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Abstract4

We explore ocean circulation on a rotating icy moon driven by temperature gradients imposed5

at its upper surface due to the suppression of the freezing point of water with pressure, as might6

be induced by ice thickness variations on Enceladus. Employing high-resolution simulations7

powered by GPUs, we find that eddies dominate the circulation and arise from baroclinic in-8

stability, analogous to Earth’s weather systems. Multiple alternating jets, resembling those of9

Jupiter’s atmosphere, are sustained by these baroclinic eddies. We establish a theoretical model10

of the stratification and circulation and present scaling laws for the magnitude of the meridional11

heat transport. These are tested against numerical simulations. Through identification of key12

non-dimensional numbers, our simplified model is applied to other icy moons. We conclude13

that baroclinic instability and its associated transfer properties should be at the very heart of any14

dynamical interpretation or representation of the ocean circulation on icy moons.15
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Teaser16

Baroclinic eddies, analogous to weather systems on Earth, are ubiquitous in the ocean of icy17

moons.18

Introduction19

Enceladus has a global subsurface ocean (1, 2) with active physical and chemical processes20

occurring within it. Observations of water jets emanating from the south pole of Enceladus21

reveal the presence of several chemical compounds that come from its ocean interior, including22

liquid water, sodium salts, carbon dioxide, methane, and macro-molecular organic compounds23

(3–6). Evidence of ongoing hydrothermal activity on Enceladus is also emerging, indicative of24

habitability (7, 8). It is therefore important to understand the ocean circulation on Enceladus25

and its role in physical transport of properties such as heat and chemical tracers.26

Ocean circulation on icy moons is often envisioned as a rotating body of water heated from27

the bottom (9–11). However, heat and salinity fluxes from the ice at its upper boundary can28

also drive ocean circulation, particularly if ice thickness variations are significant and/or the ice29

shell undergoes freezing and melting (12–15). Enceladus, for example, is known to have an ice30

shell whose thickness varies by as much as its mean depth on moving from the equator where31

the ice is thick to the pole where it is thin (16–19). The resulting temperature variations beneath32

the Enceladean ice shell, due to the dependence of freezing point on pressure stemming from33

the Clausius-Clayperon relation, is likely to be at least an order of magnitude greater than the34

temperature contrast induced by bottom heating (14, 20). As a result, the ocean just beneath35

the ice is warm at the poles and cold at the equator, as sketched in Fig. 1. This temperature36

gradient, together with the salinity gradient induced by ice freezing and melting, induce ocean37

circulation (12–15).38
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In Earth’s ocean, wind-driven Ekman pumping advects the surface boundary conditions39

into the interior ocean (21). On an icy moon, wind forcing is not applicable, so the upper40

boundary condition must be mixed down into the interior by diffusion. This vertical diffusion,41

usually generated by breaking of tidally-induced waves and other small-scale dynamics (22–42

24), communicates the upper boundary condition into the interior.43

Once a meridional density gradient is established in the interior of the ocean, baroclinic ed-44

dies — a hydrodynamical instability of ocean currents in thermal wind balance — may grow.45

Because the ocean of Enceladus has a small Rossby number (11, 25), gravity acting on sloping46

buoyancy surfaces is balanced by the tilting over of planetary vorticity by the vertical shear of47

zonal currents, as expressed in the thermal wind relationship. Unsurprisingly, as to be demon-48

strated by numerical simulations here, such zonal flows are baroclinically unstable (15), creating49

a vigorous eddy field which is dynamically similar to baroclinic weather systems observed in50

Earth atmosphere and ocean. These eddies turn out to be the primary agent of meridional heat51

transport from the (warm) polar regions to the (cold) equatorial regions, and thus play a central52

role in the energy budget of Enceladus (Fig. 1). The main focus of our study is to highlight the53

role of ocean weather systems on Enceladus and their contribution to setting up the stratifica-54

tion, depth of penetration and pattern of ocean currents in the equilibrium state. The framework55

that we will employ has much in common with those developed to describe the Antarctic Cir-56

cumpolar Current of Earth’s ocean (26, 27).57

We use eddy-resolving simulations of an ocean circulation configured in an idealized setting58

appropriate to Enceladus. The circulation is energized by diffusing down into its interior merid-59

ional buoyancy gradients prescribed at its upper surface. The meridional buoyancy gradients60

result in baroclinic instability. As a result, baroclinic eddies, which are dynamically exactly61

analogous to weather systems in Earth’s atmosphere, are generated and become the dominate62

agency of energy transfer. These eddies induce down-gradient heat flux in the ocean, which63
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transport heat from high latitudes (warm) to low latitudes (cold). The physical transport by64

these eddies can be represented with an eddy-driven meridional overturning circulation. Its65

strength is controlled by the balance between vertical heat diffusion, which energizes eddies by66

diffusing the meridional buoyancy gradient from the top boundary into the ocean interior, and67

downward-gradient eddy heat flux, smoothing out the meridional buoyancy gradients. Based68

on this idea, a theoretical model and scaling laws are used to interpret our simulations expand-69

ing on the prior Lobo2021 model (13). Our simulations show that Lobo2021’s choice of eddy70

diffusivity coefficient, which was motivated by Earth’s ocean dynamics, is not appropriate to71

Enceladus resulting in them overestimating the strength of overturning circulation and underes-72

timating the penetration depth of the thermocline by several orders of magnitude. Implications73

of our study for the oceans on other icy moons are also discussed.74

Numerical experiments75

Modeling framework76

We consider flow in a Cartesian box configured to represent flow in a spherical shell, as set77

out in Fig.2. Flow is energized through a lateral temperature gradient chosen to have a cosine78

meridional profile with amplitude ∆T (see Fig. 2(B)) imposed at its upper boundary. This is79

diffused down into the interior as a rate κ. The two key external parameters of our study are80

∆T and κ. The bottom is insulating. Here, no attempt is made to represent the dynamical effect81

of possible fluid-depth variations associated with the non-constant ice shell thickness.82

The extent of the box in the eastward x, northward y, and vertical z directions are [0, Lx],83

[−πR, πR], and [−H, 0] respectively. Here, Lx = 102 km; R, the radius of the moon, is 252 km;84

