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Abstract11

We numerically explore the convection and general circulation of an ocean encased in12

a spherical shell of uniform thickness which is heated from below by an imposed, spatially-13

uniform heat flux and whose temperature at the upper surface is relaxed to a constant14

temperature, imagined to be the freezing point of water. We describe the phenomenol-15

ogy and equilibrium solutions obtained across a broad range of two key non-dimensional16

numbers: the natural Rossby number, Ro˚, a measure of the influence of rotation, and17

η “ R{pR`Hq where R is the radius of the moon and H the depth of its ocean, a mea-18

sure of the geometry of the moon. Icy moons such as Europa and Enceladus are char-19

acterised by Ro˚ ăă 1 and thus profoundly influenced by rotation and convective mo-20

tions which align with the tangent cylinder. They also have a small η which determines21

the meridional extent of the tangent cylinder and delineates two distinct regimes of cir-22

culation — rolls and plumes which are prominent outside and inside the tangent cylin-23

der, respectively. We attempt to rationalise amplitudes and scales of the circulation in24

terms of these two non-dimensional numbers and how the circulation changes with them.25

Finally, in parameter regimes appropriate to icy moons, we find that plumes are more26

efficient at transferring heat to the upper boundary, resulting in polar cooling. In the27

absence of plumes, for example in diffusive simulations in which they are suppressed, the28

rolls take over resulting in equatorial cooling.29

Plain Language Summary30

With subsurface oceans of icy moons of the Solar System emerging as hotspots for31

search for extraterrestrial life, it is important to understand the dynamics of these oceans.32

With this aim in mind, this study performs numerical simulations to understand how33

effective the rotation and geometry of the moon are in determining the nature of circu-34

lation in an idealized ocean heated from below. We express our results in terms of non-35

dimensional numbers, which could then be used to predict the nature of circulation in36

oceans of real icy moons provided their rotation rate, geometry, and bottom heating is37

well known. We also find that turbulence, which is often very hard to measure, cannot38

be overlooked.39

1 Introduction40

Icy moons with subsurface oceans, such as Enceladus (Thomas et al., 2016) and41

Europa (Hand & Chyba, 2007), are targets in the search for extraterrestrial life. Not only42

is there a liquid water ocean on these icy moons, but also the ocean appears to be salty43

(Postberg et al., 2009; Trumbo et al., 2019), indicating present or past interactions be-44

tween the ocean and the silicate core beneath. Methane and macromolecular organic com-45

pounds have been detected in the sprays emanated from the geysers on the south pole46

of Enceladus (Postberg et al., 2018; Waite et al., 2006). Tholin, an abiotic organic com-47

pound that may facilitate prebiotic chemistry formation (Borucki et al., 2002) and pro-48

vide food for heterotrophic microorganisms before autotrophy evolved (Stoker et al., 1990),49

has been found on the surface of Europa (Borucki et al., 2002). Such evidence suggest50

a very high astrobiological potential of icy moon worlds. However, our understanding51

of the physical and chemical processes going on in the ocean, ice shell, and silicate core52

are still very limited. Among all the puzzles that face us, ocean dynamics is of partic-53

ular importance because it results in transport of nutrients, heat, salt, and potential biosig-54

natures between the core to the ice shell.55

The two major drivers of ocean circulation on icy moons are, first, bottom heat-56

ing and, second, the salinity flux induced by freezing and melting of ice and the temper-57

ature variation just beneath the ice-shell due to the dependence of the freezing point of58

temperature on pressure. In this work, we will focus on the first and not address the sec-59

ond. Our goal is to explore how ocean dynamics depend on the depth, the heat flux pre-60
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scribed at the bottom and the rotation rate of the moon. We do this by identifying key61

non-dimensional numbers that govern the dynamics. A further goal will be to explore62

how ocean dynamics carry heat coming in at the bottom up to the ice shell above, the63

resulting temperature distribution within the ocean, and the general circulation that is64

set up. Important context is provided by previous numerical studies of ocean circula-65

tion on icy moons (Soderlund et al., 2013; Soderlund, 2019; Amit et al., 2020), as well66

as explorations of convection in rotating, spherical shells (J. Aurnou et al., 2003, 2008;67

Dormy et al., 2004; Takehiro, 2008; Gastine et al., 2016). The modus operandi of all such68

studies is to identify key controlling non-dimensional parameters, perform experiments69

in parameter space that can be reached either numerically or in the laboratory, and then70

extrapolate from them to the regimes where icy moons are thought to exist. In previ-71

ous studies the non-dimensional numbers employed are typically the Rayleigh number72

(Ra) and Ekman number (E), both of which depend on the eddy viscosity and diffusiv-73

ity assumed in the model, and the temperature difference imposed across the water col-74

umn. Appropriate values of Ra and E for icy moons are not known with any certainty75

because turbulent processes must be represented by eddy viscosities and diffusivities which76

are not distinct from the convective process itself.77

Here, as discussed in detail below, we choose to characterize the fluid dynamics in78

terms of the natural Rossby number, Ro˚ defined by:79

Ro˚ “

ˆ

B

f3H2

˙1{2

, (1)

which depends on B, the buoyancy flux being carried across the fluid, f “ 2Ω,80

the rotation rate, and H, the total depth of the convective layer. This leads to a tidy81

division of the controlling parameters between a rotational parameter independent of dif-82

fusion (Ro˚) and a viscous/diffusive parameter (E). This is especially useful for appli-83

cation to icy moons because, although Ro˚ is somewhat constrained by observations, the84

Ra number is rather uncertain because, as noted above, it depends on poorly known val-85

ues of eddy diffusivity and viscosity.86

We find that Ro˚ has great utility in organising our experiments and putting them87

in the context of likely flow regimes on icy moons. Moreover, we show that the inten-88

sity and spatial scale of turbulent motions and their efficiency of radial heat transport89

can be rationalized in terms of Ro˚ across a vast range of Ro˚ values, from very small90

(the icy moon regime) to large (more typical of convection on Earth’s atmosphere).91

The other non-dimensional parameter we employ is a measure of the geometry of92

the moon and in particular its tangent cylinder, η “ R{pR`Hq where R is the radius93

of the moon and H the depth of its ocean. When η is close to unity the fluid shell is thin;94

as it decreases the fluid deepens and the influence of Taylor-Proudman and the tangent95

cylinder is felt over a larger meridional fraction of the spherical domain. When Ro˚ is96

small and the ocean is deep, two distinct regions emerge demarcated by the tangent cylin-97

der – upright convection occurs at higher latitudes inside the tangent cylinder, whereas98

roll-like ’Busse’ convection (Busse, 1970) occurs in tropical latitudes outside of it.99

