
Geophysical Research Letters

Contributions of Greenhouse Gas Forcing and the Southern
Annular Mode to Historical Southern Ocean
Surface Temperature Trends

Yavor Kostov1 , David Ferreira2 , Kyle C. Armour3 , and John Marshall4

1Department of Physics, University of Oxford, Oxford, UK, 2Department of Meteorology, University of Reading, Reading,
UK , 3School of Oceanography and Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA,
4Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract We examine the 1979–2014 Southern Ocean (SO) sea surface temperature (SST) trends
simulated in an ensemble of coupled general circulation models and evaluate possible causes of the
models’ inability to reproduce the observed 1979–2014 SO cooling. For each model we estimate the
response of SO SST to step changes in greenhouse gas (GHG) forcing and in the seasonal indices of the
Southern Annular Mode (SAM). Using these step-response functions, we skillfully reconstruct the models’
1979–2014 SO SST trends. Consistent with the seasonal signature of the Antarctic ozone hole and the
seasonality of SO stratification, the summer and fall SAM exert a large impact on the simulated SO SST
trends. We further identify conditions that favor multidecadal SO cooling: (1) a weak SO warming response
to GHG forcing, (2) a strong multidecadal SO cooling response to a positive SAM trend, and (3) a historical
SAM trend as strong as in observations.

1. Introduction

Unlike the rapidly warming Arctic, the Southern Ocean (SO) exhibited a notable multidecadal cooling trend
from the beginning of the satellite record in 1979 through 2014 (Figure 1a; see also Armour & Bitz, 2015;
Armour et al., 2016; Fan et al., 2014; Jones et al., 2016). Most historical simulations with state-of-the-art cou-
pled models participating in the Climate Modeling Intercomparison Project phase 5 (CMIP5) do not reproduce
the negative SO sea surface temperature (SST) trends and instead show gradual warming around Antarctica
(Figure 1b). Moreover, the intermodel spread in simulated SO SST trends within the CMIP5 ensemble is large
and comparable to the difference between the ensemble mean and the observations (Figure S1 of the sup-
porting information). In this study we attempt to evaluate the mechanisms governing the 1979–2014 SO SST
trends in CMIP5 historical simulations and interpret both the intermodel diversity and the SO warming bias
relative to observations.

Marshall et al. (2015) relate the observed Antarctic-Arctic warming asymmetry under greenhouse gas (GHG)
forcing to the meridional overturning circulation advecting the heat anomaly in the upper ocean north-
ward like a passive tracer. The Southern Ocean is a region where the background circulation upwells deep
water masses unmodified by GHG forcing and dampens the warming rate at the surface (Armour et al., 2016;
Marshall et al., 2015). CMIP5 experiments unanimously show a gradual positive SO SST response to GHG forc-
ing, but they disagree on the magnitude of this regional response with some models warming much faster
than others (Marshall et al., 2014).

In addition to GHG forcing, stratospheric ozone depletion and unforced atmospheric variability are also poten-
tial drivers of historical SO SST trends. The observed 1979–2014 SO cooling took place during a period of
poleward intensification of the Southern Hemisphere westerly winds, as reflected in the tendency toward a
more positive Southern Annular Mode (SAM) index (Thompson et al., 2011) (see also Figure 1c). Consistent
with the seasonal signature of the Antarctic ozone hole, the strongest positive trend in the 1979–2014 SAM
index is observed during the austral summer and fall: December–May (Figure 1c). It is noteworthy that there
is uncertainty in the magnitude of the historical SAM trend (Swart et al., 2015). Here we consider two differ-
ent data sets that provide distinct estimates of the observed SAM trend (Figure 1c): the HadSLP2r gridded
observations (Allan & Ansell, 2006) and the ERA-Interim reanalysis (Dee et al., 2011).
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Figure 1. (a) Observed SST trends (∘ C per decade) for the 1979–2014 period based on the HadISST data set;
(b) simulated SST trends (∘ C per decade) for the 1979–2014 period: an ensemble mean of 19 CMIP5 historical
experiments extended under the RCP8.5 scenario; (c) observationally based time series from HadSLP2r (blue, solid)
and ERA-Interim (green, dashed) of the December–May SAM index (mbar). Straight lines show the linear trends; and
(d) same as Figure 1c but based on the CMIP5 simulations: ensemble mean (blue), ensemble mean trend (red), and all
individual model trends (gray).

There is also substantial disagreement among the SAM trends simulated by models (Thomas et al., 2015)
and large differences between CMIP5 models and the observationally constrained products (Figures 1c and
1d). A subset of CMIP5 historical simulations overestimates the observed trend in the SAM. In contrast, other
CMIP5 models underestimate both the HadSLP2r and the ERA-Interim SAM trend (Figures 1c and 1d). Negative
biases in the simulated SAM trends may be attributed to equatorward biases in the climatological position of
the Southern Hemisphere surface jet across CMIP5 (Bracegirdle et al., 2013). The earlier generation of CMIP3
models exhibited a similar bias in the location of the Southern Hemisphere zonal wind stress maximum (Sen
Gupta et al., 2009). CMIP models are also prone to underestimating the historical rate of stratospheric ozone
depletion (Neely et al., 2014), which projects onto the seasonal SAM anomalies.