H , the depth of the ocean, is 30 km. The western (x = 0) and eastern (x = Lx) boundaries are85

periodic. We set rotation rate Ω = 5.3 × 10−5 s−1 and gravity g to 0.1m2 s−1. All the above86

parameters are appropriate to Enceladus (17, 18, 28, 29).87
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We employ a model known as Oceananigans (30), coded in Julia and running on GPUs,88

which solves the rotating, non-hydrostatic equations for a Boussinesq fluid in a cube at very89

high resolution. Despite using a Cartesian framework, as described in (11), we can nevertheless90

represent the dynamics of a deep, rotating fluid in spherical geometry using equations that cap-91

ture the change with latitude of the angle between the rotation vector and gravity. Derivations92

of such equations was pioneered by Grimshaw (31), who wrote down a non-traditional β-plane93

set for a fluid on a rotating planet in which the vertical component of the Coriolis parameter94

was allowed to vary in the horizontal, whilst the horizontal component (set to zero on the tra-95

ditional β-plane) was kept constant. Dellar (32) significantly advanced Grimshaw’s work by96

using Hamilton’s principle to derive a non-traditional set in which both components of Coriolis97

are allowed to vary in latitude, without sacrificing conservation properties. In Supplementary98

materials, we write out the equations inspired by Dellar’s work employed here.99

The Coriolis parameter is chosen to mimic that in a spherical shell (green arrows in Fig. 2)100

and is given by:101

f = 2Ω exp
( z

R

)(
cos
( y
R

)
j + sin

( y
R

)
k
)

(1)

This form guarantees that the angle between g and f is as it is on a rotating sphere, and that f102

is non-divergent ensuring conservation of potential vorticity in adiabatic, inviscid flow.103

The tangent cylinder — a cylinder whose axis is parallel to the moon’s rotation vector with104

sides tangent to the inner core (see purple lines in Fig. 2(A)) — separates the ocean into two105

dynamically distinct regions (10–12, 15). In our Cartesian framework, the tangent cylinder is106

a curved surface (Fig. 2(C)) which is tangent to the ocean bottom at the equator, normal to the107

bottom at the poles and parallel to f everywhere in between.108

We adopt a highly idealized equation of state in which the buoyancy depends only on tem-109

perature through a thermal expansion coefficient, α, which is assumed to be constant and posi-110

tive, appropriate if the ocean is sufficiently salty (33). The buoyancy, b = −g δρ/ρref , where δρ111

5



is the density anomaly is related to temperature, T , by a linear equation of state,112

b = αg(T − Tref), (2)

and Tref is a reference temperature. We use a constant thermal expansion coefficient, α, of113

1.67× 10−4K−1 in all simulations.114

The appropriate value of the thermal diffusivity κ is highly uncertain but will likely be115

much larger than the molecular value of water because here it represents mixing by turbulent116

processes. We adopt a range of values. The minimum κ used is 1× 10−3m2 s−1. This has been117

used in previous studies (15,34), and inferred from a scaling for vertical diffusivity appropriate118

to Earth’s ocean (35) assuming a dissipation rate in the ocean of Enceladus (23). The maxi-119

mum diffusivity used here is 0.1m2 s−1. Although larger values could be considered, they are120

inconsistent with energy constraints on Enceladus, as described later.121

We run two groups of experiments. One uses a constant ∆T = 0.1K and various κ’s of122

1 × 10−3m2 s−1, 3 × 10−3m2 s−1, 1 × 10−2m2 s−1, 3 × 10−2m2 s−1, and 1 × 10−1m2 s−1.123

The other group uses a constant κ = 1 × 10−3m2 s−1 and various ∆T ’s of 0.025 K, 0.05 K,124

0.1 K, and 0.4 K. All simulations are run out until equilibrium is established and the last 10,000125

rotation periods are used for diagnostic purposes.126

Phenomenology of the reference solution127

Turbulence, eddies and zonal flows dominate the ocean circulation in all our experiments. The128

instantaneous velocity field of the reference solution, with ∆T = 0.1 K and a vertical diffu-129

sivity of κ = 1 × 10−3m2 s−1, is shown in Fig. 3 and is typical of the kind of solutions we130

obtain. The zonal flow comprises very many alternating jets at all latitudes, which are aligned131

with the rotation axis (Fig 3(B1, C1)). This resembles the 3D dynamics found in previous132

studies (11, 15). It is dramatically different from the patterns of flow seen in 2D systems, in133

which geostrophic turbulence induced by baroclinic instability or convection cannot exist and134
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lateral heat transport primarily occurs along the boundaries (14, 34). When the zonal dimen-135

sion is resolved and we have full 3D dynamics, baroclinic turbulence plays the dominant role in136

transporting heat and angular-momentum, the latter giving rise to jets as is evident in Fig. 3(B1).137

This is in accord with 3D simulations forced through interaction with the ice (15) and/or bottom138

heating (9, 11, 12, 36).139

The zonal jets are aligned with the planetary rotation axis, as expected by the Taylor-140

Proudman theorem which pertains in the limit that the buoyancy frequency (N ) is much smaller141

than the rotation frequency (measured by the Coriolis parameter, f ). When N/f << 1, vortex142

tubes tend to aligned with the direction of the rotation axis. This is the case in our simula-143

tions and will also likely be true on Enceladus provided that the buoyancy gradient induced144

by the salinity gradient is not too strong (14). In our reference simulation, N/f is order 10−1,145

a consequence of the large depth of the ocean and the smallness of the imposed temperature146

gradient.147

Baroclinic eddies are most clearly evident in the latitude-longitude plot of the temperature148

anomaly (Fig. 3(A2) and (D2)). The characteristic length of these eddies is several kilometers149

and, as discussed below, well-matched with the Rossby deformation radius. Baroclinic eddies150

predominate at mid-to-high latitudes (inside the tangent cylinder) whereas roll-like structures151

dominate in equatorial regions (outside the tangent cylinder) as can be seen in Fig. 3(C1,C2).152

These rolls are a prominent feature of the solutions presented in a previous study that simulates153

ocean convection driven by bottom heating on Enceladus (11). Because the temperature is154

almost uniform outside the tangent cylinder, the heat transport due to rolls is rather weak and is155

not our focus here.156
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Scale of jets and eddies157

