
manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Uncertainty quantification of ocean parameterizations:1

application to the K-Profile-Parameterization for2

penetrative convection3

A. N. Souza1, G. L. Wagner1, A. Ramadhan1, B. Allen1, V. Churavy1, J.4

Schloss1, J. Campin1, C. Hill1, A. Edelman1, J. Marshall1, G. Flierl1, R.5

Ferrari16

1Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, United States7

Key Points:8

• A Bayesian methodology can be applied to turbulence parameterizations to probe9

parameterizations and better understand their biases and uncertainties.10

• We can train parameterizations to match large eddy simulations.11

• We can better understand the physics of parameterizations by applying a Bayesian12

methodology.13

Corresponding author: A. N. Souza, andrenogueirasouza@gmail.com

–1–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Abstract14

Parameterizations of unresolved turbulent processes in the ocean compromise the fidelity15

of large-scale ocean models used in climate change projections. In this work we use a Bayesian16

approach for evaluating and developing turbulence parameterizations by comparing pa-17

rameterized models with observations or high-fidelity numerical simulations. The method18

obtains optimal parameter values, correlations, sensitivities, and more generally, likely19

distributions of uncertain parameters. We demonstrate the approach by estimating the20

uncertainty of parameters in the popular ‘K-profile parameterization’, using an ensem-21

ble of large eddy simulations of turbulent penetrative convection in the ocean surface bound-22

ary layer. We uncover structural deficiencies and discuss their cause. We conclude by23

discussing the applicability of the approach to Earth system models.24

Plain Language Summary25

Climate projections continue to be marred by large uncertainties, which originate26

in the poor representation of physical processes that occur at scales too small for climate27

models to properly simulate them, like clouds in the atmosphere and turbulent swirls28

in the ocean. We propose to develop more accurate representations of small physical ocean29

processes (parameterizations) trained with high resolution numerical simulations of small30

ocean patches. A Bayesian methodology is used to calibrate the parameterizations with31

the high resolution numerical simulations, to assess their fidelity and to identify improve-32

ments. Most importantly this approach provides estimates of the uncertainties in the pa-33

rameterizations which can then be used to quantify uncertainties of climate models. While34

the approach is illustrated for a parameterization of ocean turbulence, it can be applied35

to any parameterization in climate models.36

1 Introduction37

The ocean components of Earth system models are complex systems that couple38

the resolved ocean circulation with a myriad of unresolved, parameterized and impor-39

tant physical processes. Parameterizations of unresolved physical processes often involve40

many uncertain parameters which are used to tune the model in an attempt to obtain41

a desired outcome (Hourdin et al., 2017). Moreover, each component, whether resolved42

or parameterized, interacts with all the others in nonlinear ways that lead to complex43

behavior which is sometimes difficult to understand and characterize.44

Upper ocean turbulent mixing is a key parameterized process in ocean circulation45

models. The detailed fluid dynamics of upper ocean turbulent mixing are highly com-46

plex, involving surface boundary layer turbulence driven by buoyancy loss or winds, bot-47

tom boundary layer turbulence, lateral mixing due to baroclinic effects, and so forth. How-48

ever, at least in principle, the governing fluid dynamical equations are known. The prob-49

lem is that the computational resources required to resolve them and, at the same time,50

the global scale circulation, are not available and will not be for the foreseeable future51

(Schneider, Teixeira, et al., 2017).52

A goal of this paper is to outline and illustrate a Bayesian framework to assess and53

improve parameterizations. We present a way forward which employs an ensemble of mix-54

ing process resolving simulations to train a chosen parameterization. The core idea is55

that the parameterization must represent the collective effect of sub-grid scale physics56

faithfully for all relevant relevant external forcings and mean climate states. This con-57

trasts approaches that attempt to diagnose parameters directly from high-resolution sim-58

ulations or to estimate values that perform well only in a particular experiment. It should59

be noted, however, that by restricting ourselves to understanding parameterizations in60

the context of sub-grid scale physics, we may miss out on important interactions with61

the rest of the climate system, e.g., the interaction of resolved lateral fluxes from the global62
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ocean circulation with parameterized turbulent vertical mixing in the ocean. Neverthe-63

less, studying one subgrid-scale process at a time is not an exercise in futility since it is64

a necessary first step to optimize a parameterization before considering the interactions65

with all other components of the full system.66

We take a Bayesian perspective in our optimization of parameterizations. There67

are many ways in which a Bayesian framework can be used. Here we will explore one68

particular approach: characterizing the parameters of a parameterization via probabil-69

ity distributions. Thus, we will go beyond finding a point estimate for parameters. These70

probability distributions capture the notion of uncertainty and nonlinear correlations be-71

tween parameters. Furthermore, they can then be used as prior distributions for param-72

eter sensitivity studies in full climate models. This partially addresses a present deficiency73

in the current approach used to tune parameters in climate models. “Manual” tuning74

is done to obtain agreement between models and observations (Hourdin et al., 2017). Since75

parameters are often correlated, a parameter may be tuned to offset biases introduced76

by another parameter, resulting in parameterizations that no longer respect the subgrid-77

scale physics. The Bayesian framework automates parameter search in a way that en-78

sures it respects the underlying physics of a parameter. The calibration of parameter-79

ization schemes in climate models has the potential to reduce biases as well as quantify80

the uncertainty of key climate variables, such as ocean heat content or climate sensitiv-81

ity; however, innovation is required to make the Bayesian method practical and compu-82

tationally feasible in the global model. One step towards this is to calculate prior dis-83

tributions for parameters in a simplified setting, such as the local studies performed here,84

and then use computationally efficient methods for obtaining posterior distributions in85

the global climate model such as those proposed in (Schneider, Lan, et al., 2017; Albers86

et al., 2019; Cleary et al., 2020).87

The focus here is to calculate prior distributions for parameters in ocean climate88

models. We do so by matching parameterizations to large eddy simulations, a philoso-89

phy similar in spirit to that which has been done in the atmospheric context for cloud90

parameterizations (Golaz et al., 2007). To make our discussion concrete we focus on the91

representation of convectively-driven turbulence in the upper ocean.92

Our paper is organized as follows: In section 2 we describe the physical scenario93

in which we run our Large Eddy Simulations (LES) and parameterization. In section 394

we introduce Bayesian parameter estimation for the parameters in the K-Profile Param-95

eterization (KPP) and perform the parameter estimation in the regime described by sec-96

tion 2. Finally, we end with a discussion in section 4.97

2 Large eddy simulations and K-profile parameterization of penetra-98

tive convection99

During the onset of winter at high latitudes, cooling at the ocean surface gener-100

ates convective plumes that descend and mix the ocean surface boundary layer, see Marshall101

and Schott (1999) for a review. Near-surface mixing by convection generates a surface102

layer of uniform temperature and salinity called the ‘mixed layer’ which can reach depths103

of hundreds of meters.104

At the base of the mixed layer, convective plumes penetrate further into a strongly-105

stratified region called the ‘entrainment layer’, where plume-driven turbulent mixing be-106

tween the mixed layer and the ocean interior further cools the boundary layer. This pro-107

cess, in which the surface layer is cooled both at the surface and by turbulent mixing in108

the entrainment layer, is called penetrative convection. Penetrative convection is a cru-109

cial oceanic process for storing heat and carbon as well as setting the density structure110

of the deep ocean. Parameterizations of ocean surface boundary layer mixing must de-111

scribe penetrative convection accurately. In this paper we evaluate the accuracy of the112
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Figure 1. A 3D simulation of the LES model of the Boussinesq equations and its horizontal

average at t = 2 days.