Is there a causal connection between a given model’s failure to reproduce the magnitude of the positive SAM
trend and its SO warming bias relative to observations? Models and observations show that a strengthening
and a poleward shift of the westerly winds induce, within weeks, a negative SST response around Antarctica
(Ciasto & Thompson, 2008; Fyfe et al., 2007; Hall & Visbeck, 2002; Marshall et al., 2014; Purich et al., 2016;
Russell et al., 2006). This fast cooling response to SAM is influenced by anomalous northward Ekman drift of
colder water (Ferreira et al., 2015; Kostov et al., 2017), but some models suggest that anomalous air-sea heat
fluxes also play an important role (Oke & England, 2004). Overall, coupled general circulation models (GCMs)
consistently show a negative SST response to SAM on time scales shorter than 2 years (Kostov et al., 2017).

However, the SO SST in many GCMs does not respond monotonically to a step increase in the SAM index but
instead exhibits a two-time scale response: the fast SO SST cooling is followed by gradual warming (Ferreira
et al., 2015; Kostov et al., 2017). The slow response involves a more complicated mechanism: SAM-induced
Ekman upwelling (Bitz & Polvani, 2012), partially compensated by eddy transport, gives rise to subsurface
warming that is in turn communicated to the mixed layer on longer time scales (Ferreira et al., 2015). The time
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scale of transition between the fast (cooling) and the slow (warming) response to a step change in the SAM
varies considerably across CMIP5 models, and several step-response functions do not cross over to a positive
SO SST response at all. Ferreira et al. (2015) find that the transition from initial cooling to long-term warming
in the step-response functions is model dependent and can be explained in terms of the background ocean
temperature gradients on which the anomalous wind-induced circulation acts. In turn, Kostov et al. (2017)
relate the intermodel diversity in the fast and slow SO SST responses to biases in the horizontal and vertical
temperature gradients in the models’ SO climatology. Eddy compensation and air-sea heat fluxes likely also
affect the slow response to SAM and contribute to the intermodel spread.

Here we use linear convolution theory (Hasselmann et al., 1993) to demonstrate that differences in the GCMs’
inherent SO SST responses to the seasonal SAM indices and GHG forcing affect the models’ ability to repro-
duce the 1979–2014 SO SST cooling. We also examine how biases in the simulation of SAM trends affect the
evolution of SO SST anomalies in CMIP5 historical experiments. We focus particularly on the December–May
seasonal SAM as that is the period of the year when stratospheric ozone depletion most strongly affects the
atmospheric circulation near the surface. We explicitly do not consider any drivers of SO SST changes other
than GHG forcing and SAM. Our analysis accounts for the impact of freshwater flux anomalies on stratifica-
tion and SSTs but only to the extent that this is associated with changes in the hydrological cycle induced
by GHG forcing or SAM trends. We thus test the hypothesis that the December–May SAM along with GHG
forcing can explain a large fraction of the intermodel differences in SO SST trends across CMIP5 historical
simulations. Understanding the diversity of model behavior helps shed light on the physical mechanisms driv-
ing the SO SST trends, as well as on possible reasons why CMIP5 models have been unable to capture the
observed changes.

2. Data and Methods

We consider four sets of numerical experiments performed with an ensemble of 19 CMIP5 models: preindus-
trial (PI) control simulations, abrupt CO2 quadrupling experiments, historical simulations, and their extension
under the RCP8.5 emission scenario (Taylor et al., 2012). For all models, we analyze the first ensemble mem-
ber of the PI control simulations (r1i1p1). We regrid all GCM output to the same regular latitude-longitude
grid, and for each time series we remove the long-term linear drift of the corresponding PI control simula-
tions. We focus on the impact of GHG forcing and SAM on the historical evolution of SO SST defined as the
area-weighted average of the SST between 55∘ S and 70∘ S. We first estimate each model’s SO SST response
function to a step change in the SAM (a step-response function) using the relationships between SST and SAM
found in the unforced PI control simulations. We then estimate each model’s SO SST step-response function
to GHG forcing from the abrupt CO2 quadrupling simulations. Using these step-response functions, we recon-
struct the models’ simulated historical SO SST trends and compare them to observations. Our reconstructions
explain roughly half of the intermodel spread and thus highlight the important contribution of GHG forcing
and SAM trends to the simulated SO SST trends. Correcting for biases in the models’ seasonal SAM trends, we
explore how the simulated SO SST would evolve if each model had reproduced a realistic SAM trend. Finally,
we determine a subset of model-based SO SST step-response functions to GHG forcing and SAM that favor
multidecadal SO SST cooling comparable to observations.

