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Abstract17

We examine the 1979-2014 Southern Ocean (SO) sea surface temperature (SST) trends18

simulated in an ensemble of coupled general circulation models and evaluate possible19

causes of the models’ inability to reproduce the observed 1979-2014 SO cooling. For20

each model we estimate the response of SO SST to step changes in greenhouse gas (GHG)21

forcing and in the seasonal indices of the Southern Annular Mode (SAM). Using these22

step-response functions, we skillfully reconstruct the models’ 1979-2014 SO SST trends.23

Consistent with the seasonal signature of the Antarctic ozone hole and the seasonality of24

SO stratification, the summer and fall SAM exert a large impact on the simulated SO SST25

trends. We further identify conditions that favor multidecadal SO cooling: 1) a weak SO26

warming response to GHG forcing; 2) a strong multidecadal SO cooling response to a27

positive SAM trend; 3) a historical SAM trend as strong as in observations.28

1 Introduction29

Unlike the rapidly warming Arctic, the Southern Ocean (SO) exhibited a notable30

multidecadal cooling trend from the beginning of the satellite record in 1979 through31

2014 (Figure 1a, [Fan et al., 2014; Armour and Bitz, 2015; Armour et al., 2016; Jones et32

al., 2016]). Most historical simulations with state-of-the-art coupled models participat-33

ing in the Climate Modeling Intercomparison Project phase 5 (CMIP5) do not reproduce34

the negative SO sea surface temperature (SST) trends and instead show gradual warm-35

ing around Antarctica (Figure 1b). Moreover, the intermodel spread in simulated SO SST36

trends within the CMIP5 ensemble is large and comparable to the difference between the37

ensemble mean and the observations (Figure S1 of the Supporting Information). In this38

study we attempt to evaluate the mechanisms governing the 1979-2014 SO SST trends39

in CMIP5 historical simulations and interpret both the intermodel diversity and the SO40

warming bias relative to observations.41

Marshall et al. [2015] relate the observed Antarctic-Arctic warming asymmetry un-48

der greenhouse gas (GHG) forcing to the meridional overturning circulation advecting the49

heat anomaly in the upper ocean northward like a passive tracer. The Southern Ocean is a50

region where the background circulation upwells deep water masses unmodified by GHG51

forcing and dampens the warming rate at the surface [Marshall et al., 2015; Armour et52

al., 2016]. CMIP5 experiments unanimously show a gradual positive SO SST response53

–2–



Confidential manuscript submitted to Geophysical Research Letters

 

 

 

 

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

1980 1990 2000 2010

−5 
−4 
−3 
−2 
−1 

0 
1 
2 
3 
4 
5 

S
A

M
 In

de
x 

 [ 
m

ba
r 

]

1980 1990 2000 2010

−5 
−4 
−3 
−2 
−1 

0 
1 
2 
3 
4 
5 

S
A

M
 In

de
x 

 [ 
m

ba
r 

] d)

(oC/
decade)

(oC/
decade)

a) b)

CMIP5 Models

c)

SST SST

Observationally Based

Figure 1. a) Observed SST trends [◦C/decade] for the 1979-2014 period based on the HadISST dataset;

b) Simulated SST trends [◦C/decade] for the 1979-2014 period: an ensemble mean of 19 CMIP5 historical

experiments extended under the RCP8.5 scenario; c) Observationally-based timeseries from HadSLP2r (blue,

solid) and ERA Interim (green, dashed) of the December-May SAM index [mbar]. Straight lines show the

linear trends; d) Same as c) but based on the CMIP5 simulations: ensemble mean (blue), ensemble mean

trend (red), and all individual model trends (gray).
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to GHG forcing, but they disagree on the magnitude of this regional response with some54

models warming much faster than others [Marshall et al., 2014].55

In addition to GHG forcing, stratospheric ozone depletion and unforced atmospheric56

variability are also potential drivers of historical SO SST trends. The observed 1979-57

2014 SO cooling took place during a period of poleward intensification of the Southern58

Hemisphere westerly winds, as reflected in the tendency towards a more positive South-59

ern Annular Mode (SAM) index [Thompson et al., 2011] (See also Figure 1c). Consistent60

with the seasonal signature of the Antarctic ozone hole, the strongest positive trend in the61
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1979-2014 SAM index is observed during the austral summer and fall: December-May62

(Figure 1c). It is noteworthy that there is uncertainty in the magnitude of the historical63

SAM trend [Swart et al., 2015]. Here we consider two different data sets that provide dis-64

tinct estimates of the observed SAM trend (Figure 1c): the HadSLP2r gridded observa-65

tions [Allan and Ansell, 2006] and the ERA-Interim reanalysis [Dee et al., 2011].66

There is also substantial disagreement among the SAM trends simulated by models67

[Thomas et al., 2015] and large differences between CMIP5 models and the observation-68

ally constrained products (Figure 1c,d). A subset of CMIP5 historical simulations overesti-69

mate the observed trend in the SAM. In contrast, other CMIP5 models underestimate both70

the HadSLP2r and the ERA Interim SAM trend (Figure 1c,d). Negative biases in the sim-71

ulated SAM trends may be attributed to equatorward biases in the climatological position72

of the Southern Hemisphere surface jet across CMIP5 [Bracegirdle et al., 2013]. The ear-73

lier generation of CMIP3 models exhibited a similar bias in the location of the Southern74

Hemisphere zonal wind stress maximum [Sen Gupta et al., 2009]. CMIP models are also75

prone to underestimating the historical rate of stratospheric ozone depletion [Neely et al.,76

2014], which projects onto the seasonal SAM anomalies.77

Is there a causal connection between a given model’s failure to reproduce the magni-78

tude of the positive SAM trend and its SO warming bias relative to observations? Models79

and observations show that a strengthening and a poleward shift of the westerly winds in-80

duce, within weeks, a negative SST response around Antarctica [Hall and Visbeck, 2002;81