K-profile parameterization (Large et al., 1994) against large eddy simulations (LES) of113

idealized penetrative convection scenarios.114

2.1 Idealized penetrative convection scenario115

Our idealized scenarios impose a constant surface cooling Qh > 0 to a resting, lin-
early stratified boundary layer with the initial state

u|t=0 = 0 and b|t=0 = N2z, (1)

where u = (u, v, w) is the resolved velocity field simulated by LES, b is buoyancy, and
N2 is the initial vertical buoyancy gradient. The surface buoyancy flux Qb is related to
the imposed surface cooling Qh, which has units W m−2, via

Qb =
αg

ρrefcp
Qh, (2)

where α = 2×10−4 (◦C)−1 is the thermal expansion coefficient, g = 9.81 m s−2 is grav-116

itational acceleration, ρref = 1035 kg m−3 is a reference density, and cp = 3993 J/(kg ◦C)117

is the specific heat capacity. Our software and formulation of the large eddy simulations118

is discussed in section Appendix A.119

Output of a large eddy simulation of turbulent penetrative convection in a domain
Lx = Ly = Lz = 100 meters is in Figure 1. The left panel in Figure 1 visualizes the
three-dimensional temperature field θ = θ0+b/αg associated with the buoyancy b, where
θ0 = 20◦C is the surface temperature at z = 0. The right panel of Figure 1 shows the
horizontally averaged buoyancy profile

b̄(z, t) ≡ 1

LxLy

∫ Lx

0

∫ Ly

0

b(x, y, z, t)dxdy. (3)

The visualization reveals the two-part boundary layer produced by penetrative con-120

vection: close to the surface, cold and dense convective plumes organized by surface cool-121
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Figure 2. Mixed layer depth and its evolution in time after initial transients. The blue

squares are the analytic scaling 4, the red line is an estimate of the boundary layer depth directly

from the LES (described in the text), and the purple line is the classic scaling which ignores the

entrainment layer 8.

ing sink and mix ambient fluid, producing a well-mixed layer that deepens in time. Be-122

low the mixed layer, the momentum carried by sinking convective plumes leads them to123

overshoot their level of neutral buoyancy (nominally, the depth of the mixed layer), ‘pen-124

etrating’ the stably stratified region below the surface mixed layer and generating the125

strongly stratified entrainment layer. The total depth of the boundary layer is h and in-126

cludes the mixed layer and the entrainment layer of thickness ∆h. Turbulent fluxes are127

negligible below z = −h for our purposes.128

In figure 2 we show the evolution of h(t) defined as the first depth from the bot-
tom where the stratification is equal to a weighted average of the maximum stratifica-
tion and the initial stratification1. The dotted line confirms that the evolution after an
initial transient is best fit by the formula,

h '
√

3.0
Qb
N2

t, (4)

where N2 is the initial stratification.129

This result is easily explained by considering the horizontally averaged buoyancy
equation,

∂tb = −∂z
(
wb+ q(z)

)
, (5)

where b is the horizontally averaged buoyancy, wb is the horizontally averaged vertical
advective flux and q(z) is the horizontally averaged vertical diffusive flux. Integrating the
equation in time between t′ = 0 and some later time t′ = t, and in the vertical be-
tween the surface, where q(z) = −Qb, and the base of the entrainment layer where all

1 The weights are 2/3 for the initial stratification N2 and 1/3 for the maximum stratification N2
m so

that h satisfies ∂zb(−h) = 2N2
b /3 + N2

m/3. This guarantees that h is a depth where the local stratification

lies between the background stratification and the maximum stratification since it is defined as the first

depth starting from the bottom that satisfies such a criteria.
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turbulent fluxes vanish, one finds,∫ 0

−h

[
b̄(z, t) dz − b̄(z, 0)

]
dz = −Qbt. (6)

Substituting b̄(z, 0) = b0+N2(z+h) and b̄(z, t) = b0+∆b, which is an appropriate ap-
proximation of the profile shown in Fig. 1b except at very early times in the simulation,
yields

1
2N

2h2 − h∆b = Qbt. (7)

The first term on the left of equation 7 describes boundary layer deepening due to buoy-
ancy extraction at the surface, while the second term corresponds to the further cool-
ing caused by turbulent mixing in the entrainment layer. Ignoring turbulent mixing in
the entrainment layer yields the deepening rate

h =

√
2.0

Qb
N2

t, (8)

which differs by roughly 20% from the best fit expression 4 due to the effects of turbu-130

lent mixing in the entrainment layer. The scaling in equation 8 is the deepening rate as-131

sociated with a convective adjustment parameterization. The K-profile parameteriza-132

tion of penetrative convection, on the other hand, introduces a model for entrainment133

layer mixing in an attempt to describe equation 4.134

2.2 The K-profile parameterization of penetrative convection135

In penetrative convection in a horizontally-periodic domain, the K-profile param-
eterization models the evolution of the horizontally averaged temperature profile, θ̄(z, t),
and the boundary layer depth with

∂tT = −∂zF (T, h;C) (9)

0 = D(T, h;C), (10)

where T is the temperature profile produced by the K-profile parameterization, h is the136

boundary layer depth, C = {CS , CN , CD, CH} is a set of free parameters for represent-137

ing dimensionless proportionality constants following various scaling laws, F (T, h;C) is138

a ‘temperature flux function’, and D(T, h;C) is a nonlinear-integral constraint to deter-139

mine the boundary layer depth. We emphasize that the goal of the parameterization is140

not limited to just getting the mixed layer depth correct or correctly predicting the jump141

in buoyancy. Rather, the goal is to obtain correct heat exchanges with the atmosphere,142

entrainment of nutrients for the biology, and flux rates of passive scalars. Thus, it is im-143

portant to faithfully capture the dynamics of the entire temperature profile.144

The K-profile parameterization (KPP) represents F through the sum of a down-
gradient flux and a non-local flux term (Large et al., 1994),

F = −CDw?h z
h

(
1 +

z

h

)2

︸ ︷︷ ︸
≡K

∂zT + CNQθ zh
(
1 + z

h

)2︸ ︷︷ ︸
≡Φ

, (11)

for −h ≤ z ≤ 0 and 0 otherwise. Here w? = (Qbh)1/3 is the convective turbulent ve-145

locity scale, h is the boundary layer depth, z
h

(
1 + z

h

)2
is the ‘K-profile‘ shape function—146

K is the namesake downgradient diffusivity of the K-profile parameterization—and Φ147

is a ‘non-local’ flux term that models convective boundary layer fluxes not described by148

downgradient diffusion.149

In penetrative convection, the KPP model estimates the boundary layer depth h
with an implicit nonlinear equation. To motivate the functional form of this criteria, first