Our paper is set out as follows. Section 2 sets up the problem and identifies key100

non-dimensional numbers: the (Ro˚, E) pairing and the geometrical factor η. We will101

have a particular interest in where Europa and Enceladus lie in this phase space. Sec-102

tion 3 describes the numerical strategy and boundary conditions employed. Rather than103

prescribe a temperature difference across the fluid we impose a heat flux at the lower bound-104

ary and relax the fluid to the freezing point of water at the upper boundary. Section 4105

describes and interprets the solutions obtained as key non-dimensional numbers are changed.106

Finally, in Section 5, we summarize and conclude.107
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2 Convection in a rotating spherical shell driven by heating from below108

What is the nature of the convective activity driven by heating from below in a deep109

spherical shell that comprises an icy moon? Under what circumstances is the convec-110

tion rotationally-controlled so that Taylor-Proudman constraints dominate? What are111

the implications of those rotational constraints on the general circulation of an ocean in112

a deep spherical shell? As sketched in figure 1 the external parameters of our problem113

are the radius of the moon R, the depth of the ocean H, the rotation rate of the moon114

Ω and the buoyancy flux B emanating from the silicate core. These are all somewhat115

constrained by observations thus enabling us to place, for example, Enceladus and Eu-116

ropa in (Ro˚, η) phase space.117

H R

Ω

B

T=0

Figure 1. Geometry of the ocean of our icy moon. The grey region represents the silicate core
of radius R which is enveloped by a liquid ocean, shown in blue, of depth H. The ice shell is the
white exterior region and is not marked. The red arrows pointing radially outwards represent
the imposed buoyancy flux B due to heating in the silicate core. The temperature at the upper
boundary is relaxed to 0 ˝C which leads to heat loss. The axis of rotation is along Ω. The two
thin black lines mark the tangent cylinder. The geometrical parameters define η. We assume an
equation of state in which the density only depends on the temperature linearly. This assump-
tion, together with a specification of a (constant) gravitational acceleration, define Ro˚.

2.1 Scaling ideas118

For clarity we begin by briefly reviewing key scaling ideas which will be used to frame119

our study. These are motivated by the literature on open ocean convection reviewed by120

Marshall and Schott (1999). Given that the timescale for fluid rising in a convective el-121

ement from below on a small but deep icy moon, gently heated from below, is likely to122

be very many rotation periods, we expect the Rossby number to be small. Thus the dy-123

namics can be expected to be profoundly influenced by the rotation of the moon, as will124

be clear from the numerical experiments presented herein. To demonstrate the nature125

of rotational constraints in a deep fluid we will also explore how the nature of the so-126

–4–



manuscript submitted to JGR: Planets

lution changes as the Rossby number is increased and the fluid depth decreases. In an127

appendix we connect our study to the wider rotating convection literature, placing our128

study in the context of previous work and (Ra, E) space.129

2.1.1 Influence of geometry and rotation130

Imagine that warming from below associated with a sustained buoyancy flux of mag-131

nitude B drives convection into water of depth H as illustrated schematically in Fig. 1.132

A layer of 3-D, buoyancy-driven turbulence will deepen as the plumes that make it up133

evolve in time, penetrating into the fluid above. Ultimately the convection will extend134

over the entire depth H. We now briefly review the scales which naturally emerge.135

1. Evolution over time.136

Let us suppose that in the initial stages, plumes extending into the convective layer137

are so small in scale that they cannot feel the finite depth H. Furthermore for times138

t ăă f´1 (where f “ 2Ω), rotation is unimportant; only B remains as the con-139

trolling parameter. It is then not possible to construct scales for the depth, buoy-140

ancy, or velocity of the plumes. The convective process must evolve in time, and141

we suppose that it proceeds in a self-similar way. The following scales can be formed142

from B (units of velocity times acceleration) and t (a more detailed account can143

be found in Jones and Marshall (1993) and Maxworthy and Narimousa (1994)):144

l „
`

Bt3
˘1{2

;u „ pBtq
1{2

; g1 „

ˆ

B

t

˙1{2

(2)

where l is a measure of the length scale of the convective motion, u is a velocity145

scale and g1 is a measure of the reduced gravity (equivalently buoyancy) of the146

convective elements.147

2. Scale constrained by ocean depth.148

If it is the depth H that ultimately limits the scale of the cells then putting l “149

H in eq. (2), above, the following scaling is suggested (Deardorff, 1980), indepen-150

dent of rotation:151

l „ lnorot “ H;u „ unorot “ pBHq
1{3

; g1 „ g1
norot “

ˆ

B2

H

˙1{3

(3)

The subscript “norot” indicates that these are the scales adopted in the absence152

of rotation.153

3. Scale constrained by rotation.154

If H is sufficiently large then the evolving convection will come under rotational155

control before it reaches the surface. The transition from 3-D buoyancy-driven plumes156

to quasi-2-D, rotationally dominated motions will occur as t approaches f´1, at157

which point, replacing t by f´1 in eq. (2), the following scales pertain (Fernando158

et al., 1991):159

l „ lrot “

ˆ

B

f3

˙1{2

;u „ urot “

ˆ

B

f

˙1{2

; g1 „ g1
rot “ pBfq

1{2 (4)

where the subscript “rot” (for “rotation”) has been used to denote the scales at160

which rotation begins to be important.161

As the plumes keep supplying warm water upwards, they eventually coalesce to162

form a columnar structure stretching from the bottom all the way to the top. If163

the column has a buoyancy anomaly set by the entraining, rotationally-constrained164

plumes given by g1
rot, then there is a scale – which we can call a ‘deformation’ scale165

– given by166

ldef „

a

g1
rotH

f
“ plrotHq1{2. (5)
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It should be noted that the foregoing scales are independent of assumptions con-167

cerning eddy viscosity and diffusivity provided that they are sufficiently small; they are168

the velocity, space, and buoyancy scales that can be constructed from the “external” pa-169

rameters B, f , and H. However the constants of proportionality in equations (3) and170

(4) will be dependent on viscous/diffusive processes and can be determined experimen-171

tally from laboratory and numerical experiments. Below we will present numerical ex-172

periments which test and provide broad support for these scaling ideas in the context173

of icy moons.174

2.2 Key non-dimensional numbers175

It is important to identify key non-dimensional numbers that govern the problem176

because more often than not, it is not possible to carry out numerical experiments in re-177

alistic parameter regimes. However, by extrapolation, we can infer likely behavior of the178

real system if parameters are appropriately set. Here we focus on key parameters that179

characterise the influence of rotation on the convective motion, and the geometry of the180

spherical shell in which it is occurring.181

2.2.1 The Natural Rossby number182

The natural Rossby number (Jones & Marshall, 1993; Maxworthy & Narimousa,183

1994) compares the scale lrot at which convection comes under the influence of the Earth’s184

rotation, to the total depth of the convective layer H185

Ro˚ “
lrot
H

“

ˆ

B

f3H2

˙1{2

(6)