Russell et al., 2006; Fyfe et al., 2007; Ciasto and Thompson, 2008; Marshall et al., 2014;82

Purich et al., 2016]]. This fast cooling response to SAM is driven by anomalous north-83

ward Ekman drift of colder water [Ferreira et al., 2015; Kostov et al., 2017], but some84

models suggest that anomalous air-sea heat fluxes also play an important role [Oke and85

England, 2004]. Overall, coupled general circulation models (GCMs) consistently show a86

negative SST response to SAM on timescales shorter than 2 years [Kostov et al., 2017].87

However, the SO SST in many GCMs does not respond monotonically to a step-88

increase in the SAM index but instead exhibits a two-timescale response: the fast SO SST89

cooling is followed by gradual warming [Ferreira et al., 2015; Kostov et al., 2017]. The90

slow response involves a more complicated mechanism: SAM-induced Ekman upwelling91

[Bitz and Polvani, 2012], partially compensated by eddy transport, gives rise to subsurface92

warming that is in turn communicated to the mixed layer on longer timescales [Ferreira et93
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al., 2015]. The timescale of transition between the fast (cooling) and the slow (warming)94

response to a step change in the SAM varies considerably across CMIP5 step-response95

functions, and several models do not cross over to a positive SO SST response at all. Fer-96

reira et al. [2015] find that the transition from initial cooling to long-term warming in the97

step-response functions is model-dependent and can be explained in terms of the back-98

ground ocean temperature gradients on which the anomalous wind-induced circulation99

acts. In turn, Kostov et al. [2017] relate the intermodel diversity in the fast and slow SO100

SST responses to biases in the horizontal and vertical temperature gradients in the mod-101

els’ SO climatology. Eddy compensation and air-sea heat fluxes likely also affect the slow102

response to SAM and contribute to the intermodel spread.103

Here we use linear convolution theory [Hasselmann et al., 1993] to demonstrate that104

differences in the models’ inherent SO SST responses to the seasonal SAM indices and105

GHG forcing affect the GCMs’ ability to reproduce the 1979-2014 SO SST cooling. We106

also examine how biases in the simulation of SAM trends affect the evolution of SO SST107

anomalies in CMIP5 historical experiments. We focus particularly on the December-May108

seasonal SAM as that is the period of the year when stratospheric ozone depletion most109

strongly affects the atmospheric circulation near the surface. We explicitly do not consider110

any drivers of SO SST changes other than GHG forcing and SAM. Our analysis accounts111

for the impact of freshwater flux anomalies on stratification and SSTs, but only to the ex-112

tent that this is associated with changes in the hydrological cycle induced by GHG forc-113

ing or SAM trends. We thus test the hypothesis that the December-May SAM along with114

GHG forcing can explain a large fraction of the intermodel differences in SO SST trends115

across CMIP5 historical simulations. Understanding the diversity of model behavior helps116

shed light on the physical mechanisms driving the SO SST trends, as well as on possible117

reasons why CMIP5 models have been unable to capture the observed changes.118

2 Data and methods119

We consider four sets of numerical experiments performed with an ensemble of 19120

CMIP5 models: preindustrial (PI) control simulations, abrupt CO2 quadrupling exper-121

iments, historical simulations, and their extension under the RCP8.5 emission scenario122

[Taylor et al., 2012]. For all models, we analyze the first ensemble member of the PI con-123

trol simulation (r1i1p1). We regrid all GCM output to the same regular latitude-longitude124

grid and for each timeseries we remove the long-term linear drift of the corresponding125
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control simulations. We focus on the impact of GHG forcing and SAM on the historical126

evolution of SO SST defined as the area-weighted average of the SST between 55◦S and127

70◦S. We first estimate each model’s SO SST response function to a step change in the128

SAM (a step-response function) using the relationships between SST and SAM found in129

the unforced PI control simulations. We then estimate each model’s SO SST step-response130

function to GHG forcing from the abrupt CO2 quadrupling simulations. Using these step-131

response functions, we reconstruct the models’ simulated historical SO SST trends, and132

compare them to observations. Our reconstructions explain roughly half of the intermodel133

spread, and this highlights the important contribution of GHG forcing and SAM trends to134

the simulated SO SST trends. Correcting for biases in the models’ seasonal SAM trends,135

we explore how the simulated SO SST would evolve if each model had reproduced a re-136

alistic SAM trend. Finally, we determine a subset of model-based SO SST step-response137

functions to GHG forcing and SAM that favor multidecadal SO SST cooling comparable138

to observations.139

2.1 Estimating the Response of SO SST to SAM140

We consider the impact of seasonal SAM changes on the SO SST, where we divide141

the year into two periods: December-May and June-November. For each CMIP5 PI con-142

trol simulation and for each of the two seasonal periods, we calculate a SAM index [mbar]143

defined as the difference between the zonally averaged sea level pressure (SLP) at 40◦S144

and 65◦S, as in Swart et al. [2015]. Positive values of the SAM index indicate a strength-145

ening and/or a poleward shift of the westerly winds.146

Following Kostov et al. [2017], we perform a multiple linear least-squares regression147

of each model’s annually averaged SO SST against the lagged seasonal SAM index to es-148

timate the SO SST step-response function, SSTStepSAM (τ, i) [◦C/mbar] (see description in149

the Supporting Information and Kostov et al. [2017]). SSTStepSAM (τ, i) represents the tran-150

sient adjustment of the SO SST to a step increase of the SAM in season i, where τ is the151

time [years] since the step change.152

We repeat the same procedure separately for the December-May and the June-November153

seasons. The step-response functions to December-May SAM are shown in Figure 2a and154

the responses to June-November SAM in Figure S2 in the Supporting Information. Con-155

sistent with Kostov et al. [2017], we find a large range of timescales on which the SO SST156
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Figure 2. Left: Response functions of the annually averaged SO SST (55◦S to 70◦S) in CMIP5 models

to a 1 standard deviation step-increase in the December-May SAM index (top panel a) and to an abrupt CO2