2.1. Estimating the Response of SO SST to SAM
We consider the impact of seasonal SAM changes on the SO SST, where we divide the year into two periods:
December–May and June–November. For each CMIP5 PI control simulation and for each of the two sea-
sonal periods, we calculate a SAM index (mbar) defined as the difference between the zonally averaged sea
level pressure (SLP) at 40∘ S and 65∘ S, as in Swart et al. (2015). Positive values of the SAM index indicate a
strengthening and/or a poleward shift of the westerly winds.

Following Kostov et al. (2017), we perform a multiple linear least squares regression of each model’s annu-
ally averaged SO SST against the lagged seasonal SAM index to estimate the SO SST step-response function,
SSTStepSAM(𝜏, i) (∘C/mbar) (see description in Text S1 in the supporting information and Kostov et al., 2017).
SSTStepSAM(𝜏, i) represents the transient adjustment of the SO SST to a step increase of the SAM in season i,
where 𝜏 is the time (years) since the step change.

We repeat the same procedure separately for the December–May and the June–November seasons. The step-
response functions to December–May SAM are shown in Figure 2a and the responses to June–November
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Figure 2. Left: Response functions of the annually averaged SO SST (55∘ S to 70∘ S) in CMIP5 models to a 1 standard
deviation step increase in the (a) December–May SAM index and to an (c) abrupt CO2 quadrupling (smoothed with a
20 year running mean). Different colors and line styles indicate individual model responses; right: Subset of the
step-response functions to (b) SAM and (d) GHG forcing that favor multidecadal SO cooling (section 3.2) induced by the
observed SAM trend as estimated from ERA-Interim (blue) and HadSLP2r (red) data. The thick blue/red lines show the
mean response of the subset. Blue shading/red bars show one standard deviation for each subset.

SAM in Figure S2 in the supporting information. Consistent with Kostov et al. (2017), we find a large range of
time scales on which the SO SST response to abrupt SAM changes crosses over from cooling to warming within
CMIP5 models (Figure 2a). The SO SST step responses to SAM are not sensitive to the definition of the SAM
index. Similar step-response functions are found using a SAM index defined as the first principal component
of SLP south of 20∘ S (Text S2 and Figure S3), a metric that better reflects the geographic pattern associated
with SAM variability (Haumann et al., 2014; Holland et al., 2017; Yeo & Kim, 2015).

We then consider CMIP5 historical simulations extended under the RCP8.5 emission scenario. For each model,
we use the corresponding step-response function to estimate the contribution of SAM variability to the sim-
ulated 1979–2014 SO SST anomalies, denoted as ŜSTHistSAM(t) (∘ C). Following the methodology of Marshall
et al. (2014), we convolve the seasonal step-response functions SSTStepSAM(𝜏, i) (Figure 2a) with the 1979–2014
seasonal SAM, SAMHist(t, i) (mbar) (see details of the method and a full nomenclature in the supporting
information). We therefore express ŜSTHistSAM(t) as

ŜSTHistSAM(t) ≈
∑

i
∫

t

t−𝜏max

SSTStepSAM(t − t′, i)
dSAMHist(t, i)

dt

||||t′
dt′, (1)

where 𝜏max is an imposed maximum cut-off lag. We assume a constant linear trend in the SAM, dSAMHist(t,i)
dt

for
each season i, but our results do not change substantially if we use the fully time varying SAMHist(t, i). We then
compute the linear trend in SO SST between 1979 and 2014, denoted as ŜSTTrendSAM (∘ C per decade). The
latter represents an estimate for the SAM-induced component of the historical SO SST trend.
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2.2. Estimating the Response of SO SST to GHG Forcing
SAM is not the only major driver of SO SST anomalies in historical simulations. Perturbations in the top-of-
the-atmosphere (TOA) radiative forcing play an important role in climate change as modeled in the CMIP5
GCMs. The historical TOA radiative forcing has been overwhelmingly dominated by anthropogenic GHG
emissions (Hansen et al., 2011). Major volcanic eruptions have exerted only an episodic cooling effect super-
imposed on the long-term warming trend (Hansen et al., 2011), and we do not account for them in our analysis.
The local effect of aerosols and land use has been larger over the Northern Hemisphere. The nonlocal effect
of anthropogenic aerosols and land use on Southern Ocean climate is thought to be relatively small (e.g., Xie
et al., 2013), and thus, we neglect their impact on SO SST trends.

To obtain an estimate for the SO SST responses to a step change in GHG forcing, we consider CMIP5 experi-
ments where CO2 is abruptly quadrupled relative to PI values of ∼280 ppm. We can think of the output from
these idealized experiments as representing a range of plausible SO SST response functions to a step increase
in GHG forcing, denoted SST4×CO2(t). For each model, we compute the SO SST anomalies from the abrupt qua-
drupling experiment (Figure 2c) relative to the PI control simulation from which the experiment was branched.
The CMIP5 models show a large range of SO responses to CO2 forcing with some models warming much faster
than others. These step-response functions capture the combined effect of multiple mechanisms that set the
SO response to GHG forcing, including changes in the heat and freshwater budgets and adjustments of the
atmospheric circulation as represented in each model.

