
manuscript submitted to JAMES

High-level, high-resolution ocean modeling at all scales1

with Oceananigans2

Gregory L. Wagner1, Simone Silvestri1, Navid C. Constantinou2,3,3

Ali Ramadhan4, Jean-Michel Campin1, Chris Hill1, Tomás Chor5,4

Jago Strong-Wright6, Xin Kai Lee1, Francis Poulin7, Andre Souza1,5

Keaton J. Burns1,8, John Marshall1, and Raffaele Ferrari16

1Massachusetts Institute of Technology, Cambridge, MA, USA7
2University of Melbourne, Parkville, VIC, Australia8

3ARC Center of Excellence for the Weather of the 21st Century, Australia9
4atdepth MRV, Cambridge, MA, USA10

5University of Maryland, College Park, MD, USA11
6University of Cambridge, Cambridge, United Kingdom12

7University of Waterloo, Waterloo, ON, Canada13
8Flatiron Institute, New York, NY, USA14

Key Points:15

• Oceananigans provides a powerful interface for simulating oceanic motion at all scales16

with novel parameterizations and numerical methods.17

• Combining simple numerics with GPU-enabled high-resolution permits accurate simu-18

lations with accessible code.19

• High-level programmable interfaces are crucial to maximize both user and developer20

productivity.21

–1–

manuscript submitted to JAMES

Abstract22

We describe the vision, user interface, governing equations, and numerical methods23

that underpin new ocean modeling software called “Oceananigans”. Oceananigans is being24

developed by the Climate Modeling Alliance as part of a larger project to build a trainable25

climate model with quantifiable uncertainty. We argue that Oceananigans status as a popular,26

capable modeling system realizes a vision for accelerating progress in Earth system modeling27

that balances demands for model accuracy and performance, needed for state-of-the-art28

science, against accessibility, which is needed to accelerate development. This vision combines29

three cooperative elements: (i) a relatively simple finite volume algorithm (ii) optimized for30

high-resolution simulations on GPUs which is (iii) exposed behind an expressive, high-level31

user interface (using the Julia programming language in our case). We offer evidence for32

the vision’s potential by illustrating the creative potential of our user interface, showcasing33

Oceananigans physics with example simulations that range from simple classroom problems to34

a realistic global ocean simulation spanning all scales of oceanic fluid motion, and describing35

advances in parameterization, numerical methods, and computational efficiency.36

Plain Language Summary37

This paper introduces Oceananigans, a new software tool for simulating ocean currents38

and fluid motion. Unlike most existing software for ocean modeling, Oceananigans is written39

in Julia, a modern programming language that makes it easier to install, learn, and use.40

Rather than relying on rigid configuration files, users write scripts, giving them more flexibility41

and creative control over their simulations. Moreover, Oceananigans can simulate everything42

from tiny millimeter-scale turbulence in a small box to planetary-scale ocean circulation.43

It is also fast and efficient, taking advantage of graphics processing units (GPUs) to run44

high-resolution simulations at speeds comparable to lower-resolution models in other software.45

Our goal is not just to provide a tool for scientists. Our approach to combine simple numerics46

on GPUs with a powerful user interface can accelerate the pace of model development, and47

therefore accelerate the pace of scientific progress.48

1 Introduction49

Computation is fundamental to ocean and climate science, such that software is rate-50

limiting for scientific progress. Since the first general circulation models ran on primitive51

computers (Phillips, 1956; Bryan, 1969), advances in hardware, numerical methods, and the52

approximate parameterization of otherwise unresolved processes have improved the fidelity53

of ocean simulations (Griffies et al., 2015). Yet as technology advances, the gap between54

potential and practice in ocean modeling is stagnant or widening, to the point that most55

software today (i) can no longer use the world’s fastest computers, (ii) relies on outdated56

user interfaces, and (iii) is still useful for only a limited subset of the wide variety of ocean57

modeling problems.58

This paper describes new ocean modeling software written in the Julia programming59

language (Bezanson et al., 2017) called Oceananigans. Oceananigans is being developed60

by the Climate Modeling Alliance (along with heroic external collaborators) as part of61

a larger effort to develop a climate model automatically-calibrated to observations and62

high resolution simulations, and with quantified uncertainty. Oceananigans development63

is motivated primarily by the need for new capabilities. The most materially pressing64

is the need to implement a hierarchical approach to climate model development (Held,65

