear to play a modest 
role. Members with larger DJF SAM trends tend to have 
enhanced ice loss in the twentieth century. This appears 
somewhat different from the analysis of the CMIP5 mod-
els. When the collection of CMIP5 models is considered 
(Fig.  11c), little correlation exists between the DJF SAM 
trends and sea ice extent trends. Taken at face value, this 
suggests little influence of the SAM on sea ice trends 
within the twentieth century in the models.

However, as noted in Sect. 3, the models differ consid-
erably in the simulated response of sea ice to a SAM per-
turbation. We can account for this in the twentieth century 
simulations by convolving the twentieth century SAM 
timeseries with the response function obtained from the PI 
control runs. More specifically, we use Eq.  (1) to provide 
an estimate of a sea ice property (SI) by multiplying the 
impulse response function (G(τi)) estimated from the PI 
control simulations by the time-varying twentieth century 
DJF SAM anomalies at the appropriate time lag and sum-
ming this over the time lags. This means that the computed 
ice property is dependent on the prior 20 year evolution of 
SAM variations This provides an estimate of the sea ice 
variations in the twentieth century that can be attributed 
to the transient DJF SAM anomalies. This analysis is per-
formed for all twentieth century ensemble members of the 
CMIP5 integrations that are available (Table 2) and for all 
members of the CESM-LE.

Figure  12 shows the correlation of the trends in the 
twentieth century annual mean Antarctic sea ice extent 
and the trends in the SAM-related sea ice extent response 
obtained through the convolution analysis. When the dif-
ferent model responses to the SAM are accounted for, a 
significant relationship emerges for trends longer than 
about 20 years. This indicates that differences in the twen-
tieth century transient SAM anomalies and the respective 
model responses to those anomalies are correlated with the 
spread of sea ice extent trends in the CMIP5 simulations 
at about R = 0.5. Comparing Figs. 11 and 12, the CESM-
LE analysis also shows higher correlations for the convo-
lution analysis. Given that all CESM-LE members use the 
same impulse response function (G(τi)) in the convolution 
analysis, this suggests that the transient nature of the SAM 
anomalies, and not just the linear trends, are important for 
the simulated sea ice response.

Assuming that the models simulate a realistic sea ice 
response to SAM variations, we should be able to obtain an 

estimate of the effect of SAM variability on the observed 
sea ice by performing a similar convolution analysis using 
the modeled response function but subject to the observed 
SAM timeseries. This would account for both the effects of 
external forcings and the internal variability that occurred 
in the observed atmosphere. The convolution analysis 
approximates sea ice extent based on SAM conditions 
during the previous 20 years. As such, a long and consist-
ent observationally-based SAM index is needed for this 
analysis (for example, to assess sea ice conditions start-
ing in 1979, requires SAM information starting in 1960). 
This excludes the use of many reanalysis products because 
they are short in length and/or show spurious trends associ-
ated with changing data input (e.g. Bromwich et al. 2007; 
Swart et al. 2015). As such, we perform the analysis using 
a SAM index derived from the twentieth century reanalysis 
(Compo et al. 2011), which assimilates only surface pres-
sure observations. Prior to the International Geophysical 
Year in 1957, these observations were particularly sparse in 
the high southern latitudes leading to larger uncertainty in 
the reanalysis data and so we limit our analysis to the post 
1957 period. To test the influence of the observationally-
based data product, we repeat the analysis using a station-
based estimate of the SAM index that is available since 
1957 (Marshall 2003). For the period from 1957 to 2005, 
the DJF SAM timeseries from these two different datasets 
are correlated at R = 0.90.

Shown in Fig. 13 is a convolution analysis using the two 
observationally-based estimates of the DJF SAM time-
series for both the total Antarctic sea ice extent and the 
longitude dependent sea ice area response. The analysis 
is performed using the response functions from the indi-
vidual models and then averaged to obtain a multi-model 
mean response. This multi-model mean response indicates 
DJF SAM-driven ice loss in the annual mean for total ice 
cover trends through 2005 and for ice area at essentially 
all longitudes for the 1979–2005 trends. However, as indi-
cated on the figures, the uncertainty associated with the 
different response functions from the models is consider-
able. Additional uncertainty arises from the determination 
of the observed SAM evolution. Comparing between the 
reanalysis and station-based SAM results (Fig. 13a–d), the 
trend in the sea ice response from 1979 to 2004 is typically 
larger when using the twentieth century reanalysis data. 
This is consistent with a larger DJF SAM trend in that 
data. However, this appears to be a considerably smaller 
source of uncertainty than the model response functions 
themselves.