Thus, analogously to equation (1), the SO SST anomalies SSTGHGhist (∘C) induced by the idealized trend in GHG
forcing can be approximated as

ŜSTGHGhist(t) = ∫
t

0

SST4×CO2(t − t′)
F4×CO2

𝜕FGHGhist

𝜕t

||||t′
dt′

≈
FGHGtrend

F4×CO2 ∫
t

0
SST4×CO2(t − t′)dt′,

(2)

where 𝜕FGHGhist∕𝜕t = FGHGtrend is the historical trend in greenhouse gas radiative forcing, and F4×CO2 is
the radiative forcing corresponding to CO2 quadrupling. As a simplification, we have assumed a linear
increase in GHG forcing, FGHGtrend, that corresponds to an exponential increase in the concentration of
anthropogenic GHGs from a 280 ppm to a 480 ppm CO2 equivalent over the course of 160 years between
1855 and 2014 (e.g., Hofmann et al. (2006) with updates and CO2-equivalent GHG metrics available at
https://www.esrl.noaa.gov/gmd/aggi/aggi.html). We treat deviations from this trend as a contribution to the
residual error in our analysis. Invoking the logarithmic dependence of radiative forcing on the CO2-equivalent
concentration of well-mixed greenhouse gases, the factor FGHGtrend∕F4×CO2 is estimated to be

FGHGtrend

F4×CO2
≈
(

ln(480) − ln(280)
ln(4 × 280) − ln(280)

)
1

160years
≈ 2.43 × 10−3

[
1

years

]
. (3)

We then calculate the 1979–2014 linear trend in ŜSTGHGhist(t), denoted by ŜSTTrendGHG (∘ C per decade), which
represents the contribution of GHG forcing to the historical SO SST trend.

2.3. Reconstruction of SO SST Trends in Historical Simulations
We now consider the results of SAM and GHG convolutions to simultaneously account for both of these major
drivers of historical SO SST anomalies. However, part of the historical trend in the SAM index is itself driven
by GHG forcing (Kushner et al., 2001; Lee & Feldstein, 2013; Solomon & Polvani, 2016; Son et al., 2010; Wang
et al., 2014). Thus, we cannot sum the SAM and GHG convolutions without subtracting an interaction term
ŜSTTrendInter. This term represents the SST trend induced by the component of the SAM that is attributable
to GHG forcing. We turn to the CMIP5 abrupt CO2 quadrupling experiments to analyze the effect of GHG
forcing on the SAM and to quantify ŜSTTrendInter (see section S3 and Figure S4 in the supporting information
for a discussion of this approach). We estimate that over the recent historical period 1979–2014, ŜSTTrendInter

is much smaller than ŜSTTrendGHG and ŜSTTrendSAM, the corresponding total GHG and total SAM contributions
to the simulated SO SST trend.

Finally, we combine ŜSTTrendSAM and ŜSTTrendGHG, and we subtract the trend in the GHG-SAM interaction term
ŜSTTrendInter. Hence, we obtain reconstructions of the 1979–2014 SO SST trend due to the combined effect of
GHG forcing and SAM in the historical simulations:

ŜSTTrendAll = ŜSTTrendSAM + ŜSTTrendGHG − ŜSTTrendInter. (4)
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https://www.esrl.noaa.gov/gmd/aggi/aggi.html


Geophysical Research Letters 10.1002/2017GL074964

−0.15 −0.10 −0.05 0 0.05 0.10 0.15
−0.15

−0.10

−0.05

0

0.05

0.10

0.15

Predicted 1979−2014 SST Trend [ °C/decade ]

S
im

ul
at

ed
 1

97
9−

20
14

 S
S

T
 T

re
nd

[ 
C

/d
ec

ad
e 

]

−0.15 −0.10 −0.05 0 0.05 0.10 0.15
−0.15

−0.10

−0.05

0

0.05

0.10

0.15

S
im

ul
at

ed
 1

97
9−

20
14

 S
S

T
 T

re
nd

[ °
C

/d
ec

ad
e 

]

Predicted 1979−2014 SST Trend [ °C/decade ] 

a g m s
b h n

i
j

o
p

c
d

k qe
lf r

Ens
Obs

a) GHG and Dec−May
    SAM only

b) GHG and SAM
    from all seasons

Figure 3. Comparison of the simulated 1979–2014 SO SST trends
(∘ C per decade) in CMIP5 historical experiments (vertical axis) against
our reconstructions (equation (4), horizontal axis): (a) combining the
contribution of GHG forcing and the summer/fall (December–May) SAM.
(b) Same as in Figure 2a but including the contribution by the SAM in all
seasons. Markers in Figures 3a and 3b represent individual models with the
same color code and alphabetical legend as in Figures 2a and 2c. Horizontal
bars show the 1𝜎 uncertainty on each reconstruction. A red cross denotes
the ensemble mean of the simulations and reconstructions, and a green
cross denotes the trend in the HadISST observations. Dashed blue lines
denote a fitted regression line and the 2𝜎 confidence interval. The dashed
black line denotes a one-to-one correspondence.

