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Observed multi-decadal increase in the 
surface ocean’s thermal inertia
 

Chaehyeong Lee    1,4, Hajoon Song    1,2 , Yeonju Choi1, Ajin Cho    1 & 
John Marshall3

The ocean’s surface layer has a crucial role in Earth’s climate, absorbing 
excess atmospheric heat, thereby regulating global temperatures. Here, 
using global daily sea surface temperature (SST) data, we document a 
notable increase in the persistence of SST anomalies across the global 
ocean since 1982. This trend is also evident in frequency space, showing a 
decreased variance in SSTs on timescales shorter than a month, but a slight 
increase on longer timescales. A simple stochastic model attributes this 
prolonged memory to three key factors––a deepening of the surface mixed 
layer, a weakening of oceanic forcing and reduced damping rates. The first 
two factors decrease the variance on shorter timescales, while the third 
increases it on longer timescales. Our findings have great relevance to the 
observed increase in the duration of marine heatwaves and the associated 
heightened thermal threats to marine organisms. Our study also suggests 
that the ocean’s ability to sequester heat is weakening.

Sea surface temperature (SST) has an intrinsic tendency to relax back to 
its prior state when perturbed by atmospheric forcing1–3. This negative 
feedback mitigates positive SST anomalies through loss of energy to the 
atmosphere or storage within the ocean’s interior. The damping rate of 
near-surface-ocean thermal anomalies is a very important indicator, 
representing the potential for the ocean to buffer climate change, par-
ticularly considering that more than 90% of Earth’s excess energy due 
to greenhouse gas emissions has been drawn down into its interior4–6.

The response of SST to anomalies in forcing can be represented 
as a simple first-order autoregressive (AR(1)) process1 in which anoma-
lies decay exponentially over time. This simple model aptly captures 
the observed red-noise power spectrum of SST. The ocean’s mixed 
layer integrates stochastic atmospheric forcing, characterized by a 
white-noise spectrum, yielding a dampened SST variability at shorter 
timescales (less than 1 year)1,2,7–10. Based on this framework, the decay 
rate of SST anomalies depends on the heat content of the mixed layer 
and the efficiency of the negative feedback (damping) processes. 
The deepening of the mixed layer and a weakening of damping rates 
can extend the persistence of SST anomalies. While prolonged SST 

persistence leads to enhanced predictability, it also intensifies the 
potential threat of thermal anomalies to marine ecosystems11–13, per-
haps resulting in mortality and shifts in species composition (ref. 14 
and references therein). For all these reasons, quantifying changes in 
SST persistence is of great importance.

The persistence of SST and its associated memory timescale 
have been examined using both observations and numerical mod-
els. Monthly SST anomalies in the North Pacific tend to persist for 
longer, associated with a deepening trend in the mixed layer9. The same 
trend has been reported for both the North Pacific and Atlantic, with  
Lenton et al.15 attributing it to the weakening of negative feedback pro-
cesses. Contrastingly, Ding and Li16 suggested that both large-scale vari-
ability and local cloud–SST positive feedback is important in the North 
Pacific decadal changes in the monthly mean SST memory timescale.

Previous studies have primarily analysed the SST memory time-
scale using monthly averaged data, although the persistence of SST 
on timescales shorter than one month is also a crucial area of inves-
tigation. For example, the duration of marine heatwaves (MHWs), 
defined as events with positive SST anomalies exceeding the 90th 
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and sub-mesoscale phenomena25, and its trend may diverge from that of 
monthly the SST. Here the memory timescale of daily SST is evaluated using 
42 years’ worth of global satellite data. We found a statistically significant 
and notable increase in the memory timescale across major parts of the 
global ocean, and attempt to explain this trend using the AR(1) model.

The observed memory timescale of SST and its 
decadal trend
Before estimating the memory timescale of SST (τ), the daily 
0.25°-resolution National Oceanic Atmospheric Administration 

percentile and lasting for at least five consecutive days17,18, shows a 
tight correlation with the memory timescale of daily SST19. In eastern 
boundary upwelling regions, synoptic scale winds drive variations in 
SST on timescales of a few days, impacting nutrient distribution and 
primary productivity through coastal upwelling20–23. Additionally, 
marine species are sensitive to both mean temperatures and to vari-
abilities occurring over days to weeks24.