2005), wherein nonhydrostatic large eddy simulations are used to generate synthetic data66

for calibrating parameterizations, followed by the refinement of parameters in a hydrostatic67

global context against observations. Starting from scratch also allowed us to target GPUs68

and CPUs and to lower the bar for future accelerator support, by leveraging the performance69

portability offered by Julia’s KernelAbstractions (Churavy, 2024). Using GPUs reduces70

–2–

manuscript submitted to JAMES

the computational expense of ensemble calibration, enables higher resolution simulations,71

supports the next-generation of AI-based parameterizations, and makes ocean modeling72

cheaper and more accessible. Finally, and perhaps most important, we required a tool that73

was easy to use — not only for conducting creative science, but for quickly prototyping new74

parameterizations (Wagner, Hillier, et al., 2025), new numerical methods (Silvestri, Wagner,75

Campin, et al., 2024), and new algorithms for scaling simulations up to hundreds of GPUs76

(Silvestri, Wagner, Constantinou, et al., 2024). Our ultimate goal is to accelerate the process77

of model development and therefore, through a longer process of collective effort, accelerate78

progress in ocean and climate science.79

1.1 From millimeters to millennia80

The evolution of ocean circulation over millennia is controlled by turbulent mixing with81

scales that range down to millimeters. Two distinct systems have evolved to model and82

understand this huge range of oceanic motion: “GCMs” (general circulation models) for83

hydrostatic regional-to-global scale simulations, and simpler software for nonhydrostatic84

large eddy simulations (LESs) with meter-scale resolution that are high-fidelity but limited85

in duration and extent. Compared to LES, GCMs usually invoke more elaborate numerical86

methods and parameterizations to cope with the global ocean’s complex geometry and the87

more significant impacts of unresolved subgrid processes.88

Oceananigans began as software for LES (Ramadhan et al., 2020), by perfecting an89

approach for hybrid hydrostatic/nonhydrostatic dynamical cores pioneered by MITgcm90

(Marshall, Adcroft, et al., 1997) for GPUs. Our nonhydrostatic LES algorithm was then91

adapted and optimized for a hydrostatic GCM (Silvestri, Wagner, Constantinou, et al., 2024).92

At the same time, we developed LES-inspired, minimally-dissipative numerical methods for93

turbulence-resolving simulations (Silvestri, Wagner, Campin, et al., 2024) that automatically94

adapt to changing resolution. The result is a computationally efficient modeling system95

suited to brute force, resolution-forced approach to accuracy for all scales of oceanic motion.96

Such a “LES the ocean” strategy is appealingly simple compared to alternatives relying97

on explicit dissipation, generalized vertical coordinates (Shchepetkin & McWilliams, 2005;98

Leclair & Madec, 2011; Petersen et al., 2015), Lagrangian vertical advection (Halliwell, 2004;99

Griffies et al., 2020), or unstructured horizontal grids (Ringler et al., 2013; Danilov et al.,100

2017; Korn et al., 2022). We hypothesize that “resolution everywhere” alleviates the need for101

unstructured targeted resolution and will reduce the spurious numerical mixing that pollutes102

the fidelity of lower-resolution simulations (Griffies et al., 2000), while yielding a plethora103

of additional improvements (Chassignet & Xu, 2017, 2021; Kiss et al., 2020). At the same104

time, using simple algorithms preserves the accessibility of our source code and maximizes105

the benefits of the Julia programming language.106

1.2 Why programmable interfaces matter107

In 1984, Cox published the first description of generalizable ocean modeling software108