Observed trends in sea ice are influenced by SAM-
driven variations, the effects of other forcings, and internal 
variability. As such, a discrepancy between the observed 
trends and analysis shown in Fig.  13 could merely indi-
cate the influence of non-SAM variations and may not 
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necessarily indicate an issue with the models. Nevertheless, 
the observed trends generally are within the rather large 
standard deviation in the sea ice response trends from the 
convolution analysis. The primary exception to this is in 
the western Ross Sea region, where the observed trends are 
positive and well outside the multi-model spread. Notably, 

observed ice trends within this region were also highlighted 
by Hobbs et al. (2015) as being outside simulated variabil-
ity. This indicates that in the western Ross Sea either the 
model simulated response to the SAM is problematic or 
that other forcings are playing a strong role in the observed 
Ross Sea ice trends.

Fig. 12   The a correlation of the 
annual mean sea ice trends and 
trends in the SAM-related sea 
ice response obtained through 
a convolution analysis for the 
CESM-LE (black) and CMIP5 
simulations (red). Correlations 
are computed for different 
length trends. All trends run 
through 2005 and start on the 
year shown on the x-axis. Sig-
nificant values are indicated by 
the diamonds. b A scatter plot 
of the annual mean 1970–2005 
sea ice trends and 1970–2005 
trend in the SAM-related sea ice 
response for the CESM-LE. c 
Similar to panel b except for the 
CMIP5 simulations
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5 � Conclusions

The Southern Annular Mode (SAM) is the dominant mode 
of variability in the extratropical Southern hemisphere (e.g. 
Thompson and Wallace 2000) and has exhibited a posi-
tive trend in the late twentieth century largely in response 
to ozone loss (e.g. Marshall 2003). Both observational 
and modeling studies have documented that the SAM has 
numerous effects on the surface climate, including variabil-
ity in sea ice and ocean conditions (e.g. Hall and Visbeck 
2002; Lefebvre et al. 2004; Sen Gupta and England 2006; 
Stammerjohn et  al. 2008; Sigmond and Fyfe 2010; Bitz 
and Polvani 2012). However, results of these studies have 
been seemingly at odds on whether a positive SAM leads 
to increased (e.g. Hall and Visbeck 2002; Sen Gupta and 
England 2006) or decreased (e.g. Sigmond and Fyfe 2010; 
Bitz and Polvani 2012) Antarctic sea ice.

If the time evolution of the sea ice response is con-
sidered, these disparate results can be reconciled (Fer-
reira et al. 2015). In response to a positive SAM anomaly, 

increased equatorward Ekman drift results, which increases 
Antarctic sea ice extent. Enhanced upwelling near the con-
tinent also occurs, which brings warmer subsurface waters 
to the surface and contributes to enhanced warming and ice 
melt. As documented by Ferreira et al. (2015), the relative 
importance of these factors is time dependent, leading to 
increased sea ice extent on short timescales but decreases 
in the longer term. However, in this context, the definition 
of short and long timescales is somewhat nebulous and 
even for the two models analyzed by Ferreira et al. both the 
timescale and overall magnitude of the response differed.

Here we have characterized the response of sea ice to 
SAM anomalies across a large set of CMIP5 pre-industrial 
control simulations. This analysis indicates that climate 
models do typically simulate a two-timescale response with 
an initial increase in sea ice extent followed by an even-
tual decline. This is consistent with other recent studies 
that point to ocean warming and ice loss on the longer term 
(e.g. Sigmond and Fyfe 2014; Kostov et  al. 2016). Our 
results show that the ice response is not spatially uniform 
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Fig. 13   Trends in the sea ice response to estimates of the observed 
DJF SAM as obtained through the convolution analysis. a Trends 
in the total ice extent response to the DJF SAM from the twentieth 
century reanalysis. Shown are values using the individual model 
response functions (thin colored lines), the multi-model mean (thick 
black line) and the standard deviation (grey shading). The dashed line 
shows the zero line. The line with diamonds shows the observed ice 