Despite its importance, the trend in memory timescales of daily 
SST has not been actively explored on the global scale. The persistence 
of SST is influenced by rapidly varying processes, such as surface waves 
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Fig. 1 | Mean memory timescales of SST anomalies and their trends. a, The 
mean memory timescale (τ) of SST anomalies estimated from satellite 
observations. b, The linear trend from 1982 to 2023, the black boxes indicating 
those regions where the time series of τ, the power spectra of the SST anomalies 
and the mean MLD were calculated, the dotted areas representing the regions 
where τ in 2023 had increased by more than 50% compared to 1982. Most of the 

globe shows a statistically significant increasing trend. c–g, Annual variation in 
the (red) memory timescale and (black) duration of MHWs from 1982 to 2023 
across the five regions, with the pink and grey shading representing one standard 
deviation: North Pacific (c), North Atlantic (d), Indian Ocean (e), South Pacific (f) 
and South Atlantic (g).
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Optimum Interpolation SST dataset26 was interpolated onto a 
1°-resolution grid and fitted to the AR(1) model using a 10 day lag 
autocorrelation for each year to find the damping coefficient (λ in 
equation (1), Methods). Our approach was equivalent to finding the 
time at which the autocorrelation coefficient fell below 1/e, as in ref. 19. 
Broadly, we found that the memory timescales of daily SST are shorter 
than 20 days, except in the eastern equatorial Pacific where they exceed 
30 days (Fig. 1a). Other regions with long memory timescales include 
the eastern North Pacific, the regions north of the Gulf Stream and 
Kuroshio Current, the Agulhas Retroflection and the eastern south-
ern Indian Ocean. By contrast, the equatorial western Pacific, Indian, 
Atlantic and much of the Southern Oceans have memory timescales 
shorter than 10 days.

Strikingly, the memory timescale of daily SST exhibits a statisti-
cally significant increasing trend over the global ocean almost eve-
rywhere (Fig. 1b). The basin-averaged memory timescale has nearly 
doubled over the last 42 years (Fig. 1c–g). For example, in the eastern 
North Pacific, the SST memory timescale has been increasing at a rate 
of 2.5 days per decade—a full 50% increase over the last 42 years. Even at 
lower latitudes, between 20° S and 20° N, the average trend is roughly 
2 days per decade, implying a doubling of the memory timescale over 
the last 42 years. The extension of the memory timescale of daily SST 
is also evident from the autocorrelation analysis of SST anomalies 
alone (Methods and Extended Data Figs. 1 and 2), emphasizing the 
robustness of this signal.

This rising trend in the global ocean is potentially linked to the 
observed increase in the duration of MHWs, which has extended by 
more than 30 days in roughly 80% of the global ocean from 1982 to 
202327 (Fig. 1c–g). These findings underscore a notable and concern-
ing shift in the ocean’s behaviour, allowing extreme SST anomalies to 
persist for much longer periods over the last four decades, potentially 
posing a greater threat to marine ecosystems.

Power spectra analysis has corroborated the extension of the 
memory timescales of daily SST across the major ocean basins. Compar-
ing the first 5 years (black lines in Fig. 2) with the last 5 years (red lines 
in Fig. 2), we can see two notable changes over the last four decades.  
Variance at higher frequencies was reduced during the 2019–2023 
period compared to 1982–1986—a statistically significant signature 
across all major ocean basins. By contrast, there was a slight increase 
in power at lower frequencies in the last 5 years (insets in Fig. 2).  
The diminished variance at high frequencies implies reduced SST 
fluctuation on timescales shorter than a month, indicating extended 
memory timescales of daily SST, consistent with changes in the  
autocorrelation coefficient.

Mechanisms behind the prolongation of SST 
memory
The global trend of increasing SST memory timescale was investigated 
using a simple thermodynamic balance rooted in the AR(1) model, 
which accounts for both atmospheric and oceanic processes (Meth-
ods). An increase in SST memory timescale can occur through four 
primary mechanisms––an increase in the heat content of the mixed 
layer, a decrease in damping rates, and changes in atmospheric and/
or oceanic forcing. The deepening of the mixed layer, and hence the 
increase in heat content, reduces the variance of SST anomalies at 
high frequencies. Conversely, a decreasing trend in damping results 
in increased variance at low frequencies. The atmospheric forcing term 
is often perceived to be white noise8, whereas the oceanic forcing term 
shows decreasing variance towards higher frequency on timescales 
shorter than a few months10. We quantified the contribution of these 
four mechanisms in the AR(1) model by allowing changes in each vari-
able of interest while keeping the others fixed at climatological values.