As discussed in Appendix B, Ro˚ is proportional to a modified flux Rayleigh num-186

ber. The scaling for rotating and non-rotating convection set out above can be expressed187

entirely in terms of Ro˚ thus:188

unorot

fH
“ Ro˚ 2{3 (7)

g1
norot

f2H
“ Ro˚ 4{3, (8)

and189

urot

fH
“ Ro˚, (9)

g1
rot

f2H
“ Ro˚ (10)

The scale in eq. (5) can be written:190

ldef
H

“
?
Ro˚. (11)

We will test these scaling laws in our simulations of icy moons presented in Section 4191

below.192
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2.2.2 Deep oceans and the geometry of the tangent cylinder: aspect ra-193

tio η “ R{pR ` Hq194

The scaling ideas reviewed above are applied here to convection in a rotating spher-195

ical shell. When Ro˚ ăă 1, Taylor columns align parallel to the rotation axis. In this196

limit, the convective dynamics behave differently inside and outside the tangent cylin-197

der — a cylinder whose edges are parallel to the moon’s axis of rotation and are tangen-198

tial (hence the name) to the ocean’s floor at the equator (fig.1). Upright convection takes199

place inside the tangent cylinder, whereas roll-like convection takes place outside it. The200

latitude at which the tangent cylinder intersects the surface depends on the depth of the201

ocean (the difference between the outer and inner radii, ro and ri, respectively). The ra-202

tio of these two radii, η “ R{pR`Hq, therefore, is the other key non-dimensional num-203

ber that determines the dynamics and heat transport properties, in addition to Ro˚.204

2.2.3 Typical non-dimensional numbers for icy moons205

Without running any experiments, the two aforementioned non-dimensional num-206

bers, Ro˚ and η, can inform us about the likely dynamics on icy moons. Key physical207

parameters and derived non-dimensional numbers for four major icy satellites, Enceladus,208

Titan, Europa, and Ganymede, are summarised in Table 1. The natural Rossby num-209

ber Ro˚ for all is smaller than 2ˆ 10´4, indicating that tens of thousands of rotation210

periods would have passed before a buoyant water parcel rising from the bottom makes211

it to the surface. Thus we expect ocean dynamics to be governed by rotation. The ra-212

tios of inner to outer radii η on icy moons are thought to be around 0.8-0.9, providing213

ample opportunity for the heat to be redistributed in three dimensions around the globe.214

In the remainder of our paper, we will perform an array of ultra-high resolution numer-215

ical experiments to explore the two dimensional parameter space of Ro˚ and η to fill in216

the detailed dynamics.217

3 Configuration of an idealised model for the study of icy moons heated218

from below219

We adopt a highly idealised equation of state for a fresh ocean, in which the den-220

sity depends only on temperature with a coefficient of thermal expansion, α “ 1.67 ˆ221

10´4 K´1. At the upper boundary we relax the temperature to 0K. The circulation is222

energised from below by imposing a spatially-uniform heat flux at the bottom of the ocean.223

This should be contrasted with the classic (Rayleigh) convection problem in which a tem-224

perature contrast is imposed across the fluid. Here the bulk vertical temperature is not225

externally set but becomes part of the solution. Because the boundary conditions are226

homogeneous in space, any emergent structures and spatial scales must be a consequence227

of rotational, geometrical (spherical shell), and fluid-dynamical effects.228

We consider a simplified problem in which we solve equations governing the evo-229

lution of a fluid on a deep spherical shell allowing for the representation of both hori-230

zontal and vertical components of rotation. The equations solved are described in de-231

tail in Appendix A, and encode the deep beta-plane equations written down in Dellar232

(2011) which have their roots in theoretical work by Grimshaw (1975). Use of this ap-233

proximate set of equations permits the adoption of a Cartesian grid yet captures key spher-234

ical effects including a full treatment of the Coriolis acceleration and relaxing the deep235

atmosphere approximation. A regular horizontal grid facilitates the use of very efficient236

numerical methods that are well-suited to GPU architectures thus rapidly accelerating237

compute times. This enables us to carry out many experiments at reasonable clock-time.238

The rotation rate is set to 5.30ˆ10´5 s´1, a constant acceleration due to gravity of 0.1m s´2239

is assumed, both chosen to represent those on Enceladus. The open-source model we have240

developed is known as Oceananigans and is coded in Julia, as described in Ramadhan241

et al (2021).242
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A representative solution is shown in Fig. 2 for the case when Ro˚ ăă 1 and η243

is small. As expected we obtain a highly structured solution in which the flow is aligned244

with the axis of the moon’s rotation. We observe water at the bottom of the ocean warm-245

ing up and rising in the water column, not in the direction of gravity, but rather in the246

direction of the rotation vector. Meanwhile the zonal current (into the page) changes lit-247

tle in the direction of Ω, a manifestation of the Taylor-Proudman theorem.248

Figure 2. Sections of instantaneous (a) temperature, (b) zonal velocity, and (c) instantaneous
location of particles showing the alignment of convection with the local rotation vector in a deep
spherical shell governed by deep beta-plane dynamics. The model extends from ´90 ˝ to 90 ˝N,
and simulates a domain of width 50 km. Only the northern hemisphere is shown in this figure for
clarity. The parameters and non-dimensional numbers of this experiment are given in Table 2,
row ˝.

We carry out the suite of experiments summarised in table 2, in which depths, heat249

fluxes, and rotation rates are varied. These are set out in graphical form as a function250

of Ro˚ and η in Fig. 3. For reference the position of Enceladus and Europa in this phase251

space is also marked. All experiments are integrated out to steady state. Note from ta-252

ble 2 and fig. 3 we also carry out two experiments with a rotation rate which is 10 times253

slower than our reference, thus enabling us to explore much higher pRo˚q regimes ap-254

proaching that of convection in Earth’s atmosphere and ocean. Additionally, three ex-255

periments with smallest η are replicated with a viscosity that is two orders of magnitude256

higher. They are not shown in fig. 3 because they occupy the same locations as the ex-257

periments with lower viscosity. The Prandtl number (ratio of viscosity to diffusivity) for258

all experiments is set to be unity.259

4 Phenomenology of ocean circulations260

In this section, we present our solutions (section 4.1), interpret them in terms of261

our scaling laws for the intensity and scale of turbulent motions (section 4.2), examine262

the large-scale temperature and current speeds in terms of a generalized thermal wind263

relation (section 4.3) and discuss the parameters that control the latitudinal dependence264

of vertical heat transport at the upper boundary of the model (section 4.4). In the first265

three parts, we will focus on the first nine experiments from table 2 with low viscosity,266
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Figure 3. The position in (Ro˚,η) phase space of nine key experiments which span the phase
space of the complete set of experiments set out in Table 2. The positions of Enceladus and
Europa in this phase space are marked by blue and red circles, respectively.