–6–
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see figure 1 for reference. The jump in buoyancy, ∆b, is the difference between the buoy-
ancy in the mixed layer and the base of the entrainment region. Equivalently we can write
∆b = N2

e∆h, where Ne the stratification in the entrainment region. From plume the-
ory, see section Appendix B, we obtain ∆h ∝ w?/Ne so that

CH =
∆b

w?Ne
(12)

for some universal proportionality constant CH , which we call the ‘mixing depth’ pa-
rameter. KPP posits that the mixed layer depth h is the first such depth from the sur-
face at which equation 12 holds. For numerical stability reasons equation 12 is gener-
ally formulated as

CH =
h
[

1
CSh

∫ 0

−CSh
B(z)dz −B(−h)

]
(hQb)

1/3
h
√

max [0, ∂zB(−h)] + 10−11m2s−2
, (13)

where B = αgT . The numerator approximates the jump in buoyancy times the mixed150

layer depth, h∆b. The term, 1
CSh

∫ 0

−CSh
B(z)dz, serves as an approximation to the buoy-151

ancy in the mixed layer. The denominator evaluates the product hw?Ne with w? = (hQb)
1/3

152

and Ne =
√

max [0, ∂zB(−h)] at a given depth, while adding a dimensional term 10−11
153

to prevent division by zero. In section Appendix B we go in further detail about the ra-154

tionale behind the implicit equation for the boundary layer depth, equation 13, for the155

case of penetrative convection.156

The mixing depth parameter, CH , is often referred to as the critical bulk Richard-157

son number in the KPP literature (Large et al., 1994), because in mechanically forced158

turbulence, the denominator is replaced by the mean shear squared times h. In pene-159

trative convection there is no mean shear and CH is no longer related to a bulk Richard-160

son number.161

The K-profile parameterization for penetrative convection has four free parame-
ters: the surface layer fraction CS, the flux scalings CN and CD in equation 11, and the
mixing depth parameter CH in equation 13. Their default values, reported in (Large et
al., 1994), are

(CS , CN , CD, CH) = (0.1, 6.33, 0.77, 0.95). (14)

Our objective is to calibrate the free parameters C = (CS , CN , CD, CH) by compar-162

ing KPP temperature profiles T (z, t;C) with the LES output θ̄(z, t).163

3 Model Calibration164

We outline a Bayesian method for optimizing and estimating the uncertainty of the
four free parameters through a comparison of solutions T (z, t;C) to equation 9 to the
output θ(z, t) of our large eddy simulations. For this we define a loss function by

L(C) = max
t∈[t1,t2]

{
1

Lz

∫ 0

−Lz

[
T (z, t;C)− θ(z, t)

]2
dz

}
. (15)

We choose the square error in space to reduce the sensitivity to vertical fluctuations in165

the temperature profile. In time we take the maximum value of the squared error to guar-166

antee that the temperature profile never deviates too far from the LES simulation at each167

instant.168

Notably we do not use the boundary layer depth in the definition of the loss func-169

tion. Firstly, it should be stressed that getting the entire temperature profile correct is170

a more stringent requirement and would also imply a correct boundary (and mixed) layer171

depth. We prefer not to use a boundary layer depth directly because it leads to noisy172
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loss functions and depends too much on the precise definition used. In the literature, there173

are several different kinds of “depth” parameters based on, for example, the KPP def-174

inition as per equation 13, the location of the minimum buoyancy flux, the location of175

the maximum temperature gradient, or the first depth at which the temperature decreases176

by some ∆T of the surface value (Kara et al., 2000; Van Roekel et al., 2018). It is sim-177

pler (albeit more ambitious) to target the entire temperature profile. We prefer not to178

use the horizontally averaged temperature fluxes or gradients for practical reasons. Fluxes179

tend to be noisier than the horizontally averaged temperature profile and one would have180

to apply a smoothing filter. In summary, these other metrics introduce additional sources181

of systematic bias for little gain in the present circumstance.182

A natural way to extend the definition of loss functions in order to take into ac-183

count parameter sensitivities is to define probability distributions for parameters. Sim-184

ilar to how the functional form of the loss function is critical to the estimation of opti-185

mal parameters, the functional form of a probability density is critical for estimating the186

uncertainties of a parameter. A probability distribution quantifies what we mean by “good”187

or “bad” parameter choices, (similar to a loss function), but in terms of uncertainties and188

likelihoods. It is often the case that one has a good feel for how to define meaningful loss189

functions, but less so for probability distributions. Here we report our choices, but in sec-190

tion Appendix C we provide guidance on criteria to be used when constructing as well191

as sampling from the probability distribution. It is worth keeping in mind that, just like192

loss functions, the true test is “after-the-fact”; we inspect results and confirm that they193

indeed correspond to our intuition. Just like the definition of a loss function implicitly194

determines a choice of optimal parameters, a choice of probability distribution implic-195

itly determines parameter sensitivities2. Both are arbitrary, but that does not mean that196

loss functions or parameter sensitivities are meaningless.197

We adopt the same definition as in (Schneider, Lan, et al., 2017) for the probabil-
ity distribution:

ρ (C) ∝ ρ0(C) exp

(
−L(C)

L0

)
(16)

where ρ0 is the prior distribution of the parameter values, L is a loss function, and L0 >198

0 is a hyperparameter3.199

The loss function L has dimensions and the parameter L0 makesthe quantity in
the exponent dimensionless. L0 could have been absorbed into the loss function, but it
has a probabilistic interpretation that is worth emphasizing. We chose the parameter
L0 as the minimum of the loss function L(C)–the minimum is found using a modified4

simulated annealing procedure to compute the minimum of L (Kirkpatrick et al., 1983).
With this choice the likelihood of any other parameter choice, say C1, is determined by
the amount by which it increases the minimum of the loss function, i.e.,

ρ(C1)/ρ(C∗) = exp

(L0 − L(C1)

L0

)
, (17)

where C∗ denotes the optimal parameter choice with L0 = L(C∗). For example, if the200

choice C1 increases the minimum of the loss function by a factor of two, i.e. L(C1) =201

2L0, then it is 1/e less likely.202

2 Parameter sensitivities are inversely related to parameter uncertainties. A more sensitive parameter

is one that produces larger changes to the loss function. In the context of this paper a more uncertain

parameter is one that produces small changes to the loss function. See section ?? for a simple example.
3 A hyperparameter is a parameter associated with the probability distribution as opposed to a parame-

ter in the parameterization.
4 The main differences is that we take the minimum “artificial temperature associated with the simu-

lated annealing procedure” to be the best known minimum of the loss function L rather than 0.
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Once L0 is determined, we use the Random Walk Markov Chain Monte Carlo (RW-203

MCMC) algorithm (Metropolis et al., 1953), described further in section C2, to sample204

the probability distribution.205

It is worth mentioning that equation 16 is the continuous analogue of Bayes for-
mula

P(C|data) ∝ P(C)P(data|C) (18)

where P is a probability distribution. In our context we interpret the formula as follows:206