The lateral scale of the jets might be expected to depend on the Rhines scale since the inverse158

cascade of 2D eddy energy will be arrested by the β-effect (37). This theory has been used to159

successfully explain jet widths in previous studies (11, 38). Following their method, the Rhines160

scale is defined as161

Lβ =

√
2U

β
/| sin θ| (3)

where U is the peak zonal velocity of the jet; θ is the latitude of the jet; β is the topographic162

beta parameters:163

β = −2Ω
1

h

dh

ds
(4)

where h is the length of the Taylor column measured parallel to the rotation axis and s is the164

axial distance between the Taylor column and the rotational axis.165

In Fig. S1(A), we show the instantaneous zonal-mean zonal velocity at mid-depth in the166

ocean as a function of latitude. Every local maximum of u2 represents the center of the corre-167

sponding jet (marked by orange circles); the width of the jet is defined as the radial distance168

between the locations of the neighboring local minimum of u2 (marked by red dashed lines)169

divided by π. We find that jet widths match well with the Rhines scales in middle and high170

latitudes in all our experiments: Fig. 4(A) shows that median values of the Rhines scales and171

jet widths in each simulation lie on a straight line.172

The size of the eddies might be expected to scale with the Rossby deformation radii, LR,173

or perhaps Lβ if there is a strong inverse cascade. Linear theory would suggest that the eddies174

are energized by baroclinic instability at the LR scale with a wavelength of order of 2πLR. To175

investigate, the Rossby deformation radius is calculated using the mean vertical temperature176

profile, T (z), between the latitudes of 90◦S and 72.5◦S. We find the gravity wave speed, ci, for177
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the i-th baroclinic mode, ϕi, by solving the eigenvalue problem:178

d

dz

(
1

N2(z)

d

dz
ϕi

)
= −ϕi

c2i
, (5)

where N(z) =
√

αg(dT/(dz), is the buoyancy frequency. The Rossby deformation radius is179

LR =
c1

2Ω| sin θ|
(6)

where c1 the gravity speed of the first baroclinic mode. We compute the decorrelation scale180

of relative vorticity to quantify the size of the eddies. We first calculate the autocorrelation of181

relative vorticity, ζ = ∂xv − ∂yu, in the zonal direction and then average it in space from 90◦S182

to 72◦S. The decorrelation scale is defined as the distance at which the autocorrelation drops to183

one half. Fig. 4(B) shows a satisfying relationship between the Rossby deformation radii and184

the decorrelation scale.185

Finally, it should be noted that the Rhines scale and the deformation radius are also linearly186

related to one another. As can be seen from inspection of Fig 3, the eddy-scale and the jet scale187

are close to one-another with a typical eddy roughly filling the space between the jets.188

The central role of baroclinic eddies189

In the reference simulation, the zonal-mean temperature pattern features 1) uniform temperature190

in equatorial regions, 2) stable stratification over the pole and 3) a pole-to-equator temperature191

gradient in the interior ocean which decays with depth (see Fig. 5(A)). The minimum temper-192

ature is found at the equator, where surface cold water sinks into the abyss. As a result, the193

temperature is almost vertically uniform at the equator, and the stratification close to neutral.194

Over the poles, in contrast, the seawater temperature is higher than elsewhere, so the stratifi-195

cation is stable and vertical diffusive heat transport is found. Because the interior of the ocean196

has a lower temperature compared to the surface at the poles, the diffusive heat flux is directed197
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downward, as shown by the blue arrows in Fig. 5(A). A pole-to-equator temperature gradient198

in the interior ocean forms due to the imposed temperature gradient at the top boundary being199

diffused downward into the interior.200

The meridional temperature gradient in the ocean is in thermal wind balance and is baro-201

clinically unstable, resulting in eddying motions. The Charney-Stern theorem (39) states that a202

change of the sign of the Ertel PV gradient is required for instability to occur. This criterion is203

satisfied, as can be seen by inspection of the potential vorticity field in our reference simulation.204

Fig. 5(B): the Ertel PV gradient in the interior and close to the top boundary are of opposite205

sign. The Ertel PV gradient is positive in the interior of ocean, largely due to the gradient of206

planetary vorticity. In the generalized PV definition (40), a top PV sheet is introduced from a207

temperature gradient at the top boundary, and the direction of the Bretherton PV gradient within208

it is opposite to (the same as) the gradient of temperature at the top in the Northern (Southern)209

Hemisphere, thus satisfying the Charney-Stern criterion.210

One important effect of baroclinic eddies is that they flux heat down-gradient from higher211

latitudes to lower latitudes. Since the weak mean overturning flow is not effective in heat trans-212

fer, eddy heat transport dominates. Vertical integration of the meridional component of eddy213

heat flux is shown in Fig. 5(C) and peaks at 4 kW m−1. At equilibrium, the convergence of214

this heat transport must be equal to the vertical heat flux at the water-ice interface, as shown215

in Fig. 5(C). Thus, over the poles, heat is transferred from the ice shell to the ocean; in mid-216

latitudes, it is transferred from the ocean to the ice shell. Since cooling (heating) results in217

thickening (thinning) of the ice shell, ocean heat transport tends to homogenize ice shell thick-218

ness variations, as first proposed in a terrestrial setting (41). At low latitudes, the strength of219

the heat flux at the water-ice interface is relatively weak, possibly due to the weak temperature220

gradient there.221
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Importance of vertical diffusion of heat222

Vertical mixing is essential to energize oceans forced by a surface temperature gradient (42,43)223

because it enables that gradient to be diffused down into the ocean interior. This downward dif-224

fusive heat flux (blue arrows in Fig. 5(A)) balances the upward heat transport due to baroclinic225

eddies (green arrows, Fig. 5(A)), as shown by the sub-panel in Fig. 5(A). While baroclinic ed-226

dies arise due to the horizontal temperature gradient in the ocean interior, it is vertical diffusion227

that maintains that interior gradient sustaining baroclinic activity. From an energetic point of228

view, it can also be shown that it is vertical diffusion rather than the heat flux from the ice that229

energizes ocean circulation (25, 42).230

In our simulations, the diffusion coefficient is larger than its molecular value by several231

orders of magnitude. Diffusion of heat can be a result of both molecular and turbulent/eddy dif-232

fusion. Diffusion by turbulent scales in Earth’s atmosphere and ocean is the rate-limiting mixing233

process. Turbulence is generated by many processes, including tidal processes exciting inertia-234

gravity waves, convective instability caused by heating and cooling and/or freezing/melting,235

flow over topography and baroclinic instability of the large-scale flow and its turbulent cascade.236

All these processes can be expected to be at work on icy moons. Here, in our numerical sim-237

ulations we attempt to resolve the baroclinic eddy scales but perhaps not its turbulent cascade.238

We therefore interpret κ to represent the net effect of mixing by all smaller scales.239

The linkage between diffusion and meridional heat transport can be clearly seen by consid-240

ering the budget of temperature variance, T 2. If we multiply Eq. (34), the governing equation241

for T in our simulations, by T , take the time average and integrate over the domain, at equilib-242

rium we obtain:243

−
∫ Ly/2

−Ly/2

dy

(
dTtop

dy
· Fmerid.