as inclusion of the three experiments with higher viscosity does not change the results.267

The three experiments with higher viscosity are discussed in section 4.4, where they help268

us explore the behavior of meridional heat transport in a wider range of parameter space.269

4.1 Convectively-driven turbulence in the spherical shell270

Table 3. The means (̄.) and standard deviations (̂.) of vertical velocity, zonal velocity, and
temperature for various experiments are shown in this table. fig. 4 shows pwxy ´ w̄xyq{ŵxy, fig. 5
shows pwyz ´ w̄yzq{ŵyz, fig. 6 shows pu ´ ūq{û, fig. 8 shows pT ´ T̄ q{T̂ .

w̄xy ŵxy w̄yz ŵyz ū û T̄ T̂
(10´9 mm s´1) (mm s´1) (mm s´1) (mm s´1) (mm s´1) (mm s´1) (K) (K)

‘ ´0.27 14.5 ´0.28 13.5 ´3.86 90.7 1.16 0.07
‘ 20.2 71.7 1.92 64.6 ´51.6 364 36.5 0.53
b 204 120 4.5 99.4 ´42.4 195 50.9 0.45
` 2.12 15.8 0.675 14.3 12.5 137 0.56 0.06
: ´59.5 90 4.65 83.8 ´32.7 298 10.6 0.42
ˆ 0 145 17.2 129 ´723 467 25.1 0.54
˝ ´2.78 3.47 0.237 3.07 1.62 22.1 0.02 0.01
Ÿ ´6.37 18.5 3.37 16.5 3.2 123 0.23 0.05
Ź 68 55.1 3.84 49.5 ´5.92 258 1.32 0.20

Figures 4 (plan view) and 5 (meridonal section) present snapshots of the vertical271

velocity from nine solutions spanning (Ro˚, η) space chosen to highlight the nature of272

the solutions and how they change with Ro˚ and η. All plots are shown after the solu-273

tions have reached statistical equilibrium. Black lines on the plan views mark where the274

tangent cylinder cuts through the mid-depth horizontal surface and, in the meridional275

sections, mark the positions of the tangent cylinder. On moving from left to right Ro˚276

increases from small (order 10´4) to large (order 1), and on moving in rows upwards,277

η increases from 0.76 to 0.96. For small Ro˚ it is clear that rotational constraints are278

very strong with the fluid being arranged in columns parallel to Ω. This is most clearly279
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evident in the bottom left solution from each figure, the one from which Fig.2 is taken.280

Outside of the tangent cylinder (equatorward of the back lines) we see w organised into281

rolls, whereas inside of the tangent cylinder (poleward of the black lines) the convection282

is more granular and plumy. For large Ro˚ no such rotational constraint is felt and the283

convection is sensitive to the direction of gravity rather than that of Ω).284

In the fast rotating regime (marked by a small natural Rossby number), and in ac-285

cord with the Taylor-Proudman theorem, flows tend not to vary along the axis of rota-286

tion, as is very clear from Fig.2. This is also evident in Fig.4g, 5g and 6g which show in-287

stantaneous w (in plan and meridional section) and u (in meridional section) fields, re-288

spectively, from the same solution. The differences in dynamics inside and outside the289

tangent cylinder arise from the differing orientation of the rotation axis with respect to290

that of gravity. Near the equator, the rotation axis, and therefore the direction of the291

Taylor columns, is almost parallel to the lower boundary. Swirling motion in planes nor-292

mal to Ω sweep fluid up and down in almost vertical planes. The rolls form through Rossby293

wave mode growth supported by the equivalent “beta” effect due to the gradual short-294

ening of Taylor columns away from the rotating axis (Cardin & Olson, 1994; Dormy et295

al., 2004). With warm water rising and cold water sinking, these equatorial rolls trans-296

port heat upward, as shown in the equatorial cross section (figure 7). In high latitudes,297

the plumes take over, shooting upward along the direction of the rotation axis while spin-298

ning around it. During the spin-up, particles released into the flow at the lower bound-299

ary are transported upward more rapidly via the rolls than via plumy convection fur-300

ther poleward, as can be seen in Fig.2, panel c. However, eventually, since tracers/heat301

are mostly transported along the rotation axis, the heat flux reaching the surface is stronger302

over the poles (section 4.4) than the equator.303

In summary, when Ro˚ and η are both small (figs. 4, 5 and fig. 6, lower left), one304

can vividly see the impact of the tangent cylinder on the motion, dividing the icy moon305

into two parts comprising very different dynamics. The low latitude regions outside the306

tangent cylinders are filled by meridionally-aligned columnar rolls which extend out to307

the latitudes where the tangent cylinder strikes the surface. The smaller is η, the fur-308

ther away from the equator is this latitude (fig. 1) and a greater fraction of the trans-309

port properties of the fluid are dominated by rolls.310

As we move to the top right of figs. 4, 5 and 6, the effect of rotation is much re-311

duced. With little effect of rotation on the solution, the direction of g rather than Ω dom-312

inates (panel c). This transition will be evident in the scaling results we now discuss.313

4.2 Intensity and scales of turbulent motion314

We now infer the temperature, velocity, and length scales of the turbulence from315

our numerical simulations and compare them to the scaling laws outlined in section 2.2.1.316

The temperature and velocity scales in the simulations are defined as:317

T 1
model “

a

T 12, (12)
u1
model “

a

u12 ` v12, (13)

where u1 “ u´ū, v1 “ v´v̄, T 1 “ T ´T̄ and p̄¨q denotes a horizontal and time average318

taken over the entire zonal width and 10 days, respectively. The black markers in fig-319

ure 9a, b,and c were obtained between y “ 10 km and y “ 50 km typical of the equa-320

torial region outside the tangent cylinder, while the red markers were obtained for y “321

200 km to y “ 300 km indicative of the polar regions inside the tangent cyclinder. A322

vertical average was also taken in order to collapse the data to a single point.323

In figure 9a and b, the diagnosed horizontal and vertical velocity scales, respectively,324

are compared against the equations (7) and (9). In panel c, the temperature scales are325

compared against the equations (8) and (10). To enable comparison with scaling, pre-326
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dicted slopes are indicated by the orange (non-rotating) and blue (rotating) straight lines.327

We see data points from our model simulations cluster around these lines: for Ro˚ ă328