We also compute the corresponding uncertainties on each ŜSTTrendAll esti-
mate (Text S4 in the supporting information).

Since the historical SAM trend is much stronger in the summer and fall
compared to winter and spring, we consider two sets of reconstructions.
In one reconstruction, ŜSTTrendSAM is estimated using the December–May
SAM. In a second reconstruction, we consider the combined contribution
of December–May and June–November SAM. We thus test the hypothesis
that poleward intensification of the westerly winds in the austral sum-
mer and fall has exerted a particularly strong impact on the historical SO
SST trends.

3. Results
3.1. Historical SO SST Trends in CMIP5 Simulations
Our ŜSTTrendAll estimates using December–May SAM exhibit relatively
good skill in recovering both the ensemble mean 1979–2014 SO SST
trend and the behavior of individual GCMs (Figure 3a). This result demon-
strates the important contribution of GHG forcing and SAM trends to the
simulated SO SST trends. We find a strong correlation between our recon-
structions and the actual SO SST trends in CMIP5 simulations (R = 0.67).
The slope of the weighted regression line is approximately 1.04 and highly
significant (p < 0.001). The weighted root-mean-square error (RMSE) for
the ensemble of reconstructions is 𝜎RMSE = 0.031∘ C per decade and is
smaller than the intermodel standard deviation in 1979–2014 SO SST
trends, 0.050∘ C per decade. Moreover, both the simulated and the
reconstructed CMIP5 trends show a similar positive bias relative to the
observed 1979–2014 SO SST trends from the Hadley Centre Sea Ice and
Sea Surface Temperature (HadISST) data set (Rayner et al., 2003). Only one
model (MRI-CGCM3) shows SO cooling comparable to observations. Simi-
lar results are obtained using an alternative definition of the SAM index as
the first PC of SLP variability south of 20∘ S (Text S2 and Figure S5 in the
supporting information).

The seasonality of the SAM impact is noteworthy. Including the contri-
bution of winter-spring (June–November) SAM does not improve the
reconstruction but introduces additional estimation errors and uncertain-
ties (Figure 3b). Overall, the impact of summer-fall SAM on the SO SST
trends is estimated to be much larger than the impact of winter-spring
changes. This seasonality is consistent with the findings of Purich et al.
(2016), who suggest that the SO SST is expected to show a stronger cool-
ing response to a positive SAM trend in December–May compared to
June–November. Moreover, our results are consistent with the seasonal-
ity of the Antarctic ozone hole whose impact on the SAM signal in the
troposphere is most strongly manifested in the austral summer and fall
(Gillett & Thompson, 2003; Solomon et al., 2015; Thompson & Solomon,
2002; Thompson et al., 2011). Henceforth, in our analysis and discussion
we include only the December–May contribution to ŜSTTrendSAM.

Our reconstruction allows us to break down the simulated multidecadal SO SST trends into GHG and
SAM contributions (Figure 4a). CMIP5 models agree that the GHG forcing contributes to warming around
Antarctica over the 1979–2014 period, although the intermodel spread is large. In contrast, the sign of the
December–May SAM contribution to the SST trends differs across models. In many of the CMIP5 GCMs, pos-
itive 1979–2014 seasonal SAM tendencies would induce SO cooling anomalies. However, as discussed in
Kostov et al. (2017), several CMIP5 models such as CCSM4 are expected to simulate multidecadal SO warming
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GHG-induced SAM trend. Green bars: full reconstruction. Alphabetical labels match models as in Figure 2. Last entry:
ensemble mean (Ens) ±1 intermodel standard deviation (ticked vertical green line). The horizontal magenta line denotes
the observed SO SST trend (∘ C per decade) from HadISST. The thick (thin) vertical magenta line shows the one (two)
𝜎RMSE estimation error on our own reconstructions; (b) estimated SAM contribution to the SO SST trend (∘ C per decade)
based on SAM from CMIP5 simulations (dark blue as in Figure 4a), ERA-Interim (dark gray), and HadSLP2r (light blue).
Models noticeably overestimating (underestimating) the SAM trend relative to ERA-Interim are marked with magenta
(blue) letters. Only MRI-CGCM3 (marked by an asterisk) overestimates the SAM trend relative to HadSLP2r; (c) Shading:
distribution of trends obtained by calculating all 192 possible combinations of the contributions due to SAM and GHG.
The vertical magenta line denotes the observed 1979–2014 SO SST trend (∘ C per decade). The thick (thin) horizontal
magenta line shows an expected error margin of one (two) 𝜎RMSE on our own reconstructions. Dark blue contours:
distribution of bias-corrected SO SST reconstructions (∘ C per decade) using seasonal SAM indices from ERA-Interim
(Figure 4c) and (d) HadSLP2r. The shaded histograms in Figures 4d and 4c are identical.

in response to a positive SAM trend due to a fast time scale of crossover from cooling to warming (Figure 2a).
In addition, CMIP5 models differ among each other in the simulated historical evolution of the SAM itself
(Figure 1d). This intermodel spread in the SAM trends also contributes to the large diversity in simulated SO
SST responses across the ensemble.