quadrupling (bottom panel c, smoothed with a 20-year running mean). Different colors and line styles indicate

individual model responses; Right: Subset of the step-response functions to SAM (top panel b) and GHG

forcing (bottom panel d) that favor multidecadal SO cooling (Section 3.2) induced by the observed SAM trend

as estimated from ERA-Interim (blue) and HadSLP2r (red) data. The thick blue/red lines show the mean

response of the subset. Blue shading/red bars show one standard deviation for each subset.
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response to abrupt SAM changes crosses over from cooling to warming within CMIP5157

models (Figure 2a). The SO SST step responses to SAM are not sensitive to the definition158

of the SAM index. Similar step-response functions are found using a SAM index defined159

as the first principal component of SLP south of 20◦S (Figure S3), a metric that better re-160

flects the geographic pattern associated with SAM variability [Haumann et al., 2014; Yeo161

and Kim, 2015; Holland et al., 2017].162
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We then consider CMIP5 historical simulations extended under the RCP8.5 emission170

scenario. For each model, we use the corresponding step-response function to estimate the171

contribution of SAM variability to the simulated 1979-2014 SO SST anomalies, denoted172

as ŜSTHistSAM (t) [◦C]. Following the methodology of Marshall et al. [2014], we convolve173

the seasonal step-response functions SSTStepSAM (τ, i) (Figure 2a) with the 1979-2014 sea-174

sonal SAM, SAMHist (t, i) [mbar] (See details of the method and a full nomenclature in175

the Supporting Information). We therefore express ŜSTHistSAM (t) as176

ŜSTHistSAM (t) ≈
∑
i

∫ t

t−τmax

SSTStepSAM (t − t ′, i)
dSAMHist (t, i)

dt

����
t′

dt ′. (1)177

We assume a constant linear trend in the SAM, dSAMHist (t,i)
dt for each season i, but our178

results do not change substantially if we use the time varying SAMHist (t, i). We then179

compute the linear trend in SO SST between 1979 and 2014, denoted as ŜSTTrendSAM180

[◦C/decade]. The latter represents an estimate for the SAM-induced component of the his-181

torical SO SST trend.182

2.2 Estimating the Response of SO SST to GHG Forcing183

SAM is not the only major driver of SO SST anomalies in historical simulations.184

Perturbations in the top-of-the-atmosphere (TOA) radiative forcing play an important role185

in climate change as modeled in the CMIP5 GCMs. The historical TOA radiative forc-186

ing has been overwhelmingly dominated by anthropogenic GHG emissions [Hansen et187

al., 2011]. Major volcanic eruptions have exerted only an episodic cooling effect super-188

imposed on the long-term warming trend [Hansen et al., 2011], and we do not account189

for them in our analysis. The local effect of aerosols and land use has been larger over190

the Northern Hemisphere. The non-local effect of anthropogenic aerosols and land use on191

Southern Ocean climate is thought to be relatively small [e.g, Xie et al. [2013]], and thus192

we neglect their impact on SO SST trends.193

To obtain an estimate for the SO SST responses to a step change in GHG forcing,194

we consider CMIP5 experiments where CO2 is abruptly quadrupled relative to PI values195

of ∼280 ppm. We can think of the output from these idealized experiments as represent-196

ing a range of plausible SO SST response functions to a step-increase in GHG forcing, de-197

noted SST4×CO2(t). For each model, we compute the SO SST anomalies from the abrupt198

quadrupling experiment (Figure 2c) relative to the PI control simulation from which the199

experiment was branched. The CMIP5 models show a large range of SO responses to200
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CO2 forcing with some models warming much faster than others. These step-response201

functions capture the combined effect of multiple mechanisms that set the SO response to202

GHG forcing, including changes in the heat and freshwater budgets and adjustments of the203

atmospheric circulation as represented in each model.204

Thus, analogously to equation 1, the SO SST anomalies SSTGHGhist [◦C] induced205

by the idealized trend in GHG forcing can be approximated as206

ŜSTGHGhist (t) =
∫ t

0

SST4×CO2(t − t ′)
F4×CO2

∂FGHGhist

∂t

����
t′

dt ′ (2)207

≈
FGHGtrend

F4×CO2

∫ t

0
SST4×CO2(t − t ′)dt ′,208

where ∂FGHGhist/∂t = FGHGtrend is the historical trend in greenhouse gas radiative209

forcing, and F4×CO2 is the radiative forcing corresponding to CO2 quadrupling. As a sim-210

plification, we have assumed a linear increase in GHG forcing, FGHGtrend , that corre-211

sponds to an exponential increase in the concentration of anthropogenic GHGs from a 280212

ppm to a 480 ppm CO2-equivalent over the course of 160 years between 1855 and 2014213

[e.g., Hofmann et al. [2006] with updates and CO2-equivalent GHG metrics available at214

https://www.esrl.noaa.gov/gmd/aggi/aggi.html]. We treat deviations from this trend as a215

contribution to the residual error in our analysis. Invoking the logarithmic dependence of216

radiative forcing on the CO2-equivalent concentration of well mixed greenhouse gases, the217

factor FGHGtrend/F4×CO2 is estimated to be218

FGHGtrend

F4×CO2
≈

(
ln(480) − ln(280)

ln(4 × 280) − ln(280)

)
1

160 years
≈ 2.43 × 10−3

[
1

years

]
. (3)219

We then calculate the 1979-2014 linear trend in ŜSTGHGhist (t), denoted by ŜSTTrendGHG220

[◦C/decade], which represents the contribution of GHG forcing to the historical SO SST221

trend.222

2.3 Reconstruction of SO SST Trends in Historical Simulations223

We now consider the results of SAM and GHG convolutions to simultaneously ac-224

count for both of these major drivers of historical SO SST anomalies. However, part of225

the historical trend in the SAM index is itself driven by GHG forcing [Kushner et al.,226