0.01 the points follow rotational scaling, while for Ro˚ ą 0.01 the non-rotational scal-329

ing is more relevant.330

To ascertain the spatial scales of the rolls, we plotted zonal wavenumber spectrums331

of mid-depth zonal velocity for all experiments and chose the most dominant wavenum-332

bers. The wavelengths associated with these wavenumbers were scaled by the depth of333

the ocean and plotted against Ro˚ in figure 9d. We again see that for Ro˚ ă 0.01, the334

zonal length scales of the rolls are in agreement with ldef from (11) emphasizing the im-335

portance of rotational dynamics.336

This scaling analysis indicates that as Ro˚ increases the plumes become more ra-337

dially aligned, thus breaking the geostrophic constraint. This transition from geostrophic338

circulation to more non-linear circulation has important implications for heat transfer339

across the ocean and is discussed in more detail in the section 4.4.340

4.3 Thermal wind: zonal flow and meridional temperature distribution341

The mean meridional gradients in temperature are linked to the mean zonal ve-342

locity by the thermal wind relationship, obtained by eliminating the pressure from the343

meridional and vertical momentum equations, eqs. (A2) and (A3) in Appendix A:344

f
Bu

Bz
`

Bp rfuq

By
“ ´

Bb

By
, (14)

where f , rf are the vertical and horizontal components of the Coriolis parameter (defined345

in eq. (A5) in Appendix A) and b is the buoyancy, here proportional to temperature be-346

cause there is no salinity. Note the contribution from the horizontal component of the347

Coriolis parameter which dominates outside the tangent cylinder.348

In order to determine the degree of compliance with the thermal wind relationship,349

we integrate the above in y to get a diagnostic relation for bTW, the buoyancy field which350

is in thermal wind balance with the zonal velocity field:351

bTW “ ´

ż

«

f
Bu

Bz
`

Bp rfuq

By

ff

dy ` C. (15)

The vertical (radial) profile of buoyancy at the equator is used as the constant of inte-352

gration C. We correlate the simulated value of b with the diagnosed value, bTW, for all353

of our simulations and plot the correlation coefficients as a function of natural Rossby354

number. Experiments with low natural Rossby number are in compliance with thermal355

wind relationship, except near the top and bottom boundaries, where friction becomes356

important. The compliance gets progressively weaker with increasing natural Rossby num-357

ber. Since the natural Rossby numbers on Europa and Enceladus are low, we believe ther-358

mal wind balance should be satisfied. In such a scenario, the structure of zonal flow and359

temperature as predicted by our models, that is, eastward flow at the upper surface out-360

side the tangent cylinder, is likely to be seen on Europa and Enceladus. This is in marked361

contrast to Soderlund et al. (2013), who predicted westerlies at the equator owing to the362

very high Rossby number in their simulation (more representative of panel f in fig. 6).363

4.4 Latitudinal dependence of vertical heat transport364

We now consider how vertical heat transport, uniform at the bottom, varies with365

latitude at the upper surface. This is of particular interest because the amount of heat366

being delivered to the ice shell by the ocean has a tendency to induce freezing/melting367

and be reflected in the ice-shell thickness which may be observable. In our model setup,368
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the bottom heat flux is spatially uniform. However by the time it is transported to the369

upper boundary it has been redistributed by ocean dynamics and exhibits latitudinal de-370

pendence. We expect the transition from the “equatorial rolls” to “polar plumes” across371

the tangent cylinder (see section 4.1) to be reflected in the heat transport.372

To examine this transition, and in the spirit of Amit et al. (2020), we plot the ra-373

tio374

qh{l “
qh ´ ql

qh ` ql
(16)

against our key non-dimensional number Ro˚ (figure 11a). Here375

ql “

şytc

´ytc

ş

q dx dy
şytc

´ytc dx dy
, (17)

qh “

şyN

ytc

ş

q dx dy
şyN

ytc dx dy
`

ş´ytc

´yN

ş

q dx dy
ş´ytc

´yN
dx dy

, (18)

are the spatially-averaged heat fluxes inside and outside the tangent cylinder: q is the376

heat flux in W m´2 at the upper boundary, ytc is the meridional coordinate at which the377

tangent cylinder intersects the upper surface, and yN is the coordinate of the northern378

boundary of the domain. Positive or negative values of qh{l indicate polar or equatorial379

cooling, respectively.380

4.4.1 Dependence on the natural Rossby number381

Our nine key experiments show polar cooling at low natural Rossby numbers with382

a change to uniform cooling at high Rossby numbers (see figure 11a). This is similar to,383

but somewhat different than Amit et al. (2020). They observe that on increasing the lo-384

cal Rossby number Roloc or, almost equivalently the ratio of Rayleigh number to tran-385

sitional Rayleigh number Ra{RaT – see Appendix B where non-dimensional numbers386

are defined and discussed – there is a regime transition from equatorial cooling to po-387

lar cooling and finally to uniform cooling. Repeating our three low η experiments but388

using a higher viscosity, we are able to capture an equatorial cooling regime when us-389

ing the lowest heat flux. Together, our results show a similar regime transition as that390

found by Amit et al. (2020). As shown in figure 11b and c, at low Roloc and Ra{RaT ,391

the moons tend to lose heat at lower latitudes, at very high Roloc and Ra{RaT heat loss392

is spatially uniform and, in between, there is an intermediate regime with polar cooling.393

The natural Rossby number largely captures the pattern of polar cooling and also394

its plateauing to uniform cooling (figure 11a), but fails to differentiate between the two395

lowest Rossby number cases (˝ and ‚). This happens because increasing viscosity can396

suppress polar plumes completely, particularly when the bottom heat flux is low (fig. 12a,397

fig. 14). The direction of the meridional heat transport can reverse with increasing vis-398

cosity, as shown in fig. 14. It is clear then that, despite the utility of the natural Rossby399

number, it cannot provide information about the criticality of the convective system. If400

plumes are suppressed by viscosity, rolls dominate vertical heat transport resulting in401

equatorial cooling (e.g. ‚). Since Roloc and Ra{RaT depend on viscosity, they are able402

to distinguish between high and low viscosity cases.403

Although the general qh{l pattern is broadly similar to Amit et al. (2020), the tran-404

sition from equatorial cooling to polar cooling occurs at values of Roloc and Ra{RaT that405

are one order of magnitude smaller than those suggested by Amit et al. (2020). It is for406

this reason that the transitional criteria proposed by Amit et al. (2020) (Roloc “ 5.6407

and Ra{RaT “ 1, shown by gray and black dashed lines in fig. 13) fails to differenti-408

ate between equatorial and polar cooling cases (shown by circles in fig. 13) – three po-409

lar cooling cases fall into the equatorial cooling regime proposed by Amit et al. (2020).410
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4.4.2 Effect of η411

The ratio of inner to outer radius, η, can also affect heat loss patterns (figure 11d).412