We update our prior belief of the distribution of parameters C based on the data (in this207

case the LES experiment). P(C) is our prior probability for the parameters C, while P(data|C)208

is the probability that the parameter choices C explain the data. Choosing to model pa-209

rameters as probability distributions has the consequence that the output of the param-210

eterization is also inherently probabilistic. In particular, the output of KPP will no longer211

be just a point estimate for temperature at each depth and each moment in time, but212

rather a probability distribution.213

For all the uncertainty quantification that follows, we use resolution and timesteps
typical of state of the art ocean models used for climate studies: a resolution of 100 m/16 =
6.25 m and a timestep of ten minutes. The temporal window used to compute the loss
function is from t1 = 0.25 days to the final simulation day. We apply the Bayesian pa-
rameter estimation procedure to KPP using data from one LES simulation in section 3.1
and from multiple LES simulations using different initial stratifications in section 3.2.
We use a uniform prior for the parameters in KPP over the following ranges:

0 ≤ CS ≤ 1, 0 ≤ CN ≤ 8, 0 ≤ CD ≤ 6, and 0 ≤ CH ≤ 5. (19)

The surface layer fraction CS , being a fraction, must stay between zero and one. The214

other parameter limits were chosen to correspond to “reasonable” ranges around the de-215

fault values, equation 14.216

3.1 Calibration of KPP parameters against one LES simulation217

In this section we apply the Bayesian calibration method to the LES simulation218

of penetrative convection described in section 2.1 and quantify uncertainties in param-219

eters of KPP, section 2.2. The horizontal averages from the LES simulations are com-220

pared with predictions from solutions of the KPP diffusion scheme. The boundary and221

initial conditions for KPP are taken to be the same as those for the LES simulation, i.e.,222

100 W/m
2

cooling at the top, ∂zT = 0.01◦C m−1 at the bottom, and an initial pro-223

file Tp(z, 0) = 20◦C + 0.01◦C m−1z.224

We use the RW-MCMC algorithm with 106 iterations to sample the probability dis-
tributions of the four KPP parameters (CS , CN , CD, CH). This lead to roughly 104 sta-
tistically independent samples as estimated using an autocorrelation length, see Sokal
(1997). The RW-MCMC algorithm generates the entire four dimensional PDF, equation
16, but visualizing this object is challenging. Instead we look at the marginal distribu-
tions, e.g.,

ρM (CH) ≡
∫∫∫

ρ(C) dCSdCDdCN , (20)

and similarly for the other parameters. (Constructing the marginal distributions only225

requires constructing histograms of the trajectories generated by the RW-MCMC algo-226

rithm.) Parameter correlations are washed away by focusing on marginal distributions.227

Nevertheless, marginal distributions give the range of parameter values that yield little228

change to the loss function and are shown in figure 3. The marginal distribution of the229

mixing depth parameter CH is much more compact than that of the other three param-230

eters suggesting that it is the most sensitive parameter. The mixing depth parameter’s231
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importance stems from its control over both the buoyancy jump across the entrainment232

layer and the rate-of-deepening of the boundary layer. (Once again it may be useful to233

remember that CH is often referred to the bulk Richardson number in the KPP liter-234

ature, even though it take a different meaning in convective simulations.) The param-235

eters CK and CN set the magnitude of the local and nonlocal fluxes and their specific236

value is not too important as long as they are large enough to maintain a well-mixed layer.237

The value of the regularization CS is quite irrelevant.238

The parameter distribution can be used to choose an optimal set of KPP param-239

eters. Of the many choices, we choose the most probably value of the four dimensional240

probability distribution, the mode, because they minimize the loss function as explained241

in section Appendix C. (These values do not necessarily correspond to the individual modes242

of the marginal distributions. For example CH is set to ≈ 2.0 rather than 1.5.) In fig-243

ure 4a we show the area averaged temperature profile after 8 days from the LES sim-244

ulation (continuous line) and the temperature profiles obtained running the KPP param-245

eterization with default and optimal parameters (squares and dtots). The optimized tem-246

perature profiles are more similar to the LES simulation than the default value especially247

in the entrainment region. figure 4b confirms that the square root of the loss function,248

the error, grows much faster with the default parameters. The oscillations in the error249

are a consequence of the coarseness of the KPP model: only one grid point is being en-250

trained at any given moment.251

The improvement in boundary layer depth through optimization of the parame-252

ters is about 10%, or 10 m over 8 days. As we discussed in section 2.1, the rate of deep-253

ening can be predicted analytically within 20% by simply integrating over time and depth254

the buoyancy budget and assuming that the boundary layer is well mixed everywhere,255

i.e. ignoring the development of enhanced stratification within an entrainment layer at256

the base of the mixed layer. KPP improves on this prediction by including a parame-257

terization for the entrainment layer. The default KPP parameters contribute a 10% im-258

provement on the no entrainment layer prediction, and the optimized parameters con-259

tribute another 10%. While these may seem like modest improvements, they can result260

into large biases in boundary layer depth when integrated over a few months of cooling261

in winter rather than just 8 days. We will return to this point in the next section when262

we discuss structural deficiencies in the KPP formulation.263

The probability distributions of the parameters can be used to predict the prob-264

ability distributions of all variables, for example temperature at each depth and time,265

predicted by KPP. To do this, we subsample the 106 parameter values down to 104 and266

evolve KPP forward in time for each set of parameter choices. We construct histograms267

for the temperature field at the final time for each location in space individually. We then268

stack these histograms to create a visual representation of the model uncertainty. This269

uncertainty quantifies the sensitivity of the parameterization with respect to parame-270

ter perturbations as defined by the parameter distributions.271

The histogram of temperature profiles at time t = 8 days as calculated by both272

our prior distribution (uniform distribution) and the posterior distribution (as obtained273

from the RW-MCMC algorithm) is visualized in figure 5. We see that there is a reduc-274

tion of the uncertainty in the temperature profile upon taking into account information275

gained from the LES simulation. The salient features of the posterior distribution tem-276

perature uncertainty are277

1. 0-10 meter depth: There is some uncertainty associated with the vertical profile278

of temperature close to the surface.279

2. 20-60 meter depth: The mean profile of temperature in the mixed layer is very well280

predicted by KPP.281

3. 60-70 meter depth: The entrainment region contains the largest uncertainties.282
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Figure 3. Parameter marginal posterior probability distributions. Marginal probability corre-

spond to parameters parameters: CS Surface Layer Fraction, CN nonlocal diffusivity amplitude,

CD diffusivity amplitude, CH mixing depth parameter. The probability distributions capture the

notion of what parameter values are “good” and which ones are “bad”. For example, in the pdf

for CH we see that a value of 2.5 is probable but a value of 5 would be not be. This intuitively

corresponds to saying that a value of 2.5 would be a “reasonable” choice whereas 5 would be

“unreasonable”. The width of the CS and CN parameters suggest that KPP is quite insensitive

to their values. A similar consequence holds for CD, but there also seems to be a preference for

values around one.
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Figure 4. KPP and horizontally averaged LES temperature profiles for different point es-

timates of parameters at t = 8 days as well as the error in time. In the left plot, the squares

correspond to default parameter choices, the circles correspond to the optimized parameterization

(using the mode of the probability distribution), and the blue line to the horizontally averaged

LES solution, all at time t = 8 days. On the right plot we show the instantaneous error at each

moment in time. We see that the “optimal” parameter does indeed reduce the bias over the time

period. The loss function is the largest square of the error over the time interval.