2001; Son et al., 2010; Lee et al., 2013; Wang et al., 2014; Solomon and Polvani, 2016].227

Thus we cannot sum the SAM and GHG convolutions without subtracting an interaction228

term ŜSTTrendInter . This term represents the SST trend induced by the component of229

the SAM that is attributable to GHG forcing. We turn to the CMIP5 abrupt CO2 qua-230
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drupling experiments to analyze the effect of GHG forcing on the SAM and to quantify231

ŜSTTrendInter (See Section S3 and Figure S4 in the Supporting Information for a dis-232

cussion of this approach). We estimate that over the recent historical period 1979-2014,233

ŜSTTrendInter is much smaller than ŜSTTrendGHG and ŜSTTrendSAM , the corresponding234

total GHG and total SAM contributions to the simulated SO SST trend.235

Finally, we combine ŜSTTrendSAM and ŜSTTrendGHG , and we subtract the trend236

in the GHG-SAM interaction term ŜSTTrendInter . Hence we obtain reconstructions of237

the 1979-2014 SO SST trend due to the combined effect of GHG forcing and SAM in the238

historical simulations:239

ŜSTTrendAll = ŜSTTrendSAM + ŜSTTrendGHG − ŜSTTrendInter . (4)240

We also compute the corresponding uncertainties on each ŜSTTrendAll estimate (Text S4241

in the Supporting Information).242

Since the historical SAM trend is much stronger in the summer and fall compared to243

winter and spring, we consider two sets of reconstructions. In one reconstruction, ŜSTTrendSAM244

is estimated using the December-May SAM. In a second reconstruction, we consider the245

combined contribution of December-May and June-November SAM. We thus test the hy-246

pothesis that poleward intensification of the westerly winds in the austral summer and fall247

has exerted a particularly strong impact on the historical SO SST trends.248

3 Results249

3.1 Historical SO SST trends in CMIP5 simulations250

Our ŜSTTrendAll estimates using December-May SAM exhibit relatively good skill251

in recovering both the ensemble mean 1979-2014 SO SST trend and the behavior of indi-252

vidual GCMs (Figure 3a). This demonstrates the important contribution of GHG forcing253

and SAM trends to the simulated SO SST trends. We find a strong correlation between254

our reconstructions and the actual SO SST trends in CMIP5 simulations (R=0.67). The255

slope of the weighted regression line is close to 1 and highly significant (p<0.001). The256

weighted root mean square error (RMSE) for the ensemble of reconstructions is σRMSE =257

0.031 ◦C/decade and is smaller than the intermodel standard deviation in 1979-2014 SO258

SST trends, 0.050 ◦C/decade. Moreover, both the simulated and the reconstructed CMIP5259

trends show a similar positive bias relative to the observed 1979-2014 SO SST trends260
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from the HadISST dataset [Rayner et al., 2003]. Only one model (MRI-CGCM3) shows261

SO cooling comparable to observations. Similar results are obtained using an alternative262

definition of the SAM index as the first PC of SLP variability south of 20◦S (Text S2 and263

Figure S5 in the Supporting Information).264

The seasonality of the SAM impact is noteworthy. Including the contribution of273

winter-spring (June-November) SAM does not improve the reconstruction but introduces274

additional estimation errors and uncertainties (Figure 3b). Overall, the impact of summer-275

fall SAM on the SO SST trends is estimated to be much larger than the impact of winter-276

spring changes. This seasonality is consistent with the findings of Purich et al. [2016],277

who suggest that the SO SST is expected to show a stronger cooling response to a positive278

SAM trend in December-May compared to June-November. Moreover, our results are con-279

sistent with the seasonality of the Antarctic ozone hole whose impact on the SAM signal280

in the troposphere is most strongly manifested in the austral summer and fall [Solomon et281

al., 2015; Thompson and Solomon, 2002; Thompson et al., 2011]. Henceforth, in our anal-282

ysis and discussion we include only the December-May contribution to ŜSTTrendSAM .283

Our reconstruction allows us to break down the simulated multidecadal SO SST284

trends into GHG and SAM contributions (Figure 4a). CMIP5 models agree that the GHG285

forcing contributes to warming around Antarctica over the 1979-2014 period, although286

the intermodel spread is large. In contrast, the sign of the December-May SAM contri-287

bution to the SST trends differs across models. In many of the CMIP5 GCMs, positive288

1979-2014 seasonal SAM tendencies would induce SO cooling anomalies. However, as289

discussed in Kostov et al. [2017], several CMIP5 models such as CCSM4 are expected290

to simulate multidecadal SO warming in response to a positive SAM trend due to a fast291

timescale of crossover from cooling to warming (Figure 2a). In addition, CMIP5 models292

differ among each other in the simulated historical evolution of the SAM itself (Figure293

1d). This intermodel spread in the SAM trends also contributes to the large diversity in294

simulated SO SST responses across the ensemble.295

Next, we examine the relationship between the estimated SO SST responses to GHG311

forcing and the responses to December-May SAM across models. We do not find a signif-312

icant correlation between the components of the SO SST trend induced by GHG forcing313

and SAM. We therefore assume that the seasonal SAM contribution to the SO SST trends314
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272

is statistically independent of the GHG contribution across the set of models. However, we315

assume that ŜSTTrendInter is not independent of ŜSTTrendSAM .316
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These assumptions allow us to consider all possible combinations of the CMIP5-317

based ŜSTTrendSAM , ŜSTTrendGHG , and ŜSTTrendInter terms. Since our original ensem-318

ble contains 19 models, the total number of possible recombinations of ŜSTTrendSAM and319

ŜSTTrendGHG is 192 . These recombinations give us a wide range of model-based values320

for the SO SST response ŜSTTrendAll as represented by the shaded histograms in Figure321

4c and d.322

There is a notable positive bias in the distribution of these synthetic SO SST trends323

ŜSTTrendAll relative to observations. Most combinations of model-based ŜSTTrendSAM ,324