T

)
= κ

∫ Ly/2

−Ly/2

dy

∫ 0

−H

dz (∇T )2 (7)

where Ttop is the prescribed top temperature and F
merid.

T is the time-mean vertically-integrated244
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meridional temperature flux due to diffusive and advective processes:245

F
merid.

T =

∫ 0

−H

dz
(
−κ∂yT + vT

)
. (8)

The left-hand side of Eq. (7) is the flux of heat directed down the large-scale gradient which246

is balanced by explicit diffusive processes acting on temperature gradients represented by κ on247

the right-hand side. This clearly demonstrates that the large-scale eddy heat flux is directed248

down-gradient and is proportional to κ for a given temperature distribution. Although the effect249

of κ on the temperature pattern must be considered (as discussed later), the above demonstrates250

the important role of vertical diffusion in the temperature variance budget.251

An idealized model for the temperature distribution252

As can be seen from Fig.5(A), the direction of vector eddy heat transport in the meridional plane253

by baroclinic eddies in the interior of our solution is directed along temperature surfaces, as254

described, for example, in the Antarctic Circumpolar Current of Earth’s ocean (26). This align-255

ment is a consequence of diabatic processes in the interior ocean being weak and so fluid parcels256

are constrained to move along isopycnals (here T surface). Consequently, because the T sur-257

faces tilt, the meridional heat transport will naturally be associated with a vertical component.258

At equilibrium this vertical, upward eddy heat transport must balance the downward diffusive259

heat flux (15,34). This allows us to construct a simple model (which we call the K-κ model) to260

predict the interior temperature distribution, in which K represents the eddy heat transport and261

κ the explicit vertical diffusion. The resulting framework has much in common with idealized262

models of the stratification and overturning circulation in the Southern Ocean (26, 27) which263

were applied to Enceladus in Lobo2021.264

At equilibrium, the Reynolds-averaged temperature equation is, neglecting advection by the265

mean:266

∂yv′T ′ + ∂zw′T ′ = κ∂2
zT (9)
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where κ is the vertical heat diffusivity. The horizontal component of the eddy heat flux is di-267

rected down-gradient (equatorward) (Fig. 5(C)), and so, as is commonly assumed in dynamical268

meteorology and oceanography, we liken the eddy heat flux to a mixing process and express it269

thus:270

v′T ′ = −K∂yT (10)

where K is a lateral mixing coefficient of temperature associated with baroclinic eddies. Al-271

though our simulations and previous studies show that K will varies spatially (12, 15), for sim-272

plicity here we use a single value for K although we will allow it to vary between simulations.273

We can connect the vertical component of eddy heat flux to its horizontal component by274

assuming it to be a skew flux thus:275

w′T ′ = sv′T ′ (11)

where s is the slope of the mean temperature surfaces,276

s = −∂yT

∂zT
. (12)

Combining Eqs. (10), (11), and (12) enables us to write Eq. (9) as277

J(Ψ⋆, T ) = κ∂2
zT , (13)

where J(A,B) = (∂yA)(∂zB)− (∂zA)(∂yB), where the stream-function for the residual over-278

turning circulation Ψ∗ is given by279

Ψ⋆ = Ks. (14)

Such as expression for Ψ⋆ has been widely used in studies of terrestrial, (44,45) and Enceladean280

(13,15) ocean circulation. This eddy-driven circulation, depicted in Fig. 1(B), draws cold water281

upward, balancing heat being diffused down from the surface.282

Eq. (13) was the model used in Lobo2021 to study the circulation of Enceladus for pre-283

scribed values of K and κ. It was solved using a method of characteristics that has been used284
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for modeling the Southern Ocean (26). Here, we take a different approach and rewrite Eq. (13)285

using temperature as a vertical coordinate by noting that 1) the slope of isothermals, s, can be286

expressed as ∂yz in temperature coordinates and 2) J(Ψ⋆, T ) can be interpreted as the gradient287

of Ψ⋆ in the direction along the local isopycnal and so also expressed in temperature coordi-288

nates. As derived in Supplementary Materials, Eq. (13) can be written as:289

K∂2
yz + κ

∂2
T z

(∂T z)
2 = 0, (15)

where z is a function of y and T . We see that the depth of isotherms are diffused horizontally by290

K and vertically by κ, having their origin at the top. This is simpler than Eq. (13) with a direct291

physical interpretation. However, the boundary conditions are more complicated: the shape of292

the domain, the collection of all possible (y, T ), is now non-rectangular because temperature293

varies at the upper boundary. Although this complicates solution for the interior temperature294

distribution, it allows us to readily derive scaling laws for the penetration depth of surface295

temperature anomalies. Moreover, one great advantage of Eq. (15) is that it can be readily296

solved numerically.297

The depth of penetration, D, of ocean circulation is closely linked to the slope of tempera-298

ture surfaces thus:299

D ∼ sR (16)

where we have assumed the horizontal length scale is the radius of the moon R, as can be seen300

in Fig. 2.301

Since the vertical heat budget is a balance between diffusion and eddy heat flux,302

κ∂zT ∼ −sK∂yT , (17)

this can be combined with Eq. (12), to yield303

|S| ∼
√

κ

K
. (18)
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Substituting back into Eq. (16) gives a scaling for the depth of penetration D:304

D ∼
√

κ

K
R (19)