4. 70-100 meter depth: There is virtually no uncertainty. The unstratified region be-283

low the boundary layer does not change from its initial value.284

Now that we have applied the Bayesian methodology to one LES simulation and285

explored its implications, we are ready to apply the method to multiple LES simulations286

covering different regimes in the following section. We focus on the optimization and un-287

certainty quantification of CH for the remainder of the paper, since it is the most sen-288

sitive parameter. In the background, we are estimating all parameters.289

3.2 Calibration of KPP parameters from multiple LES simulation290

There are many possible directions that one could take at this point. We present291

an example of how we can use the methodology to explore bias in the KPP model. To292

this end we investigate what happens when we change the initial stratification in pen-293

etrative convection simulations. This is an informed decision motivated by recent work294

on mixed layer depth biases in the Southern Ocean (DuVivier et al., 2018; Large et al.,295

2019). In those studies, KPP failed to simulate deep mixed layer in winters when the sub-296

surface summer stratification was strong.297

We perform 32 large eddy simulations and calculate parameter distributions for each298

case. We kept the surface cooling constant at 100 W/m2 for all regimes, and only var-299

ied the initial stratification. The integration time was stopped when the boundary layer300

depth filled about 70% of the domain in each simulation. We used 1283 grid points, ≈301
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Figure 5. Uncertainty propagation of the temperature profile with respect to the prior and

posterior probability distributions. The use of probability distributions for parameters has the

consequence that the temperature field is no longer a point estimate, but rather a probability

distribution at each moment in space and time. By sampling from the parameter probability dis-

tributions and evolving the parameterization forward in time, we obtain a succinct representation

of what it means to “fiddle” with parameters. The legend on the right shows what the colors

correspond to in terms of the base 10 logarithm of the probability distributions.

0.8 meter resolution in each direction5. Each one of the probability distributions used302

105 iterations of RW-MCMC, leading to effective sample size on the order of 103.303

The result, which is visualized in figure 6, shows that the parameter CH depends304

on the background stratification, N2. The blue dots are the median values of the prob-305

ability distributions and the stars are the modes (minimum of the loss function). The306

error bars correspond to 90% probability intervals, meaning that 90% of parameter val-307

ues fall between the error bars. The default KPP value is plotted as a dashed line for308

reference.309

The median values and optimal values increase monotonically with the initial strat-310

ification value. Given that the parameter is supposed to be dimensionless, this reveals311

a systematic bias. Furthermore, it exposes where the systematic bias somes from: the312

boundary layer depth criterion in equation 13. No single value of CH can correctly re-313

produce the deepening of the boundary layer for all initial stratifications.314

The failure of the depth criterion can be understood by going back to the buoy-
ancy budget in equation 7. Using the KPP estimate for the buoyancy jump across the
entrainment layer,

∆b ≡ 1

CSh

∫ 0

−CSh

B(z)dz −B(−h), (21)

and introducing N2
h ≡ ∂zB(−h) for the stratification at the base of the entrainment

layer to distinguish it from the interior stratification N2, we find that the boundary layer

5 Although the parameter estimates will vary upon using less resolution, the qualitative trends are

expected to be robust.

–13–



manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

5.0×10 1.0×10 1.5×10 2.0×10 2.5×10 3.0×10
Background Stratification, N² [s 2]

0

1

2

3

4

C
H

Modes, Medians, and 90% Probability Intervals
Default
Median 
Mode 

Figure 6. Mixing depth parameter optimized across various background stratification. The

dots are the median values, the stars are the mode, and the error bars correspond to 90% prob-

ability intervals. The horizontal dashed line is the default value of the mixing depth parameter

for reference. Here one can see that there mixing depth parameter when estimated across various

regimes produces different results. This is a signature of a systematic bias in the parameteriza-

tion.

depth criterion, equation 13, implies,

h∆b ' CHh4/3 (Qb)
1/3

Nh. (22)

Substituting this expression in the buoyancy budget, equation 7, one obtains an implicit
equation for the evolution of the boundary layer depth h,(

1

2
N2 − CH (Qb)

1/3
h−2/3Nh

)
h2 ' Qbt. (23)

The LES simulation described in section 2.1, and many previous studies of penetrative315

convection, e.g. (Van Roekel et al., 2018; Deardorff et al., 1980), show that the bound-316

ary layer depth grows as
√
t. Nh would have to scale as h2/3 for KPP to correctly pre-317

dict that deppening rate of the boundary layer, but this scaling is not observed in the318

LES simulations nor supported by theory.319

3.3 Modification320

From the multi-regime study of the previous section we found that there is no op-
timal KPP mixing depth parameter CH that works for arbitrary initial stratification.
This prompted us to look for an alternative formulation of the depth criterion which sat-
isfies the well known empirical result that the boundary layer depth deepens at a rate,

h '
√
c
Qb
N2

t, (24)

where c is a dimensionless constant found to be close to 3.0 with the LES simulation in
section 2.1. Furthermore, c was found to be close to 3.0 across all the numerical exper-
iments from section 3.2. Substituting this expression in the buoyancy budget, equation
7, we find that,

∆b

hN2
'
(

1

2
− 1

c

)
. (25)
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This expression can then be used as a new boundary layer depth criterion that replaces
equation 13,

C? =
h
(

1
CSh

∫ 0

−CSh
B(z)dz −B(−h)

)
N2h2 + 10−11m2s−2

, (26)

where C? replaces CH as the dimensionless parameter whose value sets the boundary
layer depth. Based on equation 25, we expect

C? '
(

1

2
− 1

c

)
' 1

6
, (27)

based on the LES result. The relation equation 26 is an implicit equation for h which321

guarantees that equation 24 holds. Once again, it may be useful to point out that C?322

takes the place of what is generally referred to as the bulk Richardson number in the KPP323

literature, but that nomenclature is inappropriate for the case of penetrative convection324

where C? parameterizes the effect of convective entrainment rather than shear mixing325

at the base of the mixed layer.326

We now repeat the model calibration in section 3.2 with this new boundary layer327

depth criterion to test whether there is an optimal value of C? that is independent of328

initial stratification. We estimate all KPP parameters and show the new mixing depth329

parameter for simulations with different initial stratifications in figure 7. There is no ob-330

vious trend in the optimal values of C? and the error bars overlap for all cases. This val-331

idates the new criterion in that parameters estimated in different regimes are now con-332

sistent with one another. The uncertainties in C? translate into an uncertainty in bound-333

ary layer depth prediction. In particular, values between 0.05 ≤ C? ≤ 0.2 imply a bound-334

ary layer depth growth in the range
√

2.22tQb/N2 ≤ h ≤
√

3.33tQb/N2.335

Additionally one can check if the constants estimated with the methodology of sec-336

tion 3 are consistent with an independent measure directly from the diagnosed LES sim-337

ulation. In particular the LES simulations suggest that C? ' 1/6 as per equation 27.338