ŜSTTrendGHG , and ŜSTTrendInter produce a net warming. We assume that σRMSE from325

our original CMIP5 reconstructions (Figure 3a) is a good estimate for the expected mar-326

gin of error on ŜSTTrendAll . Yet, even if we consider this generous margin of error, very327

few ŜSTTrendAll combinations fall within ±1σRMSE of the observed SO SST trend. Sim-328

ilar results are obtained with the alternative definition of the SAM index (Figure S6 in the329

Supporting Information). In the following section, we show that a bias in the historical330

summer and fall SAM anomalies can potentially prevent the successful simulation of the331

1979-2014 SO cooling trends in some models.332

3.2 Interpretation of CMIP5 biases relative to observations333

We now attempt to quantify how biases in the CMIP5 historical SAM (Figure 1c,d)334

contribute to the discrepancy between simulated and observed 1979-2014 SO SST trends335

(Figure 1a,b). To answer this question, we extend the above analysis to estimate whether336

CMIP5 historical experiments would simulate stronger SO cooling, had they represented337

the seasonal SAM trends realistically. All observationally-based SAM indices have sources338

of uncertainty. Hence, we consider two datasets that provide different estimates of the ob-339

served SAM trend: the gridded HadSLP2r product [Allan and Ansell, 2006] and ERA In-340

terim reanalysis [Dee et al., 2011]. We thus evaluate the bias in CMIP5 historical SAM341

trends and its impact on SO SST trends. Some models simulate historical SAM trends342

greater than the one seen in ERA-Interim (Figure 4b, magenta labels), while others un-343

derestimate this observationally-based trend (Figure 4b, blue labels). In contrast, only one344

model (MRI-CGCM3) exhibits a historical SAM trend that is stronger than the one seen345

in HadSLP2r. We convolve the observationally based December-May SAM indices with346

the model-based SO SST step-response functions. This allows us to identify models that347

would simulate enhanced SAM-induced SO cooling, had they reproduced the observed348
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SAM trend. We find that most models would exhibit stronger (weaker) SAM-induced349

cooling under stronger (weaker) SAM trends (Figure 4b and Figure S7 in the Supporting350

Information). However, several models such as CCSM4 are expected to show stronger SO351

warming under a stronger positive SAM trend (Figure 4b) because of their fast crossover352

timescale in Figure 2a. The different behavior of these GCMs may have to do with biases353

in their climatology of the mean SO thermal stratification, that represents the distribution354

of the background heat reservoir [Ferreira et al., 2015; Kostov et al., 2017; Holland et al.,355

2017; Schneider and Deser, 2017]. Kostov et al. [2017] demonstrate that a large fraction356

of the intermodel spread in CMIP5 SO SST responses to SAM can be explained in terms357

of the models’ time-mean temperature gradients. Models that quickly transition between358

a cooling and a warming response to SAM tend to exhibit weak meridional and strong359

vertical temperature gradients in their SO climatology.360

As previously, we compute a range of plausible 1979-2014 SO SST trends that com-361

bine GHG and SAM contributions, but this time we use the convolutions of SAM step-362

response functions with observationally-based SAM trends (Figure 4b). We compare the363

distribution of these bias-corrected SO SST reconstructions (clear histograms, Figure 4c364

and d) against the reconstructions made with the models’ own historical SAM trends (shaded365

histrograms, Figure 4c and d). The spread in the distribution of synthetic SO SST trends366

becomes narrower if we use a seasonal SAM index based on ERA-Interim data (Figure 4c367

and a similar result with the Marshall [2003] index in Figure S8 of the Supporting Infor-368

mation). We also find a small but noticeable shift of the distribution towards more nega-369

tive SO SST trends when we use ERA-Interim SAM to bias-correct the models. Using a370

SAM index based on the HadSLP2r dataset shifts the distribution of synthetic trends even371

closer to the observed SO SST trend but does not reduce the spread (Figure 4d).372

Finally, we examine the subset of combinations in Figure 4c and d that reproduce373

the observed 1979-2014 SO SST trend within the expected margin of error σRMSE =374

0.031 ◦C/decade. Synthetic combinations in which the step-response function to December-375

May SAM crosses over to a warming regime in less than ∼15 years (Figure 2a,b) are376

not able to reproduce the observed SO SST trend within two σRMSE , regardless of how377

slowly their SO responds to GHG forcing. The same constraint emerges independent of378

the observationally based product (HadSLP2r or ERA Interim) that we use in our bias cor-379

rection (Figure 2b). As an exception, the step-response function of model GFDL-ESM2G380
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is able to reproduce significant multidecadal SAM-induced cooling even though it crosses381

over to a warming regime after ∼10 years.382

We thus suggest that two-timescale step responses to SAM which cross over to a383

strong warming regime on a short timescale cannot reproduce multidecadal SAM-induced384

SO cooling. Therefore, such step-response functions are not consistent with the hypothesis385

put forward in previous studies (e.g., Purich et al. [2016]) that the positive SAM trend is a386

major driver of the 1979-2014 Southern Ocean cooling. We discuss important implications387

of this result in Section 4.388

The step responses to GHG forcing also affect the SO SST reconstruction. Across389

all models, the SO SST exhibits a warming response to GHG forcing on all timescales.390

However, models that exhibit weak SO responses to GHG forcing are more likely to simu-391

late historical SO SST cooling induced by the SAM or by a different source of variability392

(Figure 2d).393

4 Discussion and Conclusions394

This analysis demonstrates the importance of anthropogenic GHG forcing and the395

December-May seasonal SAM for contributing to the anomalous 1979-2014 SO SST trends.396