Recent findings have revealed, counter-intuitively, an increase in 
mixed-layer depth (MLD) occurring concurrently with a strengthening in 
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Fig. 2 | Power spectra of SST anomalies. a–e, Power spectra of SST anomalies 
for the five regions indicated by black boxes in Fig. 1b: North Pacific (a); North 
Atlantic (b); Indian Ocean (c); South Pacific (d); and South Atlantic (e). The 

averaged power spectrum for the first and last 5 years of the analysed period are 
shown by black and red lines, respectively, the pink and grey shading represents 
one standard deviation. Insets zoom in on periods greater than 60 days.
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upper-ocean stratification28. Except for the austral fall in the South Pacific, 
the mixed layer has deepened roughly 10% over the last 40 years, with 
the North Atlantic exhibiting a nearly 20% deepening in April (Fig. 3a–e). 
This is equivalent to on the order of a 10% increase in the mixed-layer heat 
content, slowing down the decay of SST anomalies. The solution of the 
AR(1) model suggests that this change reduces the power at high frequen-
cies (red lines in Fig. 4), consistent with shifts in the SST power spectra 
across all major ocean basins (Fig. 2). However, this change alone can-
not explain the observed decrease in SST variance (black lines in Fig. 4).

Another contributing factor to the increased SST memory time-
scale is the damping coefficient, which, based on the AR(1) model, 
modifies power mainly at low frequencies. The damping coefficient can 

be decomposed into two distinct components, one associated with the 
atmosphere, the other with the ocean. The atmospheric damping coef-
ficient can be derived through differentiation of the bulk formulae with 
respect to the SST29, revealing contributions from long-wave radiation 
and latent and sensible heat fluxes (Methods). Using fifth-generation 
European Centre for Medium-Range Weather Forecasts atmospheric 
reanalysis of the global climate (ERA5) data, we found an atmospheric 
damping coefficient of roughly 30 W m−2 K−1 in the middle latitudes 
(Extended Data Fig. 3a), with the latent heat flux being the largest 
contributor (Extended Data Fig. 3c–e). This is consistent with previous 
studies that employed lagged covariance methods between surface 
heat-flux anomalies and SST anomalies10,30,31.

a b

c d e

f g

60° E 180° 60° W 60° E 180° 60° WWm–2 K–1 decade–1 Wm–2 K–1 decade–1

60° N

30° N

Lo
ng

itu
de

Latitude Latitude

30° S

60° S

0°

South Atlantic
Apr Mar

20 %

Feb

Nov

OctSep

Aug

Jul

Jun

–20 %

–10 %

0 %

10 %
May

Jan

Dec

South Pacific
Apr Mar

20 %

Feb

Nov

OctSep

Aug

Jul

Jun

–20 %

–10 %

0 %

10 %
May

Jan

Dec

Indian Ocean

Apr Mar
20 %

Feb

Nov

OctSep

Aug

Jul

Jun

–20 %

–10 %

0 %

10 %
May

Jan

Dec

North Pacific
Apr Mar

20 %
Feb

Nov

OctSep

Aug

Jul

Jun

–20 %

–10 %

0 %

10 %
May

Jan

Dec

North Atlantic

Apr Mar
20 %

Feb

Nov

OctSep

Aug

Jul

Jun

–20 %

–10 %

0 %

10 %
May

Jan

Dec

–1

–2

0

1

2

–25

–50

0

25

50

Fig. 3 | Changes in MLD and damping coefficients. a–e, The mean percentage 
differences in monthly MLD between the last (2019–2023) and first (1982–1986)  
5 years for the five regions marked by black boxes in Fig. 1b: North Pacific (a), 
North Atlantic (b), Indian Ocean (c), South Pacific (d) and South Atlantic (e).  