As η approaches unity (shallow ocean), the surface heat flux becomes almost uniform413

irrespective of the natural Rossby number (e.g. experiments ˆ, b). As η decreases (deep414

ocean), the heat loss patterns tend to undergo equatorial or polar cooling depending on415

the magnitude of heat flux and viscosity. This pattern arises because at high η the oceans416

are very shallow which makes it easy for heat to transit across the water column in rel-417

atively short time without much meridional transport. On the other hand the excess depth418

of the oceans at low η facilitates meridional transport of heat. The overall picture that419

emerges from our experiments is that the rotational regime, characterized by low Rossby420

number, can exhibit both polar and equatorial cooling. The experiments that resolve plumes421

tend to support polar cooling. In experiments in which plumes are suppressed, say due422

to high viscosity, equatorial rolls are more efficient in transporting heat. We imagine that423

the boundary between polar and equatorial cooling might be blurry and depend upon424

the Ekman number. This indicates that the role of unresolved turbulence cannot be ig-425

nored in establishing the meridional pattern of cooling.426

Despite all the above caveats, we cannot resist but to speculate on the implications427

of our results for icy moons. Europa has (Ro˚ „ 10´4 and η „ 0.93), and Enceladus428

has (Ro˚ „ 10´6 and η „ 0.83) (B1). With such low natural Rossby numbers both429

are expected to be in the rotation dominant regime, and thus qh{l will deviate from one.430

Because of its large η, Europa’s ocean may lose heat almost uniformly over the globe.431

Enceladus has a deeper ocean with respect to its size, and so is likely to have more merid-432

ional heat transport. Whether equatorial cooling or polar cooling will dominate will de-433

pend on the eddy viscosity/diffusivity in the Enceladean ocean. Previous studies tend434

to use molecular values of viscosity and diffusivity to locate natural icy moons in Rayleigh-435

Ekman space. However, according to Rekier et al. (2019), libration motions can gener-436

ate much turbulence, significantly elevating the viscosities and diffusivities above molec-437

ular values. According to the estimate in Kang et al. (2021), the turbulent viscosity in438

Enceladus’ ocean might be as high as Op10´3 m2 s´1). Assuming this viscosity, we es-439

timate the RaE4{3 and E for Enceladus and mark these values with a grey diamond in440

fig. 13. Limited by computational resources, we cannot integrate an experiment out to441

equilibrium with a realistic heat flux (3 orders magnitude smaller than the lowest heat442

flux employed here), and we do not yet have enough experiments to identify a univer-443

sal scaling law. It remains unclear to us, therefore, what form the meridional profile of444

heat loss will take on a hypothetical Enceladus heated only from below.445

5 Summary and discussion446

We have explored and attempted to rationalise the ocean dynamics and heat trans-447

port on icy moons using a novel set of high-resolution large eddy simulations. Depart-448

ing from previous studies (Soderlund et al., 2013; Soderlund, 2019; Amit et al., 2020),449

we have attempted to organise our experiments in terms of the natural Rossby number,450

Ro˚, and the ocean’s aspect ratio η. Importantly, rather than preseribe a temperarure451

difference across the fluid, at the bottom we have prescribed a heat flux. Moreover, we452

have reduced the heat flux as much as possible (the lowest heat flux used here is 10W m´2).453

This increases the computational cost, but is somewhat offset by the new-generation GPU-454

based modelling technique employed. As a result, we have attempted to get closer to a455

realistic regime than in previous studies. Finally we have reduced the diffusivity and vis-456

cosity to levels that may be close to the mixing induced by the libration motions on Ence-457

ladus (Rekier et al., 2019).458

Our main findings are listed below:459
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1. All simulations, except those with unrealistically large heat fluxes and hence high460

Rossby numbers, display two regions of circulation demarcated by the tangent cylin-461

der. Inside the tangent cylinder (high latitudes), rotationally-modified convective462

“plumes” dominate; they shoot upward parallel to the rotation axis. Outside the463

tangent cylinder (low latitudes), “rolls” dominate; they swirl in the equatorial plane464

about the direction of rotation.465

2. An appropriately defined Rossby radius of deformation determines both the hor-466

izontal scales of the polar plumes and the zonal scales of the equatorial rolls. The467

horizonal and vertical velocities scale with urot and unorot in, respectively, low and468

high Ro˚ regimes.469

3. Thermal wind balance is generally satisfied at low Rossby numbers, and is vio-470

lated when rotational effects become negligible at Ro˚ ą 0.1.471

4. The efficiency of vertical heat transport varies with latitude because of the dif-472

ferent dynamics inside and outside the tangent cylinder. Whether heat will be lost473

more to the equatorial ice shell or the polar ice shell cannot be convincingly pre-474

dicted by the diffusivity/viscosity-independent natural Rossby number, despite475

its prediction power regarding the roll/plume dynamics. This is because increas-476

ing diffusivity/viscosity may selectively switch off the plume dynamics. We also477

examined the non-dimensional numbers Roloc and Ra{RaT, which have been pro-478

posed to correlate with the relative heat transport efficiency in low and high lat-479

itudes (Amit et al., 2020). Neither Roloc or Ra{RaT simultaneously fit our results480

and those of Amit et al. (2020).481

5. The relative heat transport efficiency of low vs high latitudes depends not only482

on the fluid dynamical non-dimensional numbers, such as Rossby number (or Rayleigh483

number) and Ekman number, but also on the aspect ratio of the ocean η. When484

the ocean is shallow, the heat flux at the water-ice interface remains very simi-485

lar to the heat flux imposed at the bottom. In contrast, when the ocean is deep,486

meridional transport of heat occurs depending on the relative efficiency of plumes487

and rolls in heat transport.488

The meridional heat redistribution by the ocean can induce freezing and melting489

to the ice shell and eventually reshape it. The ice shell geometry can be more easily mea-490

sured than subsurface properties and therefore understanding how meridional heat re-491

distribution occurs and on what it depends is highly relevant. Due to the limited num-492

ber of experiments we can carry out at this state-of-the-art resolution, we cannot yet iden-493

tify a universal scaling law for heat transport, and this calls for further numerical and494

theoretical studies.495

Appendix A Modeling framework: equations with non-traditional Cori-496

olis in Cartesian coordinates497

We adopt a Cartesian framework to motions in spherical geometry that capture498

the change with latitude of the angle between the rotation vector and gravity. Deriva-499

tions of such equation sets was pioneered by Grimshaw (1975), who wrote down a non-500

traditional beta-plane set for flow on a rotating planet in which the vertical component501

of the Coriolis parameter was allowed to vary in the horizontal, whilst the horizontal com-502

ponent (set to zero on the traditional beta plane) was kept constant. Dellar (2011) sig-503

nificantly advanced Grimshaw’s work by using Hamilton’s principle to derive a non-traditional504

set in which both components of Coriolis are allowed to vary in latitude, without sac-505

rificing conservation properties. We employ an equation set inspired by Dellar’s work ap-506

propriate for a deep fluid where ω and g are not parallel to one-another.507

In Cartesian coordinates px, y, zq with x, pointing eastwards, y pointing northwards508

and z pointing upwards in the direction opposite to gravity, the equations with non-traditional509