Eq. (18) and Eq. (19) indicate that the isopycnal slope and the depth to which surface warm305

water penetrates is determined by the ratio of κ to K. This can be understood as follows: vertical306

diffusion at higher latitudes brings heat into the ocean, making isopycnals steeper (increasing307

s), while baroclinic eddies try to flatten temperature surfaces (decreasing s). The ratio of κ to K308

controls the relative efficiency of these two processes, and thereby the equilibrium slopes. This309

is directly analogous to the models of the Antarctic Circumpolar Current (26): there the wind310

curl pumped the surface boundary conditions into the interior, rather than mixing processes, but311

a balance with lateral eddy mixing, as here, determined the equilibrium slope.312

Note that Eq. (18) is only applicable when D given by Eq. (16) is smaller than the ocean313

depth H . When D > H , a different scaling pertains (15). Later, we will see that this scenario314

is very unlikely for Enceladus.315

In the K-κ model, the strength of the ocean circulation, obtained by combining Eq. (18)316

with Eq. (14) is given by:317

Ψ⋆ ∼
√
κK (20)

This is exactly the same relationship obtained for the strength of the lower cell driven by mixing318

and eddies around Antarctica in Earth’s ocean (27) .319

Scaling for the eddy diffusivity K and ocean heat transport320

To enable us to use the K-κ model to predict ocean heat transport given a diapycnal mixing321

rate, κ, we need a scaling law for K (15), inspired by geostrophic turbulence theory (46, 47)322

used mixing length theory (21) and assumed that K can be expressed as the product of a char-323

acteristic eddy length le and eddy speed ve. We have noted that our eddy length covaries with324

15



the deformation radius LR (Eq.(6) and Fig.4). When vertical diffusion does not dominate, ve325

will scale with the thermal-wind speed UTW ≡ αgD∆T/(Rf), as shown in Fig. 4(C). This326

suggests that327

K ∼ leve = UTWLR =
αgD2∆TN

Rf 2
, (21)

where N =
√

αg∆T/D is the buoyancy frequency. The penetration depth D is given by328

Eq.(19). On substituting into Eq.(21), we obtain the κv-limit scaling presented in (15):329

Kscaling = CKκ
3/7(α∆Tg)6/7R2/7Ω−8/7 (22)

where CK is a constant. Fitting to our numerical simulations we find that the best fit is CK is330

0.0692.331

Eq. (22) suggests that K increases with ∆T and κ. This is expected because the baroclinic332

eddies are energized from the horizontal temperature gradient. Also, the maintenance of the333

horizontal temperature gradient in the ocean interior requires vertical diffusion.334

Finally, combining our K-κ model (Eq. (18) and Eq. (14)) with the scaling for K (Eq. (22))335

we obtain the following expressions for penetration depth and the meridional energy flux336

D = CDκ
2/7(α∆Tg)−3/7R6/7Ω4/7 (23)

Fheat = CF cwρwκ
5/7(αg)3/7(∆T )10/7R8/7Ω−4/7 (24)

where CD and CF are constants. Again, fitting to our simulations we find that CD = 1.39337

and CF = 0.435 (Fig. 6). This formula is identical to the κv-limit scaling given by a previous338

study (15).339

Test of theory against numerical solutions340

To test the K-κ model against numerical solutions, we need to determine whether 1) Eq. (15) (or341

equivalently Eq. (13)) correctly predicts the temperature patterns in our numerical simulations,342
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2) the interplay of K and κ determines the penetration depth of surface temperature anomaly D343

and the strength of the ocean circulation, Ψ∗, following Eq. (19) and Eq. (20), and 3) the eddy344

diffusivity K and the meridional heat transport can be predicted using Kscaling from Eq. (22)345

and Fheat from Eq. (24), respectively.346

First, as can be seen from Fig. 7, solutions of Eq. (15) well match the equilibrium state of our347

numerical model. To obtain these solutions, boundary conditions are set as follows: over north-348

ern and southern boundaries, ∂yT is set to zero, consistent with the adiabatic boundary condition349

prescribed in the high resolution simulations. At the bottom, the temperature is assumed to be350

the minimum temperature prescribed at the water-ice interface. This is reasonable since we351

observe that the coldest prescribed temperature occupies the abyssal ocean (Fig. 5(A)). Also, to352

obtain a solution of Eq. (15), we linearized it by replacing ∂T z with (H/(Ts(y)−Ts(0))), set by353

top-to-bottom temperature difference at a given latitude. This approximation prevents us from354

capturing the top-amplified structure of stratification (∂T z). However, despite these assump-355

tions, the solution is still able to capture the broad temperature patterns found in the numerical356

simulations (see Fig. 7).357

Secondly, we demonstrate that Eq. (18) and Eq. (20) capture the isopycnal slope s and the358

magnitude of the ocean circulation Ψ⋆ in our simulations. To diagnose s, we replace it by359

D/R following Eq. (16), and define the penetration depth, D, based on the vertical profile of360

the vertical temperature gradient, ∂zT , at the poles. Starting from the surface, where ∂zT is361

a maximum, the depth at which ∂zT drops to 1/e (e = 2.71828 . . . ) of its maximum value is362

taken as a measure of D.363

To diagnose Ψ⋆, we first measure the amplitude of the wavenumber-two component1 of the364

1This definition is less sensitive to noise than using the maximum value.
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meridional heat transport as a function of latitude365

Fheat = πRcwρw

(
2

Ly

∫ Ly/2

−Ly/2

(
− sin (2y/R)Fmerid.