From figure 7 we see that the optimal C? is somewhat smaller than 1/6 = 0.167 (the339

dashed black line). A reason for this discrepancy is the neglect of curvature in the buoy-340

ancy budget, since we assumed a piece-wise linear buoyancy profile. Another one is the341

finite resolution in the model. A systematic source of error is how we diagnose the bound-342

ary layer depth: a different definition, such as the depth of maximum stratification, would343

yield a different scaling law (but still proportional to
√
t). At any rate the Bayesian pa-344

rameter estimation bypasses these ambiguities / inconsistencies by direct comparison with345

the LES data.346

We do not explore other modifications to the boundary layer depth criterion as this347

would greatly expand the scope of this article. The criterion described in this section as-348

sumes a constant initial stratification and a constant surface heat loss, which leads to349

the
√
t growth of the boundary layer depth. It would be interesting to extend the cri-350

terion to arbitrary initial stratification, variable surface heat fluxes, not to mention the351

interaction with wind-driven mixing. The goal here was not to derive a new parameter-352

ization, but rather to introduce a methodology for obtaining meaningful parameteriza-353

tions for climate models.354

4 Discussion355

In this work we have used a Bayesian methodology for estimating parameters in356

parameterizations of subgrid-scale physics as a first step towards parameter sensitivity357

studies for Earth Systems Models. We have calculated parameter probability distribu-358

tions for parameters in the K-profile parametrization (KPP) by comparing with very high359

resolution simulations of ocean convection.360
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Figure 7. The modified mixing depth parameter optimized across various background stratifi-

cation. The dots are the median values, the stars are the mode, and the error bars correspond to

90% probability intervals. The dashed line corresponds to 1/6, the theoretical expectation based

on equation 27. This is similar to figure 6, but using the modification from section 3.3. Here

one can see that there mixing depth parameter when estimated across various regimes produces

similar results. This is a desirable feature in a parameterization.

This approach differs from current practice in ocean and climate modelling. Stan-361

dard practice is to estimate parameters from a high resolution simulation or field cam-362

paign, or to tune parameters to reduce biases in global simulations. For example, the nondi-363

mensional amplitude of the KPP eddy diffusivity would be estimated as the ratio of the364

flux to the gradient from a single or a few high resolution simulations, (Van Roekel et365

al., 2018), or field campaigns, (Large et al., 1994). This assumes at the outset that the366

parameters calibrated for one test case will apply to all other scenarios, something that367

should be demonstrated rather than assumed. The other common approach is to tune368

the parameters in global models to reduce biases in climate relevant variables like ocean369

heat uptake or sea surface temperature (Menemenlis et al., 2005; Sraj et al., 2016). This370

can result in parameter choices that are inconsistent with the subgrid-scale physics they371

are supposed to parameterize. Our approach, instead, relies on a suite of high resolu-372

tion simulations that span all the scenarios the parameterization is supposed to capture.373

Applying a Bayesian methodology, we then estimate the probability distributions for pa-374

rameters which are consistent with the whole suite of high resolution simulations. It is375

worth pointing out that the methodology is computationally trivial once one has the LES376

solutions. The intellectual effort goes into identifying appropriate forms for the cost func-377

tions and probability distributions to guide the quantification of parameter values and378

their uncertainty.379

We illustrated our approach to estimating KPP parameters for convection in a strat-380

ified ocean. We found that no unique set of parameters could capture the deepening of381

convection for different initial stratifications. We showed that a reformulation of the cri-382

terion to estimate the penetration depth of convection allowed us to find parameters that383

agreed well with the whole set of high resolution simulations. This shows the Bayesian384

approach is not only useful to estimate the probability distributions of parameter val-385
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ues in a parameterization, but it can also be used to identify and eliminate potential bi-386

ases in parameterizations.387

Ultimately, the hope is that parameter probability distributions estimated in lo-388

cal regimes will be useful for estimating uncertainties in global climate models; however,389

when coupling different components together, new parameters are introduced and non-390

linear interactions between parameters can arise. Thus additional optimization is required391

for the full system and this requires innovation, because the methodologies described in392

this paper are not computationally feasibly when applied to larger systems. A promis-393

ing approach for the global climate system is the Calibrate, Emulate, and Sample (CES)394

philosophy as outlined in (Cleary et al., 2020). In the CES approach, one uses a prior395

distribution for parameters (such as the ones calculated here for KPP) in a climate model396

in order to generate a preliminary ensemble of parameters. One then evolves this ensem-397

ble according to a loss function (appropriate to the global model) to generate a set of398

points that serve as a good “nodes” for interpolation of the loss function (or, alterna-399

tively, the “forward map”). A model, also called the emulator/surrogate model, is then400

chosen as an interpolator: this can be, for example, a Bayesian Neural Network or a Gaus-401

sian Process. Then one uses the interpolated function to calculate the probability of the402

posterior distribution using classic algorithms like the RW-MCMC method. In this way,403

one avoids rerunning the climate model and instead leverages as much information as404

possible from limited data. The surrogate model can then be used to update the prior405

distribution and improve predictions of the global model.406

Stated differently we do not allow for arbitrary parameter perturbations when try-407

ing to match a climate model to data, parameter perturbations must take into account408

prior information. We propose obtaining this prior information by using highly resolved409

local simulations of turbulence. These experiments must be carefully designed and take410

into account suites of subgrid scale processes that one might expect to encounter in a411

global ocean model: vertical mixing, baroclinic effects, Langmuir turbulence, surface wave412

effects, bottom boundary layer turbulence, etc. If the global problem still exhibits sig-413

nificant biases after using all available prior information then this suggests that there414

is a fundamental deficiency in our understanding of how the different components of the415

climate system interact with one another. In this way one can start decoupling where416

biases in climate models come from. When the physics of local processes are well under-417

stood, then the additional uncertainties induced by coupling different regimes can be iso-418

lated and scrutinized. One no longer allows for biases to compensate for one another.419

Appendix A Oceananigans.jl420

Oceananigans.jl is open source software for ocean process studies written in the Ju-
lia programming language (Bezanson et al., 2017; Ramadhan et al., 2020; Besard et al.,
2019). For the large eddy simulations (LESs) reported in this paper, Oceananigans.jl is
configured to solve the spatially-filtered, incompressible Boussinesq equations with a tem-
perature tracer equations. Letting u = (u, v, w) be the three-dimensional, spatially-filtered
velocity field, θ be the conservative temperature, p be the kinematic pressure, f be the
Coriolis parameter, and τ and q be the stress tensor and temperature flux due to sub-
filter turbulent diffusion, the equations of motion are A1–A3,

∂tu+ (u · ∇)u+ fẑ × u+∇p = bẑ −∇ · τ , (A1)

∂tθ + u · ∇θ = −∇ · q, (A2)

∇ · u = 0. (A3)

The buoyancy b appearing in A1 is related to conservative temperature by a linear equa-
tion of state,

b = αg (θ0 − θ) , (A4)
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where θ0 = 20◦C is a reference temperature, α = 2 × 10−4 (◦C)−1 is the thermal ex-421

pansion coefficient, and g = 9.81 m s−1 is gravitational acceleration at the Earth’s sur-422

face.423

A1 Subfilter stress and temperature flux424

The subfilter stress and momentum fluxes are modeled with downgradient closures,
such that