The response to these two drivers of SO variability explains a large fraction of the inter-397

model spread across CMIP5 historical simulations, as well as part of the model bias rel-398

ative to SO SST observations. Our results provide a useful insight into the contributions399

of GHG forcing and the seasonal SAM to the historical SO SST trends and help iden-400

tify a combination of model characteristics that favors simulating a 1979-2014 SO cooling401

similar to the observed SST trend. We show that the trade-off between GHG and SAM-402

induced SST anomalies is model-dependent and governed by several factors.403

First, the impact of GHG forcing on SO SST, although unanimously positive, is dif-404

ferent in magnitude across the ensemble. All models show an SO SST response under405

abrupt CO2 quadrupling that is delayed relative to the response of the global average or406

the Northern Hemisphere SST [Marshall et al., 2014]. These results are consistent with407

the interhemispheric asymmetry described by Manabe et al. [1990] and reflect the large408

thermal inertia of the SO [Manabe et al., 1992]. However, abrupt CO2 quadrupling ex-409

periments suggest that some models exhibit a more delayed or dampened SO warming410

response than others. This intermodel diversity is not surprising since CMIP5 ensemble411
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members differ in their seasonal SO mixed layer depth [Salleé et al., 2013a], their deep412

SO convection under GHG forcing [de Lavergne et al., 2014], and the strength of their413

meridional overturning in the SO [Meijers et al., 2014; Downes and Hogg, 2013; Salleé et414

al., 2013b; Armour et al., 2016]. These factors affect the mixing and advection of anthro-415

pogenic heat that in turn set the timescale of oceanic response to forcing [Stouffer et al.,416

2004].417

In most CMIP5 models, a positive SAM trend in December-May induces an SO418

cooling trend that counteracts the warming effect of GHG forcing. However, several mod-419

els exhibit positive SAM-induced SO SST trends that reinforce the warming due to GHG420

forcing. The models’ inherent response to summer and fall SAM is expected to be differ-421

ent across CMIP5 ensemble members and sensitive to their SO climatology, as discussed422

in Kostov et al. [2017]. Biases in the background meridional and vertical temperature gra-423

dients affect the fast and slow responses of SO SST and sea ice to SAM [Ferreira et al.,424

2015; Kostov et al., 2017; Holland et al., 2017]. Our convolutions with SAM integrate425

both the fast and the slow characteristic responses shown in Figure 2a. For some mod-426

els, an inherent slow warming regime of the step-response function dominates the SAM427

convolution on multidecadal timescales. Our results suggest that these particular models428

cannot simulate a 1979-2014 SAM-induced cooling trend. We furthermore demonstrate429

that across all models, the seasonal SAM trends in December-May play a greater role in430

driving the SO SST response than the June-November SAM trends, in agreement with431

Purich et al. [2016] and consistent with the observed modulation of the SO seasonal sea-432

ice extent [Doddridge and Marshall, 2017].433

Finally, our study points to the central role of accurately simulating the seasonal434

SAM trends. Models exhibit a large spread in the historical trends of the seasonal SAM435

indices. A number of models overestimate the observed SAM trend in the summer/fall pe-436

riod. In constrast, the seasonal SAM trend in other historical simulations is more than a437

factor of two smaller than the corresponding trend in ERA-I reanalysis. The mismatch be-438

tween modeled and observationally-based SAM trends is even larger if we use data from439

HadSLP2r to define the SAM index. However, the latter result should be approached with440

caution because of temporal inhomogeneity in HadSLP2r (the dataset is extended with441

NCEP/NCAR reanalysis after 2004). Natural variability in the Southern Hemisphere ex-442

tratropical atmospheric circulation may explain some of these discrepancies between simu-443

lated and observed SAM trends [Thomas et al., 2015].444
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However, CMIP5 biases may also be related to the models’ ability to simulate the445

dynamical response to stratospheric ozone depletion above Antarctica. The ozone forcing446

prescribed by the CMIP5 protocol may be another source of bias in the historical sim-447

ulations. As in observations, the SAM trends in most CMIP5 models are indeed most448

strongly positive in the austral summer. This seasonal signature is consistent with the im-449

pact of the ozone hole that projects onto the SAM pattern in the austral summer and fall450

[Thompson and Solomon, 2002; Thompson et al., 2011; Solomon et al., 2015]. However,451

Neely et al. [2014] suggest that CMIP5 historical simulations may underestimate the mag-452

nitude of ozone depletion because they use monthly mean ozone concentration.453

We attempt to account for and correct biases in the models’ December-May SAM.454

Our results suggest that the spread in simulated SO SST trends would be reduced if mod-455

els matched the 1979-2014 summer and fall SAM trend seen in ERA-Interim data, and456

there would be a small but noticeable shift in the distribution towards less warming and457

more cooling. We also attempt to bias-correct the CMIP5 simulations using HadSLP2r458

as a reference, while acknowledging the aforementioned temporal inhomogeneity in this459

dataset. We find that many CMIP5 models would exhibit stronger cooling or weaker warm-460

ing SST trends in the SO, had they matched the summer and fall SAM trends in Had-461

SLP2r. On the other hand, our analysis suggests that a handful of CMIP5 models would462

show a larger SO warming response if they reproduced the strong historical SAM trend of463

HadSLP2r. Thus, biases in the SAM can explain part of the intermodel spread in SO SST464

trends and even some of the mismatch between simulated and observed SO SST trends.465

This result remains valid irrespective of the dataset used for bias-correction, ERA-Interim466

or HadSLP2r. However, after correcting for biases in the historical SAM, our synthetic re-467

constructions still exhibit a noticeable spread because of the diversity in model-based SO468

SST step-response functions. Therefore, a substantial fraction of the inter-model differ-469

ences in the 1979-2014 SO SST trends can be attributed to inherent characteristics of the470

models as reflected in their step-response functions.471

Our study does not take into account other atmospheric modes of variability in addi-472

tion to the SAM, or address the role of freshwater fluxes and SO convection in driving the473

SST trends. Complications may arise from the fact that the El Niño Southern Oscillation474

(ENSO), a leading global mode of variability, projects on the SAM and affects SO SST475