(Cox, 1984; Griffies et al., 2015). The “Cox model” is written in FORTRAN 77 and features109

a multi-step user interface for building new models: first, source code modifications are110

written to determine, for example, domain geometry and boundary conditions, emplaced111

into the “base code”, and compiled. Next, a text-based namelist file is used to determine112

parameters like the stop iteration, mixing coefficients, and solver convergence criteria. Cox113

(1984) provided three example model configurations to illustrate the user interface.114

With forty years of progress in software engineering, numerical methods, and parame-115

terization of unresolved processes, and more than a billion times more computational power,116

today’s ocean models bear little resemblance to the Cox model — except for their user inter-117

faces. Current interfaces, though obviously more advanced than Cox’s, still impose multi-step118

workflows that invoke several programming paradigms. These multi-step workflows typically119

require the generation of input data using a separate scripting language, configuration of120

–3–

manuscript submitted to JAMES

numerous namelists, and source code modifications to change the model equations in ways121

not accessible through a change of parameters.122

One of our most important contributions is the development of a fundamentally different,123

programmable user interface that provides a seamless workflow for numerical experiments124

including setup, execution, analysis, and visualization using a single script. Programmable125

interfaces written in scripting languages like Python and Julia are the interface of choice126

and engine of progress in countless fields from visualization to machine learning, and their127

benefits transfer to ocean modeling. A particularly inspiring example of a productive user128

interface for computational fluid dynamics is provided by Dedalus (Burns et al., 2020), a129

CPU-based spectral framework for solving partial differential equations in simple geometries.130

A programmable interface shines for simple problems — but doesn’t just help new users.131

More importantly, this workflow accelerates the implementation of new numerical methods132

and parameterizations by experienced developers. It facilitates writing and relentlessly133

refactoring comprehensive test suites. It enables fast prototyping with tight implementation-134

evaluation iterations. It makes it easier to collaborate by communicating concise but evocative135

code snippets. It makes Oceananigans fun to use. Leveraging this programmable interface136

together with the intrinsic productivity of the Julia programming language, Oceananigans137

has progressed from a simple system for serial nonhydrostatic modeling (Ramadhan et138

al., 2020) to parallelized software with capabilities at all scales up to global hydrostatic139

simulations with breakthrough performance (Silvestri, Wagner, Constantinou, et al., 2024),140

using innovative numerical methods (Silvestri, Wagner, Campin, et al., 2024) and new,141

automatically-calibrated vertical mixing parameterizations (Wagner, Hillier, et al., 2025).142

Users benefit too.143

The Julia programming language, which is compiled and productive, has a lot to do144

with the feasibility of our design. Unlike functions in pure Python, for example, Julia145

functions implemented by users for forcing and boundary conditions can operate even in146

high performance contexts on GPUs. Julia enables unique Oceananigans features, such as147

interactivity, extensibility, automatic installation on any system, and portability to laptops148

and GPUs through advanced Julia community tools (Besard et al., 2018; Churavy, 2024).149

Oceananigans achieves breakthrough performance by using GPUs, but remains accessible to150

students using personal laptops running Windows or Mac OS. Easy installation on personal151

computers facilitates creative computation, since complex numerical experiments can be152

prototyped productively in a comfortable personal environment before transferred to a high153

performance environment for production runs.154

Productive interfaces are only as powerful as the capability they expose. Oceananigans155

combines a range of capabilities offered by other systems: a numerical design for modeling156

across scales from MITgcm (Marshall, Adcroft, et al., 1997; Marshall, Hill, et al., 1997), a157

simple and performant algorithm for LES from PALM and PyCLES (Pressel et al., 2015),158

and GPU capabilities like Veros (Häfner et al., 2021), and scripting like Thetis (Kärnä et al.,159