extent trend. Trends run through 2004 with the start year for the trend 
shown on the x-axis. b The same as panel a but using the normalized 
station-based DJF SAM index. c The 1979–2004 trend in the ice area 
response to the DJF SAM from the twentieth century reanalysis as a 
function of longitude for the multi-model mean (thick black line), the 
standard deviation (dashed line) and the observed trend (red line). d 
The same as panel c but using the station-based DJF SAM index
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however, with the Antarctic Peninsula region exhibiting 
decreases and the West Pacific region increases in sea ice 
area at all time lags in the multi-model mean response. 
After about 5 years, the ice area decreases in the Peninsula 
region extend to the entire Weddell Sea and dominate the 
total ice extent response, leading to the overall ice declines. 
Differences across the models in the regional character of 
sea ice change are associated with the non-annular structure 
of SAM anomalies, and in particular differences across the 
models in how SAM variability projects onto the Amund-
sen Sea Low (ASL). As discussed by Hosking et al. (2013), 
many of the CMIP5 models simulate important biases in 
their depiction of the ASL, which could affect this aspect of 
the simulated sea ice forcing. However, while this is impor-
tant for the spatial variations of the sea ice response, the 
resulting ice anomalies are largely compensating and so the 
non-annular structure of the simulated SAM has little influ-
ence on the total ice extent response. At long timescales, 
the Weddell Sea region dominates the across-model uncer-
tainty in the sea ice response indicating that simulating bet-
ter conditions within this region is needed.

In response to a step increase in the SAM, the major-
ity (about 70%) of the models transition from ice gain to 
ice loss within 7 years. However, this varies considerably 
across the models, with several models transitioning within 
the first year and others simulating ice gain for all time 
lags considered (out to 20  years). The magnitude of the 
initial ice extent gain is significantly related to the strength 
of the anomalous SAM-related westerlies, indicating that 
adequately simulating SAM characteristics is important 
for the ice response. A complementary study (Kostov et al. 
2016), which considers the SST relationships to SAM vari-
ations, also indicates that ocean model discrepancies are 
important in that different mean ocean conditions influence 
how effective anomalous winds are at driving ocean heat 
transport changes. A comparison to the Kostov et al. results 
suggests that these mean model biases also affect the sea 
ice response to the SAM. Our regional analysis indicates 
that biases within the Weddell Sea region may be particu-
larly important for differences in the long timescale sea ice 
response across models.

The different model responses to SAM variations, as 
diagnosed from the pre-industrial control runs, have impli-
cations for the transient climate response in the twentieth 
century. For the 1975–2004 period, the CMIP5 models 
simulate a discernible shift to positive SAM trends in the 
DJF season. This is consistent with prescribed or simu-
lated ozone loss in the models. However, there is also a 
large spread in the trends across different simulations, 
much of which may be attributable to internal variability 
as diagnosed from a large ensemble of simulations from a 
single model. A simple correlation analysis suggests little 
influence of the different simulated SAM trends on sea ice 

extent. However, if the different model SAM responses are 
accounted for, a significant relationship emerges. This indi-
cates that different simulated transient SAM variations can 
account for a significant fraction of the late twentieth cen-
tury spread in sea ice extent trends in the models provided 
that the different model responses are considered.

Consideration of the modeled SAM responses acting 
on the observed DJF SAM timeseries suggests that vari-
ations in the observed SAM have contributed to a modest 
decrease in ice extent, with reductions occurring at all lon-
gitudes, during the late twentieth century. However, given 
the large uncertainty in the modeled response to SAM vari-
ations, the actual influence of SAM variations for twentieth 
century ice conditions remains unclear. Better constraints 
on the simulated sea ice response to the SAM are needed 
to more accurately simulate and understand its influence 
on trends in the Antarctic. As discussed by Kostov et  al. 
(2016) biases in the mean ocean state appear to play an 
important role and should be the subject of future model 
improvements. Work also is needed to diagnose the rela-
tive importance of other climate model biases and possible 
missing processes on the SAM response.
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