Coriolis are written thus:510

–16–



manuscript submitted to JGR: Planets

Du
Dt ` rfw ´ fv “ ´

1

ρref

Bp

Bx
` F x, (A1)

Dv
Dt ` fu “ ´

1

ρref

Bp

By
` F y, (A2)

Dw
Dt ´ rfu ´ b “ ´

1

ρref

Bp

Bz
` F z, (A3)

where u “ pu, v, wq is the velocity, g is acceleration due to gravity assumed to be con-511

stant, ρref a constant reference density, p is the pressure, D
Dt “ B

Bt ` u ¨ ∇ is the total512

derivative, and F ’s on the RHS represent momentum sources and sinks given by513

pF x, F y, F zq “ ν∇2u, (A4)

where ν is the viscosity. It is set to 2ˆ10´2 m2 s´1 for the first nine experiments in ta-514

ble 2 and elevated to 2m2 s´1. Additionally, no-slip boundary conditions act as sinks515

of momentum at the bottom and on the sidewalls.516

The Coriolis parameter is517

f “ p0, f, rfq “ 2Ωp0, cos y{R, sin y{Rq, (A5)

where y{R increases from 0 to 1.4 (80˝) where R “ 251 km is the radius of the moon,518

allowing us to mimic the mis-alignment of the rotation vector and gravity on the sphere519

but in a Cartesian framework: see the Taylor Columns in Fig.2 even though the simu-520

lations were performed on a Cartesian grid.521

Along with the momentum equations we have the continuity equation,522

∇ ¨ u “ 0. (A6)

The buoyancy is related to temperature by a linear equation of state,523

b “ αgpT ´ T0q, (A7)

where T0 is a reference temperature and α is the thermal expansion coefficient assumed524

to be constant. Temperature evolves in time according to the equation525

DT

Dt
“ κ∇2T ` δtop

T ´ T0

τ
`

δbottom
∆z

Q

ρrefCp
, (A8)

where, κ is the diffusivity, δtop “ 1 at the topmost grid point and zero elsewhere, δbottom “526

1 at the bottom grid point and zero elsewhere, Q is the uniform heat flux imposed at527

the bottom, ∆z is the vertical grid spacing, and Cp “ 4000 J kg´1 K´1 is the specific528

heat constant of water. Diffusivity is set equal to the viscosity. The second term on the529

RHS relaxes the temperature at the top to T0 with a relaxation time scale530

τ “
∆z2

20κ
“ 2x106 s, (A9)

which is about 2.3 Earth days, and represents the loss of heat from the ocean to the ice531

shell.532

The above equations are discretized on a domain x Ď r0, 50s km, y Ď r´352, 352s km,533

and z Ď r´H, 0s, with ∆x “ ∆y “ ∆z “ 300m and coded up in the framework pro-534

vided by Oceananigans.jl (Ramadhan et al., 2020), open source software developed for535

studies of ocean process. Oceananigans is written in the Julia programming language (Bezanson536

et al., 2017) and runs fast on GPUs enabled by Julia’s native GPU compiler (Besard et537

al., 2019). To solve equations (A1)–(A8) Oceananigans.jl uses a staggered C-grid finite538

volume spatial discretization (Arakawa & Lamb, 1977) with an upwind-biased 5th-order539
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weighted essentially non-oscillatory (WENO) advection scheme for momentum and trac-540

ers (Shu, 2009). Diffusion terms are computed using centered 2nd-order differences. A541

pressure projection method to ensure the incompressibility of u at every time step (Brown542

et al., 2001) is used. A fast Fourier-transform-based eigenfunction expansion of the dis-543

crete second-order Poisson operator is used to solve the discrete pressure Poisson equa-544

tion for the pressure on a regular grid (Schumann & Sweet, 1988). An explicit 3rd-order545

Runge-Kutta method is used to advance the solution in time (Le & Moin, 1991).546

Appendix B Interpretation in terms of Rayleigh number and Ekman num-547

ber space.548

Historically, Rayleigh number Ra and Ekman number E (or equivalently Taylor549

number Ta),550

Ra ”
αg∆TH3

νκ
(B1)

Ta ”
1

E2
”

ˆ

2ΩH2

υ

˙2

, (B2)

have often been used to characterize the strength of convective instability and rotation551

relative to diffusive/viscous processes in the study of convection between two perfectly552

flat and uniform lids held at different temperatures.553

Using this framework, Boubnov and Golitsyn (1990); Gastine et al. (2016); Soder-554

lund et al. (2013); Soderlund (2019) and Amit et al. (2020) employed a diagram that di-555

vides the pRa,Eq plane into differing dynamical regimes. As the flux Rayleigh number556

and Taylor number increases, the convective system goes through (1) the conduction regime557

in which diffusion suppresses convective instability, (2) a regime of regular overturning558

in which convection takes the form of uniform cells, (3) a geostrophic turbulence regime559

and (4) a fully turbulent regime. In regime (1) and (2), the equatorial convective rolls,560

swirling in the longitude-z plane, are more efficient in vertical heat transport, leading561

to the equator-amplified heat flux at the top. In the opposite limit (high heat flux and562

low viscosity/diffusivity), convective plumes shoot radially upwards unaware of plane-563

tary rotation, leading to globally-uniform heat delivery to the upper boundary. It ap-564

pears that in between the two regimes, high-latitude convection can be more efficient than565

tropical convection in vertical heat transport, but only in a rather limited range of pa-566

rameter space (Amit et al., 2020).567

However, there are two unsatisfactory aspects of the pRa,Eq pairing. As can be568

seen from Eq.B1-B2, each depends critically on the viscosity and diffusivity, which are569

likely to be much larger than molecular values due to eddy-induced mixing processes which570

are poorly constrained, if at all. Regime transitions have been suggested which depend571

on some combination of pRa, Eq, in which the dependence on viscosity and diffusivity572

largely cancels out leaving scaling results which depend on the external parameters pre-573

ferred here. Additionally, convection on icy moons is not driven by a prescribed tem-574

perature difference between the top and bottom boundaries. Instead, the magnitude of575

the heat flux is set by the total dissipation rate of the system and the top-to-bottom tem-576

perature difference evolves in response. Therefore, a more natural non-dimensional num-577

ber for our problem is the modified flux Rayleigh number Ra˚
q (Christensen, 2002; Chris-578

tensen & Aubert, 2006; J. M. Aurnou et al., 2020):579

Ra˚
q ”

αgQ

ρCpΩ3H2
. (B3)