2018). Oceananigans assembles these diverse features behind an expressive programmable160

interface.161

1.3 Outline of this paper162

This paper introduces the concepts that underpin Oceananigans’ user interface and163

illustrates how a productive user interface can be designed to harness wide-ranging capabilities164

for high-resolution modeling of any scale of oceanic motion. Our aim is to evidence and165

explain Oceananigans tripartite achievement: performance, flexibility, and friendliness at the166

same time. We do not attempt to document the specifics of the user interface in detail or to167

provide a comprehensive description of all features, however: for that we refer the reader to168

Oceananigans documentation.169

–4–

manuscript submitted to JAMES

Section 2 begins by explicating the basic innovations of Oceananigans’ programmable170

interface using two classroom examples: two-dimensional turbulence, and a forced passive171

tracer advected by two-dimensional turbulence. In section 3, we write down the governing172

equations that underpin Oceananigans’ nonhydrostatic and hydrostatic models. We build our173

case for Oceananigans innovations by progressing from simple direct numerical simulations174

of freshwater cabbeling and flow around a cylinder, to realistic tidally-forced large eddy175

simulations over a headland, to a 1/12th degree eddying global ocean simulation.176

Section 4 provides a primer to the finite volume spatial discretization that Oceanani-177

gans uses to solve the nonhydrostatic and hydrostatic equations. This section establishes178

Oceananigans’ unique suitability for turbulence-resolving simulations that have minimal,179

implicitly dissipative advection schemes based on Weighted Essentially Non-Oscillatory180

(WENO) reconstruction. We conclude in section 6 by outlining future development work and181

anticipating the next major innovations in ocean modeling which, we hope, will someday182

render the present work obsolete.183

2 Oceananigans, the library184

Oceananigans is fundamentally a library of tools for building models by writing programs185

called “scripts”. This departs from the usual framework wherein software provides pre-written186

monolithic programs that are configured with parameters. For writing scripts, Oceananigans187

syntax combines mathematical symbols with natural language. Our goal is to enable evocative188

scripting that approaches the effectiveness of writing for communicating computational189

science.190

2.1 Hello, ocean191

The way to learn new ocean modeling software is by building simulations with it. Our192

first example in listing 1 sets up, runs, and visualizes a simulation of two-dimensional193

turbulence. The 22 lines of listing 1 illustrate one of Oceananigans’ main achievements: a194

numerical experiment may be completely described by a single script. To execute the code in195

listing 1, we need to copy into a file (call this, for example, hello_ocean.jl) and executed196

by typing julia hello_ocean.jl at a terminal.197

Oceananigans scripts organize into four sections. The first three define the “grid” “model”,198

and “simulation”, and conclude with execution of the simulation. The fourth section, often199

implemented separately for complex or expensive simulations, performs post-processing and200

analysis. In listing 1, the grid defined on lines 4–7 determines the problem geometry, spatial201

resolution, and machine architecture. To use a CPU instead of a GPU, one writes CPU() in202

place of GPU() on line 5: no other changes to the script are required.203

Lines 9–12 define the model, which solves the Navier–Stokes equations in two dimensions204

with a 9th-order Weighted, Essentially Non-Oscillatory (WENO) advection scheme (see205

section 4 for more information about WENO). The velocity components u, v are initialized206

with uniformly distributed random numbers within [−1, 1). The model definition can also207

encompass forcing, boundary conditions, and the specification of additional terms in the208

momentum and tracer equations such as Coriolis forces or turbulence closures.209

Line 14 builds a Simulation with a time-step ∆t = 0.01 which will run until t = 10210

(Oceananigans does not assume dimensionality by default, so time is non-dimensional via211

user input in this case). Simulation can be used to inject arbitrary user code into the212

time-stepping loop in order to log simulation progress or write output to disk. Lines 17-19213

analyze the final state of the simulation by computing vorticity, illustrating Oceananigans’214

toolbox for building expression trees of discrete calculus and arithmetic operations. The same215

tools may be used to define online diagnostics to be periodically computed and saved to disk216

while the simulation runs. Line 22 concludes the numerical experiment with a visualization.217