Next, we examine the relationship between the estimated SO SST responses to GHG forcing and the responses
to December–May SAM across models. We do not find a significant correlation between the components of
the SO SST trend induced by GHG forcing and SAM. We therefore assume that the seasonal SAM contribution
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to the SO SST trends is statistically independent of the GHG contribution across the set of models. However,
we assume that ŜSTTrendInter is not independent of ŜSTTrendSAM.

These assumptions allow us to consider all possible combinations of the CMIP5-based ŜSTTrendSAM, ŜSTTrendGHG,
and ŜSTTrendInter terms. Since our original ensemble contains 19 models, the total number of possible recom-
binations of ŜSTTrendSAM and ŜSTTrendGHG is 192. These recombinations give us a wide range of model-based
values for the SO SST response ŜSTTrendAll as represented by the shaded histograms in Figures 4c and 4d.

There is a notable positive bias in the distribution of these synthetic SO SST trends ŜSTTrendAll relative to obser-
vations. Most combinations of model-based ŜSTTrendSAM, ŜSTTrendGHG, and ŜSTTrendInter produce a net warming.
We assume that 𝜎RMSE from our original CMIP5 reconstructions (Figure 3a) is a good estimate for the expected
margin of error on ŜST TrendAll. Yet, even if we consider this generous margin of error, very few ŜST TrendAll com-
binations fall within ±1𝜎RMSE of the observed SO SST trend. Similar results are obtained with the alternative
definition of the SAM index (Figure S6 in the Supporting Information). In the following section, we show that
a bias in the historical summer and fall SAM anomalies can potentially prevent the successful simulation of
the 1979-2014 SO cooling trends in some models.

3.2. Interpretation of CMIP5 Biases Relative to Observations
We now attempt to quantify how biases in the CMIP5 historical SAM (Figure 1c,d) contribute to the discrep-
ancy between simulated and observed 1979–2014 SO SST trends (Figure 1a,b). To answer this question, we
extend the above analysis to estimate whether CMIP5 historical experiments would simulate stronger SO cool-
ing, had they represented the seasonal SAM trends realistically. All observationally based SAM indices have
sources of uncertainty (Swart et al., 2015). Hence, we consider two data sets that provide different estimates
of the observed SAM trend: the gridded HadSLP2r product (Allan & Ansell, 2006) and ERA-Interim reanalysis
(Dee et al., 2011). We thus evaluate the bias in CMIP5 historical SAM trends and its impact on SO SST trends.
Some models simulate historical SAM trends greater than the one seen in ERA-Interim (Figure 4b, magenta
labels), while others underestimate this observationally based trend (Figure 4b, blue labels). In contrast, only
one model (MRI-CGCM3) exhibits a historical SAM trend that is stronger than the one seen in HadSLP2r. We
convolve the observationally based December-May SAM indices with the model-based SO SST step-response
functions. These convolutions allow us to identify models that would simulate enhanced SAM-induced SO
cooling, had they reproduced the observed SAM trend. We find that most models would exhibit stronger
(weaker) SAM-induced cooling under stronger (weaker) SAM trends (Figures 4b and S7 in the supporting
information). However, several models such as CCSM4 are expected to show stronger SO warming under a
stronger positive SAM trend (Figure 4b) because of their fast crossover time scale in Figure 2a. The different
behavior of these GCMs may have to do with biases in their climatology of the mean SO thermal stratification
that represents the distribution of the background heat reservoir (Ferreira et al., 2015; Holland et al., 2017;
Kostov et al., 2017; Schneider & Deser, 2017). Kostov et al. (2017) demonstrate that a large fraction of the
intermodel spread in CMIP5 SO SST responses to SAM can be explained in terms of the models’ time-mean
temperature gradients. Models that quickly transition between a cooling and a warming response to SAM
tend to exhibit weak meridional and strong vertical temperature gradients in their SO climatology.

As previously, we compute a range of plausible 1979–2014 SO SST trends that combine GHG and SAM con-
tributions, but this time we use the convolutions of SAM step-response functions with observationally based
SAM trends (Figure 4b). We compare the distribution of these bias-corrected SO SST reconstructions (clear
histograms, Figures 4c and 4d) against the reconstructions made with the models’ own historical SAM trends
(shaded histograms, Figures 4c and 4d). The spread in the distribution of synthetic SO SST trends becomes
narrower if we use a seasonal SAM index based on ERA-Interim data (Figure 4c and a similar result with the
Marshall, 2003, index in Figure S8 of the supporting information). We also find a small but noticeable shift of
the distribution toward more negative SO SST trends when we use ERA-Interim SAM to bias-correct the mod-
els. Using a SAM index based on the HadSLP2r data set shifts the distribution of synthetic trends even closer
to the observed SO SST trend but does not reduce the spread (Figure 4d).