The MLD was derived from 1970 to 201828. f,g, The linear trend in the atmospheric 
damping coefficient (λa) and the oceanic damping coefficient (λo) from 1982 to 
2023, respectively, with dotted regions having statistically significant trends at a 
95% confidence level.
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The atmospheric damping coefficient has had a positive trend in 
many global ocean regions over the last 42 years (Fig. 3f). This is most 
prominent in the tropical Pacific, Indian Ocean and extratropical Atlan-
tic. This would lead to a shortening of the SST memory timescale due to 
damping to the atmosphere, in contrast to the observed prolongation 
of SST memory. While a few regions do show a negative atmospheric 
damping trend, this is relatively modest, having a value of roughly 
0.5 W m−2 decade−1, equivalent to an increase of 2 W m−2 in heat loss for 
a 1 °C increase in SST over the last 42 years. Therefore, it is unlikely that 
surface heat fluxes can account for increased SST memory.

The oceanic damping coefficient is generally larger than those of 
the atmosphere in specific regions10. It encapsulates several processes, 
such as lateral mixing, vertical entrainment and advection by ocean 
currents10,31. While it can be estimated using lagged covariance, analo-
gously to the atmospheric damping coefficient10, here we computed it 
as a residual by subtracting the atmospheric damping coefficient from 
the total damping coefficient estimated from satellite SST and clima-
tological MLD (Methods). The resulting oceanic damping coefficients 
exceed those of the atmosphere, and elevated values were revealed in 
the Southern Ocean and the northern North Atlantic (Extended Data 
Fig. 3b), as shown in a previous study10.

The trend in ocean damping is predominantly negative across 
almost all global oceans (Fig. 3g). This reduction aligns with the 
strengthened upper-ocean stratification, as measured by the buoy-
ancy frequency at the pycnocline and as observed across the global 
ocean28. Increased upper-ocean stratification makes heat sequestration 
into the ocean interior less effective, allowing SST anomalies to grow, 
and increasing SST variance at low frequencies, as suggested by the  
AR(1) model. Although our analysis was limited to timescales shorter 
than 365 days and did not fully resolve the white-noise signal region, the 

power spectra consistently show a trend towards increased variance 
at lower frequencies (insets in Fig. 2). This suggests that the decreased 
damping coefficient in recent years has contributed to the prolon-
gation of SST memory timescales by amplifying the slowly varying 
component of SST. Comparing the first and last 5 years, the damping 
coefficient’s contribution to the changes in the SST power spectra is 
most notable at low frequencies, potentially increasing SST variance 
by an order of magnitude (blue curves in Fig. 4), though this effect is 
offset by changes in the forcing.

The forcing term, comprising both atmospheric and oceanic con-
tributions, was estimated indirectly using the solution of the AR(1) 
model (Methods). Over the last 42 years, the contribution of forcing 
to the variance in SST anomalies has decreased across all frequency 
ranges in all ocean basins (purple curves in Fig. 4). This negative con-
tribution offsets the positive impact of the decreasing damping coef-
ficient, resulting in a slight increase in SST variance at low frequencies. 
At high frequencies, changes in the forcing term have significantly 
contributed to the change in SST variance, leading to a slower decay 
of SST anomalies in recent years.

The forcing term accounts for the combined effects of the atmos-
phere and ocean, with the atmospheric contribution again estimated 
using ERA5 data. Oceanic forcing is then obtained as the residual 
(equation (16)). On timescales shorter than approximately 10 days, 
atmospheric forcing shows a decreasing variance with frequency, 
inconsistent with the white-noise assumption in the AR(1) model 
(Extended Data Fig. 4). However, this inconsistency is expected to 
have had a limited effect on extending SST memory timescale because 
the atmospheric forcing remained relatively unchanged during the 
study period (Extended Data Fig. 4). Thus, we conclude that changes 
in oceanic forcing over the last four decades are probably responsible 
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for the decreased SST variance at high frequencies, resulting in a longer 
SST memory timescale.

Discussion
The ocean plays a crucial role in Earth’s energy balance, storing over 
90% of the excess heat in Earth’s system4–6. Using daily SST observa-
tions, we have shown that the global ocean has become less effective 
at damping SST anomalies over the last four decades. The SST power 
spectra have revealed decreased variance at high frequencies (less 
than a month) and increased variance at low frequencies, together 
indicating a slower decay rate of SST anomalies. The former is due 
to reduced oceanic forcing and an MLD deepening trend, whereas 
the latter is due to a weakening in oceanic damping associated with 
the observed strengthening of upper-ocean stratification28. These 
upper-ocean changes suggest a trend towards increased heat storage 
in the upper ocean and reduced sequestration into its interior, and an 
increasing likelihood of prolonged heatwaves and hence a threat to 
near-surface marine ecosystems.