The result is shown in figure 1.218

–5–

manuscript submitted to JAMES

1 using Oceananigans
2
3 # The third dimension is "flattened" to reduce the domain from three to two dimensions.
4 topology = (Periodic, Periodic, Flat)
5 architecture = GPU() # CPU() works just fine too for this small example.
6 x = y = (0, 2π)
7 grid = RectilinearGrid(architecture; size=(256, 256), x, y, topology)
8
9 model = NonhydrostaticModel(; grid, advection=WENO(order=9))
10
11 ϵ(x, y) = 2rand() - 1 # Uniformly-distributed random numbers between [-1, 1).
12 set!(model, u=ϵ, v=ϵ)
13
14 simulation = Simulation(model; ∆t=0.01, stop_time=10)
15 run!(simulation)
16
17 u, v, w = model.velocities
18 ζ = ∂x(v) - ∂y(u)
19
20 using CairoMakie
21 heatmap(ζ, colormap=:balance, axis=(; aspect=1))

Listing 1: A Julia script that uses Oceananigans and the Julia plotting library CairoMakie to set up, run,
and visualize a simulation of two-dimensional turbulence on a Graphics Processing Unit (GPU). The initial
velocity field, defined on lines 11-12, consists of random numbers uniformly-distributed between −1 and 1.
The vorticity ζ = ∂xv − ∂yu is defined on line 18. The solution is visualized in figure 1.

1 function circling_source(x, y, t)
2 δ, ω, r = 0.1, 2π/3, 2
3 dx = x + r * cos(ω * t)
4 dy = y + r * sin(ω * t)
5 return exp(-(dxˆ2 + dyˆ2) / 2δˆ2)
6 end
7
8 forcing = (; c = circling_source)
9 model = NonhydrostaticModel(; grid, advection=WENO(order=9), tracers=:c, forcing)

Listing 2: Implementation of a moving source of passive tracer with a function in a two-dimensional turbulence
simulation. These lines of code replace the model definition on line 9 in listing 1.

2.2 Incorporating user code219

With a programmable interface and aided by Julia’s just-in-time compilation, user220

functions specifying domain geometry, forcing, boundary conditions, and initial conditions221

can be incorporated directly into models without a separate programming environment. To222

illustrate function-based forcing, we modify listing 1 with code that adds a passive tracer223

which is forced by a moving source that that depends on x, y, t. A visualization of the224

vorticity and tracer field generated by listings 1 and 2 are shown in figure 1.225

Users can also insert arbitrary functions for more general tasks into the time-stepping226

loop. This supports things as mundane as printing a summary of the current model status227

or writing output, to more exotic tasks like nudging state variables or updating a diffusion228

coefficient based on an externally-implemented model.229

2.3 Abstractions for arithmetic and discrete calculus230

Abstractions representing unary, binary, and calculus operators produce a system for231

building “lazy” expression trees, whose evaluation is delayed until their result is needed to be232

–6–

manuscript submitted to JAMES

Figure 1: Vorticity after t = 10 (left) and a passive tracer injected by a moving source at t = 2.5 (right) in a
simulation of two-dimensional turbulence using an implicitly-dissipative advection scheme.

saved to disk during a simulation. Example calculations representing vorticity, ζ = ∂xv−∂yu,233

speed s =
√
u2 + v2, and the x-integral of enstrophy Z =

∫ 2π

0
ζ2 dx are shown in listing 3.234

235236
1 u, v, w = model.velocities237

2238

3 # Lazy expression trees and reductions representing computations:239

4 ζ = ∂x(v) - ∂y(u)240

5 s =
√
(uˆ2 + vˆ2)241

6 Z = Integral(ζˆ2, dims=1)242
243244

Listing 3: “Lazy” abstractions for expression trees and reductions — abstractions that represent computations
to be performed at some future time as needed — support custom online diagnostics.