[Ding et al., 2014; Stuecker et al., 2017]. Other factors such as freshwater fluxes [Paul-476

ing et al., 2015; Armour et al., 2016] and convective variability [Latif et al., 2013; Seviour477
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et al., 2017] can drive large multidecadal SO cooling trends. Our response functions im-478

plicitly account for freshwater flux anomalies associated with changes in the hydrological479

cycle induced by GHG forcing and SAM trends. However, our response functions neglect480

other sources of freshwater forcing such as that from melting land ice [Bitanja et al., 2013;481

Pauling et al., 2015] and sea-ice dynamics [Haumann et al., 2014]. Moreover, our quasi-482

Green’s function analysis does not account for the feedback that air-sea heat flux anoma-483

lies [Baker et al., 2017] and sea-ice [Bracegirdle, 2017] may exert on the atmospheric cir-484

culation and the SAM. These factors contribute to the uncertainty on our SO SST recon-485

structions.486

In our analysis of SO SST trends, we have treated individual models and their step-487

response functions as independent samples. Yet some GCMs included in CMIP5 share a488

common genealogy [Knutti et al., 2013]. This interdependence may affect the ensemble489

spread in SO step-response functions, the distribution of historical SO SST trends across490

CMIP5, and the distribution of our synthetic reconstructions.491

Despite these limitations, we have identified a combination of important model char-492

acteristics that favor and facilitate the simulation of negative SO SST trends over the 1979-493

2014 period: a slow SO warming in response to GHG forcing, and a slow transition from494

strong cooling to warming in response to SAM changes. Assuming that the SAM trend495

is the primary mechanism responsible for the observed multidecadal SO cooling, we have496

constrained a joint set of model-based GHG and SAM step-response functions. We cannot497

judge with certainty if this is the most realistic subset of CMIP5 step-response functions498

because the observed SO cooling may be due to a physical mechanism unrelated to the499

SAM and not considered here. However, if the SAM trend has instead induced SO warm-500

ing, then the mechanism behind the 1979-2014 cooling must have been strong enough to501

overcome a combination of both SAM and GHG-induced multidecadal warming. What is502

certain is that the diversity of model SO SST responses to GHG forcing and SAM con-503

tributes substantially to individual model biases and to the intermodel spread in simulated504

1979-2014 SO SST trends. Thus, a priority going forward is to understand the causes be-505

hind this diversity of model responses to GHG forcing and SAM, and to devise relevant506

observational constraints.507
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Text S1. Estimating the SO SST step-response functions to SAM

We assume that for each PI control simulation, the anomaly in the annually-averaged

SO SST, SSTctrl(t), can be represented as a discretized linear convolution of the lagged

seasonal SAM index SAMctrl(t, i) with an SO SST impulse response function (a quasi-

Green’s function), G(τ, i) [◦C/mbar]:

SSTctrl(t) =
J∑
j=0

[G(τj, i)SAMctrl(t− τj, i)∆τ + ε(t, i)], with τJ = τmax, (1)

where τj [years] represents different time lags after an impulse perturbation of magnitude

1 mbar in season i, and τmax is an assumed maximum cut-off lag. Each time increment

∆τ is equal to 1 year. The residual noise is denoted by ε(t, i).

As in Kostov et al. [2017], we perform a multiple linear least-squares regression of

SSTctrl(t) against the lagged seasonal SAM index SAMctrl(t, i) to estimate the impulse

response function G(τ, i) [◦C/mbar] of each model. Integrating G(τ, i) in time t gives the

corresponding SO SST step-response function, SSTStepSAM(τ, i) [◦C/mbar]:

SSTStepSAM(τ, i) ≈
J∑
j=0

G(τ ′j, i), with τ ′J = τ, (2)

We repeat the same procedure separately for each season i.

As in Kostov et al. [2017], we vary the cutoff lag τmax and select shorter subsets of

the control experiment timeseries to obtain a spread of fits. We calculate the standard

deviation of the spread at each lag σSpread(τ, i) and for each season. Moreover, we calculate

an uncertainty on each fit σResid(τ, i) using the residual. We combine σSpread(τ, i) and
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σResid(τ, i) in quadrature to obtain the uncertainty on the step-response function estimates

σStep(τ, i).

We then use our response functions to estimate the contribution of SAM changes,

SAMHist(t,i), to the historical SO SST, SSTHistSAM , following equation 1 from the main

text:

ŜSTHistSAM(t) ≈
∑
i

∫ t

t−τmax

SSTStepSAM(t− t′, i)
dSAMHist(t, i)

dt

∣∣∣∣∣
t′
dt′, (3)

where the above is equivalent to a convolution in terms of our estimated quasi-Green’s

function G(τ, i):

ŜSTHistSAM(t) ≈
∑
i

∫ t

t−τmax

G(t− t′, i)SAMHist(t
′, i)dt′, (4)

following Hasselmann et al. [1993].

Text S2. Alternative definition of the SAM index

We consider an alternative definition of the SAM as the first principal component (PC1)

of SLP variability in the Southern Hemisphere extratropics south of 20◦S. We perform an

EOF (empirical orthogonal function) decomposition of the regridded seasonal SLP from

the PI control simulations. This alternative definition of the SAM index accounts for the

fact that models have different spatial patterns associated with this mode of variability

(e.g., Figure S5 c,d,e).

To obtain SAM indices for the historical and abrupt 4×CO2 quadrupling experiments,

we project the regridded SLP from each experiment onto the SAM EOF patterns from

the PI control simulation.
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Text S3. Response of SAM to GHG Forcing

We analyze the evolution of the SAM in CMIP5 abrupt quadrupling experiments in

order to estimate the SAM response to GHG. For each quadrupling experiment, we calcu-

late SAM4×CO2(t) [mbar], the anomaly in the SAM index relative to the corresponding PI

control simulation. The SAM4×CO2(t) indices (e.g., Figure S4a) constitute step-response

functions of the SAM to GHG forcing. We convolve these step-response functions with the

idealized trends in GHG radiative forcing described in the main text to obtain estimates

for the GHG-induced anomaly in the SAM index (SAMGHG(t) [mbar]) of each CMIP5

historical simulation:

̂SAMGHGhist(t) ≈
FGHGtrend
F4×CO2

∫ t

0
SAM4×CO2(t− t′)dt′. (5)

We further estimate the linear trend in ̂SAMGHGhist(t) over the 1979-2014 period:

̂SAMTrendGHG [mbar/year]. We find that this model-based estimate for the contribution

of GHG focing to historical SAM trends is small but not negligible. Our estimates sug-

gest that the GHG-induced SAM trend contributes between 4% and 37% of the total

observed historical SAM trend (Figure S4b). We point out, however, that this estimate

of ̂SAMTrendGHG is very model-dependent.