τij = −2νeΣij and q = −κe∇θ, (A5)

where Σij ≡ 1
2 (∂iuj + ∂jui) is the strain rate tensor, and νe and κe are the eddy vis-425

cosity and eddy diffusivity of conservative temperature. The eddy viscosity νe and eddy426

diffusivity κe in equation A5 are modeled with the anisotropic minimum dissipation (AMD)427

formalism introduced by (Rozema et al., 2015) and (Abkar et al., 2016), refined by (Verstappen,428

2018), and validated and described in detail for ocean-relevant scenarios by (Vreugdenhil429

& Taylor, 2018). AMD is simple to implement, accurate on anisotropic grids (Vreugdenhil430

& Taylor, 2018), and relatively insensitive to resolution (Abkar et al., 2016).431

A2 Numerical methods432

To solve equations A1–A3 with the subfilter model in equation A5 we use the soft-433

ware package ‘Oceananigans.jl’ written in the high-level Julia programming language434

to run on Graphics Processing Units, also called ‘GPUs’ (Bezanson et al., 2017; Besard435

et al., 2019; Besard et al., 2019). Oceananigans.jl uses a staggered C-grid finite vol-436

ume spatial discretization (Arakawa & Lamb, 1977) with centered second-order differ-437

ences to compute the advection and diffusion terms in equation A1 and equation A2, a438

pressure projection method to ensure the incompressibility of u, a fast, Fourier-transform-439

based eigenfunction expansion of the discrete second-order Poisson operator to solve the440

discrete pressure Poisson equation on a regular grid (Schumann & Sweet, 1988), and second-441

order explicit Adams-Bashforth time-stepping. For more information about the staggered442

C-grid discretization and second-order Adams Bashforth time-stepping, see section 3 in443

(Marshall et al., 1997) and references therein. The code and documentation are avail-444

able for perusal at https://github.com/climate-machine/Oceananigans.jl.445

Appendix B Plume Model Derivation of the Mixing Layer Depth Cri-446

teria447

We begin by considering the vertical momentum equation for a parcel punching through
the transition layer,

w′
dw′

dz
' −(b′ − b̄) (B1)

where b′ is the buoyancy of the parcel, assumed to be equal to the mixed layer value and
b̄ is the area mean buoyancy profile in the transition layer. This equation holds if the
mean buoyancy profile is in hydrostatic balance and the area occupied by sinking plumes
is small compared to the total area (Deardorff et al., 1980). Integrating from z = −h+
∆h, where w′ ≡ we, to z = −h, where the turbulence and particle descent vanish and
hence w′ = 0, gives,

(we)
2 ' N2

e∆h2, (B2)

assuming that the background stratification N2
e is constant in the entrainment layer. In-

troducing ∆b as the difference between the buoyancy in the mixed layer and that at the
base of the transition layer, we have, ∆b̄ = N2

e∆h, and hence,

∆b̄ ∝ w∗Ne, (B3)
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where we assumed that we ∝ w∗(−h + ∆h). The criterion for diagnosing the mixing
layer depth follows from this relationship; h is defined as the first depth z below the ocean
surface where,

∆bp(z)

w∗(z)Ne(z)
= CH , (B4)

for some universal constant CH .448

Appendix C A Primer on on Probability Distributions449

In defining a probability distribution, there are a few desirable features that en-450

able us to make a direct connection to a loss function, L:451

1. In the limit of no uncertainty, a probability distribution should collapse to a delta452

function centered at optimal parameter values of the loss function.453

2. The most probable value of the distribution should correspond to the optimal pa-454

rameter in a loss function.455

3. The uncertainty of a parameter value should be determined in terms of its effect456

on the loss function.457

There are many probability distributions that satisfy the above criteria, but we choose

ρ(C) ∝ ρ0(C) exp (−L(C)/L0) , (C1)

where ρ0 is a uniform prior distribution, L is a loss function, and L0 is a hyperparam-458

eter. In the following subsections we hope to elucidate why we made our particular choices.459

In section C1 we describe why we chose L0 as we did. In section C2 we go into detail460

on how to sample the probability distribution via the RW-MCMC algorithm as well as461

intuition for what it is doing.462

C1 Explanation for our choice of L0463

We now describe what the parameter L0 means in more detail. The limit L0 →464

0 corresponds to no uncertainty. In this limit, the probability distribution collapses to465

a delta function centered around the global optimal parameters of the loss function. An466

easy way to see this is to interpret the definition of the probability distribution as a Boltzmann-467

Gibbs distribution where the loss function corresponds to the energy of the system, and468

the constant L0 is analogous to the temperature of the system, kT where k is the Boltz-469

mann constant, and T is the temperature. In the limit of zero temperature, the system470

collapses to the lowest energy state, in this case, the minimum of the loss function. The471

alternative limit L0 →∞ corresponds to an uncertainty that reduces to the prior dis-472

tribution, ρ0. In this case, information gained from loss function evaluations are unin-473

formative. In analogy with the Boltzmann-Gibbs distribution this corresponds to infi-474

nite temperature and every energy state becomes equally likely (hence uninformative).475

The maximum of the probability distribution is the mode. This value will be in-
dependent of L0 if the prior distribution is uniform. Indeed, letting C∗ denote the (global)
minimum of the loss function and C denote any other value, we get

L(C∗) ≤ L(C) ⇒ exp (−L(C)/L0) ≤ exp (−L(C∗)/L0)⇒ ρ(C) ≤ ρ(C∗). (C2)

Hence the minimum of the loss function is the most probable value of the probability476

distribution independent of L0 for a uniform prior distribution.477

As mentioned in section 3, we choose the hyperparameter L0 to be the minimum478

of the loss function L. Let us take a step back and explain why we used this definition.479
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Whatever the choice of L0, we would like the uncertainties of parameters to be indepen-480

dent of the units for which we use to evaluate the loss function. Furthermore, we would481

like for it to become smaller when there is less model bias and greater when there is more482

model bias. In other words, there is more uncertainty when the parameterization does483

a poor job of matching the “truth”. This second criteria suggestions that L0 should be484

a monotonic function of the global minimum of the loss function (the bias) L(C∗) where485

C∗ denotes the optimal parameter values. The first criteria, coupled with the fact that486

a perfect model would output a value of 0 for the loss function, yields a number of choices.487

We use the simple form L0 ∝ L(C∗), as it is consistent with the previous sentence. Stated488

differently, we take L0 to be proportional to model bias. It is perhaps more correct to489

think of L0 as corresponding to differences in the loss function. Here we are using the490

difference between the “best” parameter choice and a (perhaps) non-existent parame-491

ter choice that would correspond to a perfect model whose loss function value is zero.492