T (y)
)
dy

)
, (25)

where Fmerid.
T (y) is the vertical integral of temperature transport defined in Eq. (8). Then366

4Fheat/(cwρw∆T ) is used to estimate the magnitude of the residual circulation. As can be seen367

from Fig.7(A,B), the Ψ∗ and D diagnosed from numerical simulations (orange cross) matches368

well with the prediction by the κ-K model (black dashed line).369

Thirdly, to see whether the scaling laws for penetration depth (Eq. (23)) and meridional heat370

transport (Eq. (24)) captures the numerical results, we overlay the scaling predictions on Fig.8371

using green markers. The predictions given by scaling laws (green markers) are well aligned372

with numerical simulations (orange crosses).373

Eq. (23) slightly overestimates the penetration depth D when the prediction approaches the374

full ocean depth H . This is expected because as D → H , the ocean enters the so-called D-limit375

scenario described in a previous study (15), in which vertical diffusion is strong enough to carry376

the top boundary condition all the way down to the ocean bottom. Fig. 9 marks the D-limit with377

gray shading and shows that none of our simulations are in this regime (some simulations may378

be arguably in the transient zone between the two regimes).379

We also present the isopycnal slope and the volume transport from Lobo2021 (13) in the380

same plots (Fig. 8A&B) using blue plus markers. Evidently, the K-κ model, specifically381

Eq. (18) and Eq. (14), also matches the results by Lobo2021. This is not surprising given the382

similarity between our model and theirs. However, as can be seen from Fig. 8C, the κ and K383

values chosen in the Lobo2021 model are in a very different parameter regime than suggested384

by our numerical solutions.385
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Implications for Enceladus386

The pole-to-equator ice shell thickness variation (16–19) creates a meridional temperature dif-387

ference at the top of Enceladus’ ocean, which will drive ocean circulation and meridional heat388

transport. The ocean circulation forced by a buoyancy gradient at the top in the oceans of icy389

moons was first studied using a box model (48) or in a zonally-symmetric configuration (14,34).390

A zonally symmetric model accounts for an overturning circulation and qualitatively capture as-391

sociated features Ψ⋆. However, due to the lack of the zonal dimension, baroclinic eddies are not392

present. This, consequently, leads to an underestimate of the meridional heat transport, espe-393

cially when the ocean is strongly baroclinically unstable. Moreover, the dynamic features that394

appear in 3D configurations are drastically different from those in zonally-symmetric config-395

urations: multiple jets and associated overturning circulation cells form rather than the single396

overturning circulation of the 2-d model. Such differences have been noted in previous stud-397

ies (12, 15).398

The pole-to-equator temperature difference on Enceladus is perhaps order 0.1–0.2 Kelvin,399

which can induce a significant meridional heat transport. Substituting such a temperature differ-400

ence and Enceladus parameters (g, R, and Ω) into Eq. (24) (15), the meridional heat transport401

on Enceladus is402

Fheat = 1.8GW

(
α

1.67× 10−4K−1

)3/7(
∆T

0.1K

)10/7 ( κ

10−3m2 s−1

)5/7
(26)

The relation between κ and ∆T is plotted in Fig. 9, assuming α = 1.67 × 10−4K−1. The blue403

shaded area in Fig. 9 marks the possible parameters of Enceladus by requiring the meridional404

heat transport to be <3 GW, the amount of heat that can be lost through the equatorial (30S-405

30N) ice shell (17, 49). If this is exceeded, the equatorial ice shell would melt, which together406

with likely poleward ice flow (49, 50), would eventually smooth out ice thickness variations407

(14, 15, 34). Such a heat budget constraint can also be used to place an upper limit on the408
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vertical diffusivity of between ∼10−3m2 s−1, depending on the assumed value of the thermal409

expansion coefficient α, which is a function of ocean salinity (14).410

Furthermore, a pole-to-equator temperature difference can potentially strongly modify con-411

vective upward heat transport powered by possible bottom heating. Given that the meridional412

temperature gradient (0.1K) is likely much greater than the simulated vertical temperature gra-413

dient induced by a 40 mW/m2 bottom heating (11,51), the heating pattern at the seafloor may be414

significantly altered by the time it is delivered to the ice. This mechanism is different from the415

imprint of bottom heating patterns due to bottom convection (9–11,36,52). This may draw into416

question, for example, the scenario in which a poleward-amplified heating pattern emanating417

from the seafloor can sustain the poleward-thinning ice geometry on Enceladus (53) .418

To put our work in context, in Fig. 8 we also present some results inferred from the Lobo2021419

model (13). Our K-κ model shows that the ratio of κ to K controls the depth of the circulation420

(panel B), while the product of κ and K controls the strength of overturning circulation (panel421

A). The major difference between our work and that of Lobo2021 is that K is estimated using422

scaling laws (Eq.(22)), which is then validated using high resolution numerical experiments,423

rather than, as in Lobo2021, being prescribed at terrestrial values. Our calculations suggest424

that K should be order ∼0.1m2 s−1, which is 3-4 orders of magnitude smaller than assumed425

in (13) — Fig. 8(C). As a result Lobo2021’s overturning circulation is 2 orders of magnitude426

too shallow (panel B) and 2 orders of magnitude too strong (panel A). Finally, as noted earlier,427

the energy budget of the ice shell of Enceladus puts an upper bound on the strength of ocean428

heat transport and thereby the residual circulation. This limit is marked by the dotted line in429

Fig. 8(C). The parameter space explored by Lobo2021 would result in a heat transport orders430

of magnitude greater than the 3GW limit due to the assumption of a very large K, even for the431

smallest κ assumed. If this were true, ice shell thickness variations would be quickly smoothed432

out.433

20



Application to other icy moons434

The idea that ice thickness variation drives an ocean circulation can be applied to other icy435

moons, which may have a pole-to-equator temperature gradient beneath an ice shell of variable436

thickness. Although a significant ice shell thickness variation has been discovered on Enceladus,437

similar unevenness of the ice shell may not exist on Europa or Titan. The upper limit of the pole-438

to-equator ice thickness variation on Europa is perhaps order 10 km (54). Due to Europa’s large439

size and hence strong gravity (15, 34), the meridional heat transport in the ocean could be as440

large as 2.4 GW even if the vertical diffusivity is as low as 1.6 × 10−7m2 s−1, the molecular441

value (9). Here, we assume cw = 4×103 J kg−1K−1, ρw = 1×103 kgm−3, α = 2×10−4K−1,442

R = 1561 km, and Ω = 2.1× 10−5 s−1 (9). The rate that the freezing point varies with pressure443

is set to −7.5 × 10−8KPa−1. Furthermore, spatial variations in tidal heating on Titan can444

possibly induce ice shell thickness variations, which is an explanation to the surface topography445

(55). The resulting lateral ice thickness variation can be several kilometers. Since Titan has an446

even larger size and an even slower rotation rate than Europa (9), ocean heat transport may be447

even more efficient in removing thickness variations in the overlying ice shell.448