The trend ̂SAMTrendGHG is in turn expected to induce an SO SST anomaly [◦C],

ŜST Inter(t, i) ≈ ̂SAMTrendGHG

∫ t

0
SSTStepSAM(t− t′, i)dt′, (6)

where we repeat the calculation separately for each season i. Finally, we denote our

estimate for the 1979-2014 trend in ŜST Inter by ŜST TrendInter [◦C/decade].

The estimate of ̂SAMTrendGHG is sensitive to the method we use. We consider two

definitions of the SAM index: 1) the difference in zonally averaged SLP between 40◦S
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and 65◦S; and 2) the first principal component of SLP variability south of 20◦S. The two

choices give different estimates for ̂SAMTrendGHG (Figure S4c).
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Text S4. Sources of error and uncertainties on the reconstructions of historical

SO SST trends

The largest contribution to the uncertainty of our reconstructions comes from the

ŜST TrendSAM estimate. One source of expected error in our ŜST TrendSAM calculations is

the uncertainty of our step-response function fits σStep(t, i) (Text S1, Supporting Infor-

mation) that propagates as we convolve SSTStepSAM . Another source of error represents

the residual that remains after we fit a linear trend to the result of the convolution. This

tells us how well the SAM-induced SO SST anomaly is represented by a linear trend.

The uncertainty associated with the greenhouse gas contributions is smaller. We use SO

SST anomalies from abrupt 4×CO2 simulations to approximate the SO SST step-response

function to GHG forcing. However, the abrupt 4×CO2 simulations exhibit natural vari-

ability in SO SST superimposed on the forced response. As a simple approximation, we

assume that the unforced component of interannual SO SST variability in each abrupt

4×CO2 simulation has the same typical magnitude as in the PI control experiment. Hence

we use the interannual standard deviation of the control SO SST, SSTctrl, to estimate

the uncertainty on the true underlying SO SST step-response function to GHG forc-

ing. We have also considered an alternative approach for computing the uncertainty on

ŜST TrendGHG, as the standard deviation of all 36-year SO SST trends in the PI control

run of each model (not used in the analysis presented here).
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SO SST trends; b) Historical observations and reanalysis products of summer and fall SAM

[mbar] from HadSLP2r (blue), ERA Interim (green), and observations by Marshall [2003] (red).
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Figure 2. Step-responses to a 1 standard deviation step-change in the seasonal SAM in a)

December-May; b) June-November. a) is replicated from the main text for comparison.
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Figure S3. Same as Figure S2 but for a SAM defined as PC1 of the seasonal SLP in a)

December-May; b) June-November.
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Figure S4. a) Response of the December-May SAM to abrupt 4×CO2 quadrupling; b)

Model-based estimates of the historical SAM trend due to GHG forcing as a fraction of the to-

tal SAM trend from HadSLP2r (blue) and ERA Interim (green); c) Different estimates for the

ŜST TrendInter [C◦/decade] term based on two definitions of the December-May SAM index: zon-

ally averaged SLP differences between 40◦S and 65◦S (yellow), and PC1 of Southern Hemisphere

extratropical SLP (orange).
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Figure S5. Panels a and b: same as Figure 3 a,b in the main text but using a SAM index

defined as PC1 of SLP; c-e show examples of the December-May EOF1 pattern [unitless] in three

different CMIP5 models: c) ACCESS1-0; d) MPI-ESM-MR; e) MRI-CGCM3. The EOFs were

computed on the same grid. They are area-weighted and normalized.
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Figure S6. a) Same as Figure 4a in the main text but using December-May SAM defined

as the seasonal PC1. b) Same as Figure 4d in the main text but using December-May SAM

defined as the projection of seasonal sea-level pressure from CMIP5 simulations (shading) and

HadSLP2r (dark blue contours) on the EOF1 patterns of CMIP5 models.
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Figure S7. Same as Figure 4a in the main text and Figure S6 but bias-corrected using an

observationally-based December-May SAM index from: a) HadSLP2r [Allan and Ansell , 2006];

and b) ERA Interim [Dee et al., 2011].
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Figure S8. Same as Figure 4c in the main text but using an observationally-based seasonal

SAM index from Marshall [2003]
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Table 1. Nomenclature of the main text in order of appearance

Variable Name Description

SSTStepSAM step-response function of the SO SST to seasonal SAM

SAMHist seasonal SAM index from the historical simulation extended under RCP8.5

ŜSTHistSAM estimated contribution of the historical SAM to SO SST

ŜST TrendSAM estimated contribution of the historical SAM to the SO SST trend

ŜSTGHGhist estimated contribution of the GHG forcing to the SO SST

SST4×CO2 response of the SO SST to abrupt CO2 quadrupling

F4×CO2 radiative forcing under abrupt CO2 quadrupling

FGHGhist idealized approximation to the historical GHG radiative forcing

FGHGtrend idealized approximation to the historical trend in GHG radiative forcing

ŜST TrendGHG estimated contribution of GHG forcing to the historical SO SST trend

ŜST TrendInter contribution of the GHG-induced SAM to the historical SO SST trend

ŜST TrendAll combined contribution of GHG forcing and SAM to the SO SST trend

σRMSE root-mean-square error on our reconstructions of CMIP5 SO SST trends
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