Future projections for the upper ocean have included stronger 
stratification and a shallower mixed layer32,33, with implications 
for SST memory timescales. Shi et al.34 argued that shoaling of the 
MLD under the Shared Socioeconomic Pathway 5-8.5 scenario may 
decrease the persistence of the annual SST. This contrasts with the 
projected increase in the persistence of the daily SST reported in Li 
and Thompson35, computed using large ensembles of Earth system 
models, and attributed to a reduced damping coefficient and changes 
in forcing. These opposing projections of persistence of the annual and 
daily SST imply complex interactions between multiple dynamic and 
thermodynamic processes that underlie the damping of SST anomalies.

Using a simple stochastic model, we have determined how the sur-
face ocean has evolved into a state that can sustain temperature anomalies 
for longer periods. This memory timescale cannot be identified by con-
ventional statistical measures, such as mean and variance, because even 
datasets with the same mean and variance can have different memory 
timescales. Given the importance of memory timescales in understand-
ing the thermal state of the ocean and its impact on marine ecosystems, 
a thorough investigation of trends in SST memory timescales and their 
underlying drivers—across daily, monthly and annual scales—is essential 
for accurate projections of the ocean’s heat storage in a warming climate.
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Methods
Data sources and statistical processing
Our study utilized five variables—the air–sea total heat flux, SST, 2 m 
air temperature (that is, measured at 2 m above the surface), 10 m 
wind and MLD. The SST data were obtained from the Daily Opti-
mum Interpolation Sea Surface Temperature (DOISST) versions 2.0 
and 2.1 dataset26,36,37, provided by the National Centers for Environ-
mental Information. The SST anomalies were computed by remov-
ing both the seasonal cycle and the 42-year linear trend from the 
 daily data.

Although slowly varying climate variabilities, such as the El Niño–
Southern Oscillation and the Interdecadal Pacific Oscillation, were 
present in the SST anomalies, their removal had a minimal impact on 
the analysis and did not alter the main conclusions.

To explore the consistency and quality of the DOISST data, we 
compared its SST power spectrum with that from in situ temperature 
observations from the North Atlantic over a four-decade period. The 
comparison revealed strong agreement between the two datasets, sug-
gesting that the DOISST dataset faithfully captures variance across all 
frequency ranges in both historical and recent periods (Supplementary 
Fig. 1). We assumed that the satellite data from the earlier periods may 
not have been as reliable as those from more recent years, and so the 
trends in τ over the last 32 years (1992–2023) were also calculated. The 
results closely resembled those from the last 42 years (Fig. 1b), showing 
statistically significant trends over large areas across the global ocean 
(Supplementary Fig. 2).

The 2m atmospheric temperature and 10m wind data were 
from the European Centre for Medium-Range Weather Forecasts 
Reanalysis V5 (ERA5) dataset38. The monthly mean MLD and its 
linear trend were obtained from Sallée et al.28, who compiled over 
three million profiles from ship-based conductivity, temperature 
and depth data, Argo floats, and sensors attached to marine mam-
mals, providing a 0.5°-resolution MLD determined based on a den-
sity criterion. These variables were projected onto a 1° regular grid  
for analysis.

The study spanned 42 years, from 1982 to 2023, encompassing a 
period of overlap between the DOISST and ERA5 datasets. Although 
DOISST provided SST data from September 1981, we excluded this year 
due to its incomplete coverage of the full calendar year. For the same 
reason, 2024 was not considered in the analysis.

The trend of the SST memory timescale was estimated using the 
Theil–Sen estimator39,40 (95% interval of the sampled slope)—an unbi-
ased metric that has little sensitivity to outliers. The Mann–Kendall 
rank test (95% interval of the confidence level) was then employed to 
determine the significance of the trend41–44.