3 Governing equations and physical parameterizations245

Oceananigans implements two “models” for ocean-flavored fluid dynamics: the Hydrostat-246

icFreeSurfaceModel, and the NonhydrostaticModel. Each represents a template for equations247

that govern the evolution of momentum and tracers. Both models are incompressible and248

make the Boussinesq approximation, which means that the density of the modeled fluid is249

decomposed into a constant reference ρ0 and a small dynamic perturbation ρ′,250

ρ(x, t) = ρ0 + ρ′(x, t) where ρ′ ≪ ρ0 , (1)

and x = (x, y, z) is position and t is time.251

The relative smallness of ρ′ reduces conservation of mass to a statement of incompress-252

ibility called the continuity equation,253

∇ · u = 0 , (2)

where254

u
def
= u x̂+ v ŷ + w ẑ , (3)

is the three-dimensional velocity field. Within the Boussinesq approximation, the momentum255

ρ0u varies only with the velocity u. The effect of density variations is encapsulated by a256

–7–

manuscript submitted to JAMES

buoyant acceleration,257

b
def
= −gρ′

ρ0
, (4)

where g is gravitational acceleration. The “buoyancy” b acts in the direction of gravity.258

The total dynamic pressure P is decomposed into259

P = ρ0gz + ρ0p(x, t) , (5)

where ρ0gz is the static contribution to pressure that opposes the gravitational force associated260

with the reference density ρ0, and ρ0p represents the dynamic anomaly. p is called the261

kinematic pressure.262

3.1 The NonhydrostaticModel263

The NonhydrostaticModel represents the Boussinesq equations formulated without264

making the hydrostatic approximation typical to general circulation models. The Nonhydro-265

staticModel has a three-dimensional prognostic velocity field.266

3.1.1 The NonhydrostaticModel momentum equation267

The NonhydrostaticModel’s momentum equation incorporates advection by a background268

velocity field, Coriolis forces, surface wave effects via the Craik-Leibovich asymptotic model269

(Craik & Leibovich, 1976; Huang, 1979), a buoyancy term allowed to be a nonlinear function270

of tracers and depth, a stress divergence derived from molecular friction or a turbulence271

closure, and a user-defined forcing term. Using the Boussinesq approximation in (1) and272

the pressure decomposition in (5), the generic form of NonhydrostaticModel’s momentum273

equation is274

∂tu = −∇p − (u · ∇)u− (ug · ∇)u− (u · ∇)ug︸ ︷︷ ︸
advection

− f × u︸ ︷︷ ︸
Coriolis

+ (∇× us)× u+ ∂tus︸ ︷︷ ︸
Stokes drift

− b ĝ︸︷︷︸
buoyancy

− ∇ · τ︸ ︷︷ ︸
closure

+ Fu︸︷︷︸
forcing

,
(6)

where ug is a prescribed “background” velocity field, p is the kinematic pressure, f is the275

background vorticity associated with a rotating frame of reference, us is the Stokes drift276

profile associated with a prescribed surface wave field, b is buoyancy, ĝ is the gravitational277

unit vector (usually pointing downwards, that is, ĝ = − ẑ), τ is the stress tensor associated278

with molecular viscous or subgrid turbulent momentum transport, and Fu is a body force.279

To integrate equation (6) while enforcing (2), we use a pressure correction method280

that requires solving a three-dimensional Poisson equation to find p, which can be derived281

from ∇ · (6). This Poisson equation is often a computational bottleneck in curvilinear or282

irregular domains, and its elimination is the main motivation for making the hydrostatic283

approximation when formulating the HydrostaticFreeSurfaceModel, as described in section 3.2.284

For rectilinear grids, we solve the Poisson equation using a fast, direct, mixed FFT-tridiagonal285

solver (Schumann & Sweet, 1988), providing substantial acceleration over MITgcm’s conjugate286

gradient pressure solver (Marshall, Adcroft, et al., 1997). In irregular domains, we either use a287

masking method that permits an approximate solution of the pressure Poisson equation with288

the FFT-based method, or a rapidly-converging conjugate gradient iteration that leverages289

the FFT-based solver as a preconditioner. The pressure correction scheme is described290

further in appendix A2.291

Using (2), advection in the NonhydrostaticModel is formulated in the “flux form”, which292

is conveniently expressed with indicial notation,293

advection = uj∂jui + ugj∂jui + uj∂jugi = ∂j

[(
uj + ugj

)
ui + ujugi

]
, (7)