The scaling laws (Eq. (22), Eq. (23) and Eq. (23)) and heat budget can also be written in449

a dimensionless form. This can simplify determining whether the scaling law is applicable to450

the regime in question. Physical parameters involved are: 1) the radius of the moon, R, 2)451

the rotational rate, Ω, 3) the depth of the ocean, H , 4) the diffusivity, κ, 5) the viscosity, ν,452

and 6) the buoyancy forcing, ∆b. Buckingham’s Π-theorem tells us that four non-dimensional453
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numbers can be constructed:454

χ =
H

R
, (27)

Ek =
κ

ΩH2
, (28)

Pr =
ν

κ
, (29)

R⋆
a =

∆b

Ω2H
. (30)

Here, χ is the nondimensional depth of the ocean; Ek is the Ekman number to represent the455

strength of diffusion relative to rotation; Pr is the Prandtl number, and it is set to unity in this456

study; R⋆
a is the slantwise Rayleigh number (56). Note that the slantwise Rayleigh number does457

not depend on a poorly constrained diffusivity or viscosity, in analogy with the natural Rossby458

number, Ro∗ (11). Fig. 9 shows Ek and R⋆
a in the upper x-axis and the right y-axis respectively.459

Although our scalings have been tested within the parameter space of our simulations, it is yet460

to be confirmed if they are applicable beyond this space. However, based on the principles of461

geostrophic turbulence theory (46,47), we expect our scalings to hold as long as R⋆
a and Ek are462

sufficiently small.463

Discussion464

We have explored how ocean circulation can be induced on an icy moon when forced by a465

temperature variation at the top which is diffused down into the interior. Our main findings are:466

1. Eddies plays a dominant role in ocean dynamics and heat/tracer transport. The Eulerian-467

mean meridional overturning circulation is much weaker than that associated with eddies468

in terms of strength and associated heat transport.469

2. Eddies are generated by a baroclinic instability of the thermal wind. The Charney-Stern470

theorem, a necessary condition for baroclinic instability, is satisfied, with the meridional471
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gradient of potential vorticity having different signs above and below the thermocline.472

3. Heat is diffused downwards over the poles, and then fluxed equatorward and upward along473

the isopycnals by baroclinic eddies. It is eventually deposited underneath the equatorial474

ice shell. The balance between diffusion and eddies allows us to construct a K-κ model,475

from which temperature patterns can be computed given the vertical diffusivity κ, and the476

horizontal eddy heat transport coefficient, K. The temperature patterns match well with477

our numerical simulations. The equilibrium isopycnal slope and the strength of the eddy-478

driven overturning circulation can also be written as a function of κ and K. A comparison479

with the Lobo2021 model (13) is made.480

4. Scaling laws for K, the penetration depth, and the meridional heat transport (Eq.(22),481

(23) and (24)) given by a previous study (15) are tested against numerical simulations.482

5. If a larger vertical diffusivity is assumed we find 1) a larger horizontal eddy diffusivity,483

2) stronger horizontal heat transport and 3) increased penetration depth of the boundary484

conditions into the interior.485

6. Increased top temperature difference results in 1) a larger horizontal eddy heat transfer486

coefficient, 2) a stronger horizontal heat transport, 3) a smaller penetration depth of the487

temperature variation, and 4) a potentially flatter ice shell if the ice geometry is close to488

equilibrium, as in (15).489

In our study, only temperature forcing from the ice shell is considered and the density vari-490

ation contributed by salinity gradient induced by freezing/melting is neglected. In reality, the491

total buoyancy gradient between the equator and the pole depends strongly on the mean salinity492

of the ocean S0, because it controls both thermal expansion coefficient and the salinity change493

due to melting or freezing (14). However, we can include the salinity factor by replacing α∆T494
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with (α∆T −β∆S), where β is the haline contraction coefficient and ∆S is the pole-to-equator495

salinity difference. The thermal expansively α can also be changed depending on the assumed496

S0.497

Finally, our simulations do not represent the topography of the water-ice interface. The498

absence of topography may also affect ocean circulation and its baroclinic instability, especially499

when κ is small and the penetration depth D is shallow. The effects of the top topography on500

the ocean circulation needs to be investigated in future work.501

Materials and Methods502

Governing Equations and Boundary Conditions503

The three-component velocity, u = (u, v, w), and the temperature, T , are the prognostic fields504

in simulations. Because we use the Boussinesq approximation, velocity is nondivergent every-505

where:506

∂xu+ ∂yv + ∂zw = 0 (31)

The momentum equation is507

∂tu+ u · ∇u+ f × u = −∇P + bk + ν∇2u (32)

where f is the Coriolis parameter in vector form; P is the pressure divided by the reference508

density; b is the buoyancy, which is later given by Eq. (33); k is the unit vector in the z direction;509

ν∇2u is the viscosity term and ν is the viscosity. The value of ν is set to κ, the diffusion510

coefficient, in all simulations.511

The inclusion of Coriolis effects is given careful consideration, as described in the main512

body of the text to take account of the deep ocean and non-traditional Coriolis terms.513

We use a highly idealized equation of state. The buoyancy, b, is a linear function of temper-514
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ature, T ,515

b = αg (T − Tref) (33)

where Tref , the reference temperature, is 0◦C; α, the thermal expansion coefficient, is 1.67 ×516

10−4K−1; and g, the gravity in the ocean, is 0.1m s−1. This idealized equation of state (Eq. 33)517

neglects the contribution of the variation of salinity to the density and also assumes that the518

salinity is high enough to suppress the abnormal thermal expansion.519

The equation for the evolution of temperature is520

∂tT + u · ∇T = κ∇2T − δtop
T − Ttop(y)

τ
(34)

where κ is the diffusivity; δtop = exp (z/d0) and d0 = 50meters; τ is a relaxation time; and521

Ttop(y) is the prescribed top temperature pattern as a function of y. In all simulations, τ is small522

enough to relax temperature near the top of the ocean to the prescribed value.523

The bottom (z = −H), northern (y = (π/2)R), and southern (y = −(π/2)R) boundaries524

are adiabatic. Although the bottom heating can be an important driver of the ocean (9–11), it525

is not included because we focus on the ocean circulation forced by a top temperature gradient526

in the paper. We use the no-slip boundary condition for the bottom, top, northern, and southern527

boundaries.528

Numerical Techniques529

We use Oceananigans.jl (30), a state-of-art ocean general circulation model that runs fast on530