Finally, we examine the subset of combinations in Figures 4c and 4d that reproduce the observed 1979–2014
SO SST trend within the expected margin of error 𝜎RMSE = 0.031∘ C per decade. Synthetic combinations
in which the step-response function to December-May SAM crosses over to a warming regime in less than
∼15 years (Figures 2a and 2b) are not able to reproduce the observed SO SST trend within two 𝜎RMSE, regard-
less of how slowly their SO responds to GHG forcing. The same constraint emerges independent of the
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observationally based product (HadSLP2r or ERA-Interim) that we use in our bias correction (Figure 2b). As an
exception, the step-response function of model GFDL-ESM2G is able to reproduce significant multidecadal
SAM-induced cooling even though it crosses over to a warming regime after ∼10 years.

We thus suggest that two-time scale step responses to SAM which cross over to a strong warming regime on
a short time scale cannot reproduce multidecadal SAM-induced SO cooling. Therefore, such step-response
functions are not consistent with our premise, the hypothesis put forward in previous studies (e.g., Purich et al.,
2016) that the positive SAM trend is a major driver of the 1979–2014 Southern Ocean cooling. We discuss
important implications of this result in section 4.

The step responses to GHG forcing also affect the SO SST reconstruction. Across all models, the SO SST exhibits
a warming response to GHG forcing on all time scales. However, models that exhibit weak SO responses to
GHG forcing are more likely to simulate historical SO SST cooling induced by the SAM or by a different source
of variability (Figure 2d).

4. Discussion and Conclusions

This analysis demonstrates the importance of anthropogenic GHG forcing and the December–May seasonal
SAM for contributing to the anomalous 1979–2014 SO SST trends. The response to these two drivers of SO
variability explains a large fraction of the intermodel spread across CMIP5 historical simulations, as well as
part of the model bias relative to SO SST observations. Our results provide a useful insight into the contribu-
tions of GHG forcing and the seasonal SAM to the historical SO SST trends and help identify a combination of
model characteristics that favors simulating a 1979–2014 SO cooling similar to the observed SST trend. We
show that the trade-off between GHG and SAM-induced SST anomalies is model dependent and governed by
several factors.

First, the impact of GHG forcing on SO SST, although unanimously positive, is different in magnitude across
the ensemble. All models show an SO SST response under abrupt CO2 quadrupling that is delayed relative
to the response of the global average or the Northern Hemisphere SST (Marshall et al., 2014). These results
are consistent with the interhemispheric asymmetry described by Manabe et al. (1990) and reflect the large
thermal inertia of the SO (Manabe et al., 1992). However, abrupt CO2 quadrupling experiments suggest that
some models exhibit a more delayed or dampened SO warming response than others. This intermodel diver-
sity is not surprising since CMIP5 ensemble members differ in their seasonal SO mixed layer depth (Salleé,
Shuckburgh, Bruneau, Meijers, Bracegirdle, & Wang, 2013), their deep SO convection under GHG forcing
(de Lavergne et al., 2014), and the strength of their meridional overturning in the SO (Armour et al., 2016;
Downes & Hogg, 2013; Meijers, 2014; Salleé, Shuckburgh, Bruneau, Meijers, Bracegirdle, Wang, & Roy, 2013).
These factors affect the mixing and advection of anthropogenic heat that in turn set the time scale of oceanic
response to forcing (Stouffer, 2004).

In most CMIP5 models, a positive SAM trend in December–May induces an SO cooling trend that counteracts
the warming effect of GHG forcing. However, several models exhibit positive SAM-induced SO SST trends that
reinforce the warming due to GHG forcing. The models’ inherent response to summer and fall SAM is expected
to be different across CMIP5 ensemble members and sensitive to their SO climatology, as discussed in Kostov
et al. (2017). Biases in the background meridional and vertical temperature gradients affect the fast and slow
responses of SO SST and sea ice to SAM (Ferreira et al., 2015; Holland et al., 2017; Kostov et al., 2017). Our con-
volutions with SAM integrate both the fast and the slow characteristic responses shown in Figure 2a. For some
models, an inherent slow warming regime of the step-response function dominates the SAM convolution
on multidecadal time scales. Our results suggest that these particular models cannot simulate a 1979–2014
SAM-induced cooling trend. We furthermore demonstrate that across all models, the seasonal SAM trends in
December–May play a greater role in driving the SO SST response than the June–November SAM trends, in
agreement with Purich et al. (2016) and consistent with the observed modulation of the SO seasonal sea-ice
extent (Doddridge & Marshall, 2017).

Finally, our study points to the central role of accurately simulating the seasonal SAM trends. Models exhibit
a large spread in the historical trends of the seasonal SAM indices. A number of models overestimate the
observed SAM trend in the summer/fall period. In contrast, the seasonal SAM trend in other historical sim-
ulations is more than a factor of two smaller than the corresponding trend in ERA-Interim reanalysis. The
mismatch between modeled and observationally based SAM trends is even larger if we use data from
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HadSLP2r to define the SAM index. However, the latter result should be approached with caution because
of temporal inhomogeneity in HadSLP2r (the data set is extended with NCEP/NCAR reanalysis after 2004).
Natural variability in the Southern Hemisphere extratropical atmospheric circulation may explain some of
these discrepancies between simulated and observed SAM trends (Thomas et al., 2015).