–8–

manuscript submitted to JAMES

where, for example, the i-th component of the advection term is [(u · ∇)u]i = uj∂jui.294

The formulation of the Stokes drift terms means that u is the Lagrangian-mean velocity295

when Stokes drift effects are included (see, for example, Wagner et al., 2021). With a296

Lagrangian-mean formulation, equations (2) and (6) are consistent only when us is non-297

divergent — or equivalently, when us is obtained by projecting the divergence out of the298

usual Stokes drift (Vanneste & Young, 2022). As discussed by Wagner et al. (2021), the299

Lagrangian-mean formulation of (6) means that closures for LES strictly destroy kinetic300

energy, avoiding the inconsistency between resolved and subgrid fluxes affecting typical LES301

formulated in terms of the Eulerian-mean velocity (see also Pearson, 2018).302

The labeled terms in (6) are controlled by arguments to NonhydrostaticModel invoked303

in both of listings 1 and 2. For example, “advection” chooses a numerical scheme to304

approximate the advection term in (6) and (7). As another example, we consider configuring305

the closure term in (6) to represent (i) molecular diffusion by a constant-coefficient Laplacian306

ScalarDiffusivity, (ii) turbulent stresses approximated by the SmagorinskyLilly eddy viscosity307

model (Smagorinsky, 1963; Lilly, 1983) for large eddy simulation, or (iii) omitting it entirely,308

which we use with WENO advection schemes (and which is also our default setting). In309

these three cases, the closure flux divergence ∇ · τ = ∂mτnm in indicial notation becomes310

−∂mτnm =

∂m (ν∂mun) (ScalarDiffusivity)

0 (nothing)

∂m

(
2Cs∆

2|Σ|︸ ︷︷ ︸
νe

Σnm

)
(SmagorinskyLilly)

(8)

where ν is the Laplacian diffusion coefficient, Σnm = ∂mun + ∂num is the strain rate tensor,311

|Σ| is the magnitude of the strain rate tensor, Cs is the SmagorinskyLilly model constant,312

∆ scales with the local grid spacing, and νe is the eddy viscosity. (ScalarDiffusivity diffusion313

coefficients may also vary in time- and space. Other closure options include fourth-order314

ScalarBiharmonicDiffusivity, various flavors of DynamicSmagorinsky (Bou-Zeid et al., 2005),315

and the AnisotropicMinimumDissipation turbulence closure (Rozema et al., 2015; Vreugdenhil316

& Taylor, 2018) for large eddy simulations.)317

Listing 4 implements a direct numerical simulation of uniform flow past a cylinder318

with no-slip boundary conditions, a molecular ScalarDiffusivity, and a centered second-319

order advection scheme. Lines 6–7 embed a cylindrical mask in a RectilinearGrid using a320

GridFittedBoundary, which generalizes to arbitrary three-dimensional shapes. The no-slip321

condition is implemented with ValueBoundaryCondition (a synonym for “Dirichlet” boundary322

conditions) on lines 11–12. Other choices include GradientBoundaryCondition (Neumann),323

FluxBoundaryCondition (direct imposition of fluxes), and OpenBoundaryCondition (for324

non-trivial boundary-normal velocity fields).325

Results obtained with listing 4 for Re = 100, Re = 1000, and a modified version of326

listing 4 for large eddy simulation (Re → ∞) are visualized in figure 2. To adapt listing 4327

for LES, the closure is eliminated in favor of a 9th-order WENO advection scheme, and the328

no-slip boundary condition is replaced with a quadratic drag boundary condition with a drag329

coefficient estimated from similarity theory using a constant estimated roughness length.330