GPU (graphics processing unit), for all numerical simulations. Powered by advanced GPUs, our531

simulations use a high resolution of 300 meters in all x, y, and z directions, which is smaller532

than the Rossby deformation radii in all simulations and enables resolving baroclinic eddies.533

The velocity and the temperature fields are discretized using a staggered Arakawa C-grid (57).534

The advection terms in Eq. (32) and Eq. (34) are calculated with a 5th-order WENO (weighted535
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essentially non-oscillatory advection) scheme (58). The integration over time is performed with536

a 3rd-order Runge-Kutta method designed for three-dimensional incompressible flows (59). A537

non-hydrostatic solver is used.538
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Figure 1: Schema of the energy budget of the ice shell and ocean circulation on an icy
moon driven from the upper boundary. In the absence of abyssal heat sources the following
processes contribute: (1) tidal heating in the ice shell, (2) heat diffusion within the ice, (3)
heat loss to space (4) ocean heat transport, and (5) water-ice heat exchange. In Panel (A),
the temperature difference between the water-ice interface and the very top of the ice induce
outward diffusion of heat which is ultimately lost to space. Ocean circulation is induced by
freezing point temperature variations at the ice-ocean interface which make the poles warm
because the ice is thin there, relative to the equator where it is thick. The ocean therefore carries
heat from the poles to the equator. The resulting heat exchange between the ice and the ocean
tends to smooth out ice shell geometry variations. In Panel (B), the ocean circulation is driven
by a prescribed top temperature variation. Black lines represent temperature surfaces, here
synonymous with isopycnals because salinity plays no role. The top temperature is higher over
the poles and lower at the equator. This pole-to-equator temperature gradient is diffused down
vertically into the ocean (process (6)), supporting zonal currents which spawn baroclinic eddies.
The eddies flux heat down the temperature gradient (process (7), Eddy Heat Transport). This
eddy transport can be equivalently viewed as an overturning circulation which sinking at the
equator and rising near the poles (marked as (8) Eddy-Driven Overturning Circulation, shown
only in the Northern Hemisphere). There is a balance between eddy transport of heat (7) (or
equivalently the overturning circulation (8)) and vertical diffusion of heat (6). Note that here we
have assumed that the buoyancy of sea water depends only on temperature and that the thermal
expansion coefficient is positive. Panel (B) figure is adopted from Fig. 1b in Lobo et al. (13).
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Figure 2: An idealized model for the ocean of an icy moon. Panel (A) is a diagram of an icy
moon, the ice shell of which is thin at the poles and thick at the equator. The non-uniform ice
shell induces a temperature gradient at the top of ocean. We use a cosine temperature profile, as
shown in Panel (B), to represent this top temperature forcing in our numerical simulations. Here,
∆T is the pole-to-equator temperature difference, Ts is the top temperature. We use a cuboid
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northwards, and upwards, respectively. The green arrows in Panel (A) and Panel (B) show the
Coriolis parameters at different locations. The tangent cylinder is marked by the purple lines.
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Figure 3: Zonal jets and baroclinic eddies in the reference simulation. The column on the
left shows the instantaneous (A1) temperature anomaly, (B1) zonal velocity, (C1) meridional
velocity, and (D1) vertical velocity along a zonal cross section. Here, the anomaly is defined
as the instantaneous departure from the zonal-mean. The column on the right shows the same
fields on a horizontal cross-section, which is at the depth of 15 km, half-way down the water
column. The dashed black lines represent the tangent cylinders.
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Figure 5: Plots of Temperature, Ertel’s PV and heat transport in the reference simula-
tion. Panel (A) shows the zonal, time-averaged temperature (shading), diffusive heat flux (blue
arrows), and eddy heat transport (green arrows). The purple dashed line marks the tangent
cylinder. The sub-panel shows the horizontally averaged vertical heat flux. Panel (B) shows
the instantaneous Ertel PV defined by (∇T ) · (f +∇× u) along a zonal section. The contours
show the instantaneous temperature at an interval at 0.01 K. Panel (C) shows the vertical heat
flux at the top of the ocean (blue) and the meridional heat transport (red). The meridional heat
flux is scaled to the circumference of the moon by multiplying by a factor of πR/Lx, where R
is the radius of the icy moon and Lx is the domain size in the x direction.
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Figure 6: Measures of key flow parameters in two groups of simulations compared to
predictions from scaling. The left column shows the (A1) eddy heat transport coefficient, K,
(A2) meridional heat transport and (A3) penetration depth in calculations in which the vertical
diffusivity, κ, is varied; the second column shows the same but when the prescribed temperature
difference is varied. Theoretical predictions are made from Eq. (22), Eq. (24), and Eq. (23).
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Figure 8: Ocean circulation characteristics as a function of our two key parameters, κ and K.
Theory predicts the strength of the eddy-driven overturning circulation as 2πR

√
κK and that

the isopycnal slope is
√

κ/K. Panel (A) shows the volume transport versus these predictions
in our simulations (points, similar to Fig. 4) and calculations in the Lobo2021 model (13) (blue
crosses). Panel (B) isopycnal slopes. Panel (C) compares the parameter space of (κ,K) in our
simulations to those assumed in Lobo2021. The four arrows indicate how changes in κ and
K affect the strength and the depth of the eddy-driven overturning circulation. Dashed lines
indicate how K depends on κ and the prescribed temperature difference at the top, ∆T . The
values of K used in Lobo2021 are roughly 3 orders of magnitude larger than our simulations
suggest, resulting in overturning circulations that are too strong and too shallow.
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Figure 9: Dynamical parameter space for Enceladus. The blue points represent our simula-
tions; the blue blocks represents the possible position of Enceladus in this space. The minimum
value of κ on Enceladus is assumed to be 1.4×10−7m2 s−1. This is the estimated molecular dif-
fusivity (9) but tidal mixing will likely produce much elevated values. The solid lines show the
parameters for the corresponding meridional heat flux predicted by Eq. (26). Since the ocean
heat transport is unlikely larger than 3 GW, the diffusivity must be smaller than ∼10−3m2 s−1.
Ek and R⋆

a are defined in Eq. (28) and Eq. (30), respectively.
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