Estimation of surface thermal memory timescale
AR(1) model. Non-seasonal SST variabilities are often examined  
using a simplified model in which the SST anomalies respond to  
stochastic atmospheric forcing and are then linearly damped (for example,  
refs. 1,7,8). Assuming a uniform MLD, this model can be written

C0
dT′
dt

= F − λT′, (1)

where C0 = ρcpH is the heat content of the mixed layer, ρ is the density 
of seawater, cp is its specific heat and H is the MLD. In equation (1), F 
and λ represent the stochastic forcing and damping of SST anomalies, 
respectively. The terms on the right-hand side encompass not only 
atmospheric but also oceanic dynamic processes, such as temperature 
advection by both wind-driven gyres and Ekman currents10.

The solution to (1) is given by

T′(t) = T′(t − δt) exp (− λ

C0
δt) +∫

t

t−δt
exp ( λ

C0
(t′ − t)) F(t′)

C0
dt′. (2)

where the first and second terms on the right-hand side represent the 
exponential decay of the SST anomaly and the accumulated effects 
of stochastic forcing on the SST anomaly over the interval t − δt and t, 
respectively. The anomaly decay rate can be characterized by a memory 
timescale (τ = C0/λ). This is essentially identical to the AR(1) model

T′n = ϕT′
n−1 + ϵn, (3)

where the subscripts denote the time step, ϕ is the lag-1 autocorrelation 
coefficient and ϵn is the white-noise forcing45,46. Thus, if F is a white-noise 
process, the memory timescale, τ, can be obtained from the lag-1 auto-
correlation coefficient, ϕ, by relating the first terms of equations (3) 
and (2) and using a daily time interval, thus:

τ = C0
λ

= − 1
lnϕ

. (4)

When F is not entirely white-noise forcing, the estimation of τ can be 
biased. Indeed Patrizio and Thompson10 suggested that the oceanic 
forcing term has weak persistence, which could lead to an underestima-
tion of the damping coefficient, λ. However, the influence of red-noise 
forcing diminishes over time, and the degree of bias is suppressed as 
the lag used to estimate λ increases.

The AR(1) model allows T′n to be expressed using T′
n−k—the  

temperature at lag k—because it can be written successively as

T′n = ϕT′
n−1 + ϵn

= ϕ (ϕT′
n−2 + ϵn−1) + ϵn

⋮

= ϕkT′
n−k +

k−1
∑
i=0

ϕiϵn−i.

(5)

Estimating ϕ requires only one data point because it is always 1 at lag-0. 
Based on a simple toy model experiment similar to that described in 
Patrizio and Thompson10, we chose the 10-day lag autocorrelation 
coefficient, ϕ10 = ϕ10, to estimate τ = −10/ lnϕ10. This choice significantly 
reduced the bias to less than 5% (Supplementary Fig. 3), which is neg-
ligible compared to the computed trend in λ using satellite SST data.

Arctangent regressive model. While the AR(1) model effectively cap-
tures the processes controlling SST anomalies, the e-folding timescale 
is determined solely by the lag-10 autocorrelation coefficient. An alter-
native approach involves the direct estimation of the surface thermal 
memory timescale from the autocorrelation of daily SST anomalies for 
each year. Given the discrete nature of the autocorrelation coefficient 
of daily SST anomalies, we first fit the autocorrelation using the follow-
ing empirical arctangent function:

ϕk = 1 − tan−1(αk)
2 . (6)

where ϕk is the autocorrelation coefficient, k is the lag value and α is 
the parameter that needs to be determined to minimize the 
root-mean-squared error of this arctangent function with respect to 
the autocorrelation. The memory timescale, τ, is found by identifying 
the point at which the autocorrelation coefficient falls to 1/e—that is, 
1
e
= 1 − tan−1(ατ)

2
—which can be rearranged and written thus

τ = tan(2 − 2/e)
α

. (7)

In the estimation of τ, the number of lag values (k) can be varied 
to best fit the autocorrelation using equation (6). The 42-year 
mean τ and its trend, estimated by fitting equation (6) to the lag-10 
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autocorrelation, are similar to those obtained from the AR(1) model 
(Fig. 1a,b and Extended Data Figs. 1c and 2c). Similarly to the AR(1) 
model, a higher value of k tends to decrease the 42-year mean τ, nota-
bly in the eastern North Pacific, North Atlantic and western South 
Pacific, although the spatial patterns remain comparable with the 
memory timescale of the SST anomalies estimated using the AR(1) 
model (Extended Data Fig. 1b–e). Moreover, the memory timescale 
trends estimated using equation (6) also show a consistent tendency 
to extend the memory timescale globally, regardless of k (Extended 
Data Fig. 2b–e). These results suggest that the extended SST memory 
timescale is a robust signal.