Importantly, Ra˚
q does not depend on the poorly constrained viscosity and diffu-580

sivity, and it uses the more natural bottom heat flux Q to replace the bottom-to-top tem-581

perature difference ∆T . In fact, Ra˚
q is proportional to the natural Rossby number of582
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Jones and Marshall (1993) and Maxworthy and Narimousa (1994) that we have employed583

in the main body of this paper. Moreover, the scaling laws based on Ra˚
q have been shown584

to successfully predict the system’s Nusselt number and Rossby number (Christensen,585

2002; Christensen & Aubert, 2006; J. M. Aurnou et al., 2020). In the asymptotic regime586

that is approached at sufficiently small Ekman numbers,587

Ro ” U
ΩL “ 0.65pRa˚

qq1{5, (B4)
Nu˚ ”

Q
ρCp∆TΩD “ 0.077pRa˚

qq5{9. (B5)

Here Rossby number Ro characterize the importance of advection and inertia relative588

to the rotation, and Nusselt number Nu˚ characterizes the strength of dynamics com-589

pared to diffusion. Our simulations are in accord with these scalings, as can be seen in590

figure B1, and demonstrating that our simulations have approached the asymptotic scal-591

ing. Our constants of proportionality are different from those in previous studies but we592

attribute them to differences in model setups. We therefore argue that eddy-induced mix-593

ing dominates the molecular viscosity/diffusivity and further reduction of the explicit594

diffusivity/viscosity used in our simulations will not significantly change our results.595

Furthermore, Gastine et al. (2016) demarcated the conductive, weakly non-linear,596

rapidly rotating, transitional, and non-rotating regimes in the Ra,E space. Our exper-597

iments lie in the transitional and the non-rotating regimes according to their classifica-598

tion (Fig.13). It should be noted that the natural Rossby number increases as our sim-599

ulations scan the space from the transitional regime to non-rotating regime indicating600

that the Rossby number can serve as an excellent metric for judging the importance of601

rotation in setting the dynamics.602

We have also plotted the ratio of polar to equatorial cooling against the local Rossby603

number, Roloc “ Ra5{4 E2, and ratio of Rayleigh number to transitional Rayleigh num-604

ber, Ra{RaT “ 0.1RaE3{2, in order to compare our results against those of Amit et605

al. (2020) in fig. 11b and c. Our results are similar to theirs further confirming that our606

results do not differ significantly upon interpretation in the Ra,E space.607
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Figure 4. Instantaneous plots of standardised anomalies (see table 3) of vertical velocity at
mid-depth are shown for various experiments. The first, second, and third rows represent models
with η of 0.96, 0.88, and 0.76, respectively. The natural Rossby number increases towards the
right for each row. The latitude at which the tangent cylinder strikes the free surface is shown by
the horizontal black line.
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Figure 5. Instantaneous plots of standardised anomalies (see table 3) of vertical velocity at
x “ 25 km are shown for various experiments. The first, second, and third rows represent models
with η of 0.96, 0.88, and 0.76, respectively. The natural Rossby number increases towards the
right for each row. The tangent cylinder is shown by the horizontal black line.
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Figure 6. Instantaneous plots of standardised anomalies (see table 3) of zonal velocity at
x “ 25 km are shown for various experiments. The first, second, and third rows represent models
with η of 0.96, 0.88, and 0.76, respectively. The natural Rossby number increases towards the
right for each row. The tangent cylinder is shown by thick black line.
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Figure 7. Instantaneous plot of temperature (shading, K) and velocity (arrows) at the equa-
torial xz-section is shown for experiment Ÿ. The zonal mean of zonal velocity is subtracted to
emphasize the rolls. The effect of rolls on the temperature field is obvious as the downward and
upward arrows are accompanied by colder and warmer temperatures, respectively.
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Figure 8. Instantaneous plots of standardised anomalies (See Table 3) of temperature at
x “ 25 km are shown for various experiments. The first, second, and third rows represent models
with η of 0.96, 0.88, and 0.76, respectively. The natural Rossby number increases towards the
right for each row. The tangent cylinder is shown by thick black line.
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Figure 9. The black and red symbols show the normalized root mean square quantities (a:
horizontal velocity, b: vertical velocity, c: buoyancy anomaly) for low and high latitudes, respec-
tively, as functions of natural Rossby number. Root mean square quantities for low and high
latitude regions are calculated between y “ 10 and y “ 50 km, and y “ 200 and y “ 300 km, re-
spectively. Panel (d) shows the zonal scale of the rolls, L, normalized by the depth of the domain
as a function of natural Rossby number. The blue and orange lines show the theoretical slopes
for rotational and non-rotational regimes, respectively.
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Figure 10. Tests of the zonal thermal wind equation, as measured by the correlation, r, of b
with bTW (Eq.15) for our experiments as a function of natural Rossby number. The top and bot-
tom 2 km were excluded from this calculation to avoid boundary layer effects. If the correlation
approaches unity then thermal wind balance is increasingly well satisfied.
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Figure 11. The ratio between high-latitude surface heat flux and low-latitude surface heat
flux qh{l from eq. (16) as a function of (a) natural Rossby number, (b) local Rossby number, (c)
ratio of Rayleigh number to transitional Rayleigh number, and (d) η.
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Figure 12. The normalised anomalies of vertical velocity (pwxy ´ w̄xyq{ŵxy) at mid-depth
for the three deep ocean experiments where we increase the viscosity and diffusivity while keep-
ing other parameters the same. See table 2 for model setup. The mean and standard devia-
tions for the three experiments in m s´1 are w̄xy “ p5.0 ˆ 10´13, 3.4 ˆ 10´12, 1.7 ˆ 10´11q and
ŵxy “ p1.7 ˆ 10´3, 1.5 ˆ 10´2, 6.0 ˆ 10´2q, respectively.
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Figure 13. The y-axis represents the degree of criticality of the flow, while the x-axis repre-
sents the Ekman number. The dynamic regimes proposed by Gastine et al. (2016) are differenti-
ated by the dotted lines and indicated by labels. The two equatorial versus polar differentiating
criteria proposed by Amit et al. (2020) are shown by the black and grey dashed lines, respec-
tively. Amit et al. (2020)’s experiments are indicated by squares. Our experiments are indicated
by circles. The colors of the squares and circles indicate qh{l. Possible location of Enceladus is
shown by grey diamond.
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Figure 14. Panels a and b show the time and zonal mean temperature in K in experiments
˝ and ‚, respectively. Grey lines show the 25th, 50th, and 75th percentiles. Panel c shows the
meridional heat transport as a function of latitude in experiments ˝ and ‚. The black lines show
the latitudes where the tangent cylinder intersects the surface.
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Figure B1. Values obtained from numerical Simulations are shown by markers. The theoreti-
cal asymptotic relations predicted by Christensen (2002) are represented by solid lines.
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