In the case that we have a perfect model and perfect data this would correspond493

to no uncertainty in the parameters and we would go back to having a point estimate494

for parameter values. Our choice here naturally assumes that both our data and our loss495

function are “perfect”. If we have an idea of how imperfect our data or loss function may496

be, then this additional uncertainty should be taken into account in the choice of L0, or497

more generally, in the functional form of the probability distribution. We do not con-498

sider this additional source of uncertainty here.499

The choice that we have made for this parameter may be thought of as how far we500

are willing to deviate from optimal values while still producing small changes in the loss501

function. In other words it is an e-folding length defined by the minimum of the loss func-502

tion. In this sense, we do not prescribe the uncertainty of a parameter a priori, but in-503

stead, implicitly determine it from a choice of how far from optimal parameters that we504

are willing to deviate. One could spend a lifetime arguing about the finer details of a choice505

for this parameter, but ultimately this would detract from the real goal: to gain an un-506

derstanding of what happens when one perturbs parameters away from optimal values.507

Any choice of L0 > 0 would do this. The important part is to make clear how such a508

choice is made and why.509

Admittedly, in practice it is seldom possible to find the true global optimum of L510

and the best one could hope for is some approximate value that is the “best known” op-511

timal value C̃ to get an approximate L̃0 ≡ L(C̃). Since L0 = L(C∗) ≤ L(C̃) = L̃0,512

our uncertainty is a conservative estimate (recall that a smaller L0 corresponds to less513

uncertainty).514

C2 Random Walk Markov Chain Monte Carlo515

We use standard methods to sample values from the probability distribution. The516

algorithm that we describe here is the Random Walk Markov Chain Monte Carlo Method517

(RW-MCMC), first used in (Metropolis et al., 1953). This method is most appropriate518

for loss functions where gradient information is either unavailable or prohibitively ex-519

pensive to calculate. If it is possible to differentiate the loss function, then other meth-520

ods may be more efficient at sampling from the distribution, such as Hamiltonian Monte521

Carlo. This alternative method is especially relevant when one wants to estimate a large522

number of parameters; however, here we are estimating four parameters, and there is no523

need for additional complexity.524

The RW-MCMC algorithm, as the name suggests, performs a random walk in pa-525

rameter space C. It stays in regions of high probability more often, thereby allowing one526

to take the trajectories of the random walk and construct histograms that are directly527

related to the empirical distribution of underlying probability distribution function.528
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Figure C1. A histogram plot of RW-MCMC output for the target probability distribution

equation C3 starting from a suboptimal value C0 = [12.0 24.0]T and using 105 iterations. The

white space signifies regions that the algorithm did not explore. The dark regions correspond

to places that were rarely visited whereas the red and yellow regions correspond to places that

were visited more often. The trail from the starting value to the optimal value illustrates how the

random walk is biased towards regions of ever increasing probability.

We further illustrate what the algorithm does by considering the following toy loss
function:

L(C) =
1

2
(C − µ)TΣ−1(C − µ) , µ =

[
1
2

]
, and Σ =

[
1 1/2

1/2 1

]
, (C3)

with the choice L0 = 1 in the probability distribution. In figure C1 we show a typical529

output from an RW-MCMC algorithm for this probability distribution. Note that the530

optimal value of the loss function is µ = [1 2]T . Starting from a poor initial guess, here531

C0 = [12.0 24.0]T , the algorithm goes towards regions of higher probability (lower cost532

function) by randomly choosing which direction to go. Once a region of high probabil-533

ity is found, in this case parameter values close to µ, the parameters hover around the534

minima of the loss function in a way that is consistent with the target probability dis-535

tribution.536

We now go into detail on RW-MCMC algorithm. Ratios of the probability distri-537

bution play a prominent role in the RW-MCMC algorithm; however, due to finite arith-538

metic considerations it is actually better to work with the logarithms of the probabil-539

ity distribution. A convenient way to do this is to use the negative log-likelihood func-540

tion as ` = − ln ρ. This function can be thought of as being essentially the same as the541

loss function 15, but shifted and scaled. Denote elements of a sequence of parameter val-542

ues by Ci. The RW-MCMC algorithm is:543

1. Choose initial parameter values C0. One choice for this parameter is the best known544

minimizer of the log-likelihood function using standard minimization techniques.545

2. Calculate a “proposal parameter” C̃1. This will be described in more detail later.546

3. Calculate ∆` = `(C0) − `(C̃1). This is a measure of how much more likely C̃1547

is relative to C0.548
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4. Draw a random uniform random variable from the interval [0, 1], e.g, calculate u =549

U(0, 1). This is used to determine whether or not to accept C̃1 as a new param-550

eter.551

5. If log(u) < ∆` set C1 = C̃1. Otherwise set C1 = C0. This is the “accept / re-552

ject” step. Note that if ∆` > 0, i.e. the proposed parameter produces a smaller553

output in the negative log-likelihood function, the proposal is always accepted.554

6. Repeat steps 2-5 for Ci, replacing C0 → Ci and C1 → Ci+1, to generate a se-555

quence (or chain) of parameter values.556

Interpreting the negative log-likelihood function as a potential function, the algorithm557

may be succinctly stated as “always go downhill, sometimes go uphill”. The sequence558

of parameter values generated by this algorithm can then be used to construct any statis-559

tics of the probability distribution 16, including empirical distributions, marginal dis-560

tributions, and joint distributions. In the context of KPP this can also generate the un-561

certainty of a temperature at a given point in space and time as well as the uncertainty562

of the mixed layer depth at a given time.563

This random walk is different from a random number generator in that successive
samples are not independent of one another but are instead correlated. The random walk
must be run for enough time to generate a sufficient number of statistically independent
samples. The proposal step is crucial to ensure this feature. Thus, we will now describe
how to choose a proposal in more detail. If there are no restrictions on the range of pa-
rameter values, then one can perturb each parameter by a Gaussian random variable with
mean zero and covariance matrix Σ, i.e.

C̃i+1 = Ci +N (0,Σ) (C4)

Interestingly, the algorithm is guaranteed to work independent of the choice of Σ as long564

as the covariance matrix Σ is nonzero and the same proposal is used throughout the ran-565

dom walk6; however, suitable choices of Σ can speed up convergence to the probability566

distribution. At the end of an RW-MCMC run one can diagnose the “number of inde-567

pendent samples” by using approximations of the correlation length, see Sokal (1997).568

If Σ is too small then the acceptance rate will be too large since each proposal param-569

eter is barely any different from the original parameter. Too large of a proposal often570

yields too low acceptance rates since it is typically easier to propose a parameter asso-571

ciated with a region of low probability than high probability (thereby making it likely572

that one is choosing a point that is “uphill” more often than “downhill”). One option573

is to take Σ to be a diagonal matrix whose diagonal elements are proportional to the square574

10% of the default parameter values, i.e., the standard deviation of the proposal of each575

was about 10% and that each parameter component proposal was independent. A com-576

mon option is to choose Σ according to the covariance matrix of the prior distribution.577

Yet, another option is to perform a preliminary random walk to estimate the covariance578

of the target distribution and then use this estimated covariance matrix in a new ran-579

dom walk. In general, there is no rule that will always speed up convergence, but we found580

that the last method to gave the best results.581

If we would like to restrict the parameters to be in a finite range it is as simple as582

making the random walk take place in a periodic domain in parameter space. Another583

option is to redefine the loss function so that it outputs infinity if one plugs in a value584

outside a specified range. We opt for the former since it does not “waste” function eval-585

uations.586

6 If one decides to change the proposal one needs to start the random walk over and cannot reuse data

generated from another proposal.
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