Estimation of atmospheric and oceanic damping coefficient
The damping coefficient, λ, in equation (1), can be partitioned into 
two components—the rate of damping through surface heat flux 
(λa) and through oceanic processes (λo). λa can be further decom-
posed into three contributions—λrad, λsh and λlh—associated with 
long-wave radiation (QB), sensible heat flux (QH) and latent heat flux 
(QL), respectively29,

λa = λrad + λsh + λlh

= ( ∂QB

∂T
+ ∂QH

∂T
+ ∂QL

∂T
)||
T=TA

,
(8)

where TA is the 2m atmospheric temperature obtained from ERA5.
The terms in equation (8) are estimated by linearizing the bulk 

formulas47,48, as follows49–51:

∂QB
∂T

= 4σT3, (9)

∂QH
∂T

= ρacpCHU, (10)

∂QL
∂T

= −ΛvCEU
q1q2
T 2 exp (q2

T
) . (11)

The names, units and values of the variables and parameters in equa-
tions (9)–(11) were adapted from ref. 48 and are provided in Supple-
mentary Table 1.

λa was estimated daily, and its trend was computed from 1982 to 
2023, similarly to τ. Then, λo—the damping coefficient representing 
oceanic processes—was simply computed as the residual of λ and λa

λo = λ − λa. (12)

Estimation of atmospheric forcing
The atmospheric forcing term, Fa, can be derived from the anomalies 
of total heat exchange between the ocean and atmosphere (Q′

net)  
(ref. 10) decomposed Q′

net into two terms—atmospheric forcing, Fa, 
which is independent of SST, and the damping rate, which is propor-
tional to the atmospheric damping coefficient, λa, and the SST anomaly, 
T′, as follows:

Fa = Q′
net + λaT

′. (13)

where Qnet is obtained by summing up the short- and long-wave radia-
tive heat flux and sensible and latent heat flux obtained from ERA5. 
Again, the seasonality and long-term trend were removed for comput-
ing Q′

net.

Spectral analysis of SST anomalies
The spectra of SST anomalies are useful for diagnosing changes 
in the observed SST memory timescale. As shown in Marshall and 

Plumb8, the solution for the SST anomalies in equation (1) can be 
written

T′ = Re( ̂T
′
ω exp(iωt)), (14)

where ̂T
′
ω is the amplitude of the SST anomalies at frequency ω, and Re(⋅) 

denotes the real part. Substituting equation (14) into equation (1), and 
taking the product with its conjugate, yields the amplitude of SST 
anomalies as

( ̂T
′
ω)

2
= (

̂Fω
C0

)
2

1
ω2 + ω2

c
, (15)

where ̂Fω is the amplitude of the stochastic heat exchange between the 
atmosphere and the ocean at ω, and ωc = λ/C0 = (τ)−1.

Patrizio and Thompson10 examined SST anomalies using a sto-
chastic model considering both atmospheric and oceanic forcing,  
such that F = Fa + Fo, where Fa and Fo represent the atmospheric and  
oceanic forcing, respectively. By setting F′a = Re( ̂Fω,a exp(iωt))  and 
F′o = Re( ̂Fω,o exp(iωt))  as the SST anomalies8, the solution for ̂T

′
ω becomes

( ̂T
′
ω)

2
= (

̂Fω,a + ̂Fω,o
C0

)
2

1
ω2 + ω2

c
, (16)

where ̂Fω,a and ̂Fω,o are the amplitude of forcing at frequency ω associ-
ated with the atmosphere and ocean, respectively.