However, CMIP5 biases may also be related to the models’ ability to simulate the dynamical response to
stratospheric ozone depletion above Antarctica. The ozone forcing prescribed by the CMIP5 protocol may be
another source of bias in the historical simulations. As in observations, the SAM trends in most CMIP5 mod-
els are indeed most strongly positive in the austral summer. This seasonal signature is consistent with the
impact of the ozone hole that projects onto the SAM pattern in the austral summer and fall (Solomon et al.,
2015; Thompson & Solomon, 2002; Thompson et al., 2011). However, Neely et al. (2014) suggest that CMIP5
historical simulations may underestimate the magnitude of ozone depletion because they use monthly mean
ozone concentration.

We attempt to account for and correct biases in the models’ December-May SAM. Our results suggest that the
spread in simulated SO SST trends would be reduced if models matched the 1979–2014 summer and fall SAM
trend seen in ERA-Interim data, and there would be a small but noticeable shift in the distribution toward less
warming and more cooling. We also attempt to bias-correct the CMIP5 simulations using HadSLP2r as a refer-
ence, while acknowledging the aforementioned temporal inhomogeneity in this data set. We find that many
CMIP5 models would exhibit stronger cooling or weaker warming SST trends in the SO, had they matched the
summer and fall SAM trends in HadSLP2r. On the other hand, our analysis suggests that a handful of CMIP5
models would show a larger SO warming response if they reproduced the strong historical SAM trend of
HadSLP2r. Thus, biases in the SAM can explain part of the intermodel spread in SO SST trends and even some of
the mismatch between simulated and observed SO SST trends. This result remains valid irrespective of the
data set used for bias-correction, ERA-Interim or HadSLP2r. However, after correcting for biases in the historical
SAM, our synthetic reconstructions still exhibit a noticeable spread because of the diversity in model-based SO
SST step-response functions. Therefore, a substantial fraction of the intermodel differences in the 1979–2014
SO SST trends can be attributed to inherent characteristics of the models as reflected in their step-response
functions.

Our study does not take into account other atmospheric modes of variability in addition to the SAM or address
the role of freshwater fluxes and SO convection in driving the SST trends. Complications may arise from the
fact that the El Niño–Southern Oscillation, a leading global mode of variability, projects on the SAM (Ding
et al., 2014; Stuecker et al., 2017) and affects SO SST (Ding et al., 2014; Stuecker et al., 2017; Yuan, 2004). Other
factors such as freshwater fluxes (Armour et al., 2016; Pauling et al., 2015) and convective variability (Latif
et al., 2013; Seviour et al., 2016, 2017) can drive large multidecadal SO cooling trends. Our response functions
implicitly account for freshwater flux anomalies associated with changes in the hydrological cycle induced by
GHG forcing and SAM trends. However, our response functions neglect other sources of freshwater forcing
such as that from melting land ice (Bintanja et al., 2013; Pauling et al., 2015) and sea-ice dynamics (Haumann
et al., 2014). Moreover, our quasi-Green’s function analysis does not account for the feedback that air-sea
heat flux anomalies (Baker et al., 2017) and sea-ice (Bracegirdle et al., 2018) may exert on the atmospheric
circulation and the SAM. These factors contribute to the uncertainty on our SO SST reconstructions.

In our analysis of SO SST trends, we have treated individual models and their step-response functions as inde-
pendent samples. Yet some GCMs included in CMIP5 share a common genealogy (Knutti et al., 2013). This
interdependence may affect the ensemble spread in SO step-response functions, the distribution of historical
SO SST trends across CMIP5, and the distribution of our synthetic reconstructions.

Despite these limitations, we have identified a combination of important model characteristics that favor and
facilitate the simulation of negative SO SST trends over the 1979–2014 period: a slow SO warming in response
to GHG forcing, and a slow transition from strong cooling to warming in response to SAM changes. Assuming
that the SAM trend is the primary mechanism responsible for the observed multidecadal SO cooling, we have
constrained a joint set of model-based GHG and SAM step-response functions. We cannot judge with certainty
if this is the most realistic subset of CMIP5 step-response functions because the observed SO cooling may be
due to a physical mechanism unrelated to the SAM and not considered here. However, if the SAM trend has
instead induced SO warming, then the mechanism behind the 1979–2014 cooling must have been strong
enough to overcome a combination of both SAM and GHG-induced multidecadal warming. What is certain is
that the diversity of model SO SST responses to GHG forcing and SAM contributes substantially to individual
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model biases and to the intermodel spread in simulated 1979–2014 SO SST trends. Thus, a priority going
forward is to understand the causes behind this diversity of model responses to GHG forcing and SAM and to
devise relevant observational constraints.
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