The power spectra of SST anomalies show two distinct character-
istics, exhibiting both red- and white-noise features, depending on the 
amplitude of ω relative to ωc. At high frequencies (ω ≫ ωc), the ampli-
tude, ̂T

′
ω, can be approximated by ̂Fω/ (C0ω). Under the assumption of 

constant ̂Fω, this limit suggests a decline in SST anomaly variability with 
frequency, yielding a red-noise power spectrum. In this regime, changes 
in C0 can shift the power spectra of SST anomalies upwards or down-
wards with no significant changes in ̂Fω. Specifically, an increase in C0 
can lower the ̂T

′
ω, indicating that the deepening of the mixed layer and 

the subsequent increase in its heat content can reduce the variability 
of SST anomalies at a frequency greater than ωc, aligning with obser-
vational findings (Figs. 2 and 3a–e).

At low frequencies (ω ≪ ωc), the amplitude ̂T
′
ω can be approximated 

by ̂Fω/λ (or τ ̂Fω/C0), leading to a frequency-independent white-noise 
response, again under the assumption of constant ̂Fω. In this limit, the 
negative feedback represented by the damping rate, λ, plays a critical 
role in the decay of SST anomalies. A decrease in λ implies a slower 
removal of heat from the mixed layer, which elevates ̂T

′
ω at low fre-

quency and makes slowly varying SST anomalies more prominent in 
the time series (Fig. 2). Thus, the reduced damping rate contributes 
to the longer persistence of SST anomalies. Additionally, it can shift 
the critical frequency, ωc, to lower frequencies, expanding the 
red-noise region.

The stochastic forcing, F, is often perceived to have white-noise 
characteristics, allowing for the assumption of constant ̂Fω. On time-
scales longer than a few months, this assumption is reasonable for both 
atmospheric and oceanic forcing, but the oceanic forcing shows 
decreasing power on timescales shorter than a few months10. Here, we 
estimated ̂Fω for the first and last 5 years by fitting equation (15) to the 
observed ̂T

′
ω using the climatological damping coefficient and MLD, its 

difference shown by the purple curve in Fig. 4.
Then ̂Fω is partitioned into ̂Fω,a and ̂Fω,o. ̂Fω,a is directly computed 

using the ERA5 dataset, and ̂Fω,o is estimated as a residual. Interestingly, 
the amplitude of the atmospheric forcing also shows declining power 
at timescales shorter than 2 weeks when evaluated using ERA5 data 
(Extended Data Fig. 4). An evaluation of ̂Fω,a over decadal intervals from 
1982 to 2023 revealed no significant changes across all ocean basins 
(Extended Data Fig. 4), suggesting that the shift in the SST anomaly 
power spectrum was not driven by the changes in ̂Fω,a.
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Data availability
Details regarding the source database utilized in this study can be found 
at the following URLs: https://doi.org/10.5067/GHAAO-4BC21 (ref. 52) 
and https://doi.org/10.24381/cds.bd0915c6 (ref. 38). The global maps 
illustrating the trend and climatology MLD fields discussed in this paper 
are available via Zenodo at https://doi.org/10.5281/zenodo.4073174 
(ref. 53).

Code availability
The analytical code employed for the results and Supplementary 
 Information in this paper can be accessed at https://github.com/ 
ChaehyeongLee/ThermalMemory.git (ref. 54).
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Extended Data Fig. 1 | The mean memory timescales obtained by fitting an arctangent function. a-e. The mean memory timescales (τ) of SST anomalies over a 
42-year period (1982-2023). Optimal coefficients for the arctangent function are determined using 2, 5, 10, 20, and 30 consecutive autocorrelation coefficients of SST 
anomalies, spanning from 0-lag to the lag (n − 1).
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Extended Data Fig. 2 | The trend in the mean memory timescales obtained by fitting an arctangent function. a-e. The linear trend of the memory timescale is 
calculated using the same arctangent model used to produce the means shown in Extended Data Fig. 1a–e. from 1982 to 2023, respectively.
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Extended Data Fig. 3 | Mean damping coefficients. a-b. Mean atmospheric (λa) and mean oceanic (λo) damping coefficient over the last 42 years. The 
atmospheric damping coefficient is decomposed into three contributions: c. long-wave radiation (λrad), d. sensible heat flux (λsh), and e. latent heat flux (λlh).  
The units are in W m−2 K−1.
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Extended Data Fig. 4 | Power spectra of atmospheric forcing. a-e. Power spectra of annual atmospheric forcing ( ̂F
2
ω,a) for the five regions, denoted by black boxes in 

Fig. 1b, are presented in every 10-year interval from 1982 to 2023.
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