3.1.2 The NonhydrostaticModel tracer conservation equation331

The buoyancy term in (6) requires tracers, and can be formulated to use buoyancy332

itself as a tracer, or to depend on temperature T and salinity S. For seawater, a 54-333

term polynomial approximation TEOS10EquationOfState (McDougall & Barker, 2011;334

Roquet, Madec, McDougall, & Barker, 2015) is implemented in the auxiliary package335

SeawaterPolynomials, along with quadratic approximations to TEOS-10 (Roquet, Madec,336

Brodeau, & Nycander, 2015) and a LinearEquationOfState. All tracers — either “active”337

–9–

manuscript submitted to JAMES

Figure 2: Vorticity snapshots in simulations of flow around a cylinder. The top two panels show vorticity in
direct numerical simulations (DNS) that use a molecular ScalarDiffusivity closure and Centered(order=2)
advection. The bottom panel shows a large eddy simulation (LES) with no closure and a WENO(order=9)
advection scheme.

–10–

manuscript submitted to JAMES

1 r, U, Re, Ny = 1/2, 1, 1000, 2048
2
3 grid = RectilinearGrid(GPU(), size=(2Ny, Ny), x=(-3, 21), y=(-6, 6),
4 topology=(Periodic, Bounded, Flat))
5
6 cylinder(x, y) = (xˆ2 + yˆ2) ≤ rˆ2
7 grid = ImmersedBoundaryGrid(grid, GridFittedBoundary(cylinder))
8
9 closure = ScalarDiffusivity(ν=1/Re)
10
11 no_slip = FieldBoundaryConditions(immersed=ValueBoundaryCondition(0))
12 boundary_conditions = (u=no_slip, v=no_slip)
13
14 # Implement a sponge layer on the right side of the domain that
15 # relaxes v → 0 and u → U over a region of thickness δ
16 @inline mask(x, y, δ=3, x0=21) = max(zero(x), (x - x0 + δ) / δ)
17 Fu = Relaxation(target=U; mask, rate=1)
18 Fv = Relaxation(target=0; mask, rate=1)
19
20 model = NonhydrostaticModel(; grid, closure, boundary_conditions, forcing=(u=Fu, v=Fv))

Listing 4: Direct numerical simulation of flow past a cylinder at various Reynolds numbers Re. The domain
is periodic in x and a sponge layer on the right side of relaxes the solution to u = u∞ x̂ with u∞ = 1. The
experiment can be converted to a large eddy simulation (thereby sending Re → ∞) by replacing the no-slip
boundary conditions with an appropriate drag model and either (i) using an appropriate turbulence closure
or (ii) using the WENO(order=9) advection scheme with no turbulence closure. Visualizations of the DNS
and LES cases are shown in figure 2.

tracers required to compute the buoyancy term, as well as additional user-defined passive338

tracers — obey the tracer conservation equation339

∂tc = − (u · ∇) c− (ug · ∇) c− (u · ∇) cg︸ ︷︷ ︸
advection

− ∇ · Jc︸ ︷︷ ︸
closure

+ Sc︸︷︷︸
biogeochemistry

+ Fc︸︷︷︸
forcing

, (9)

where c represents any tracer, cg represents a prescribed background tracer concentration340

for c, Jc is a tracer flux associated with molecular diffusion or subgrid turbulence, Sc is a341

source or sink term associated with biogeochemical transformations (provided, for example,342

by external packages like OceanBioME; Strong-Wright et al., 2023), and Fc is a user-defined343

source or sink.344

A simulation with a passive tracer having a user-defined source term is illustrated by345

listing 2 and figure 1. For a second example, we consider freshwater cabbeling. Cabbeling346

occurs when two water masses of similar density mix to form a new water mass which,347

due to the nonlinearity of the equation of state, is denser than either of its constituents.348

Freshwater, for example, is densest at 4 degrees Celsius, while 1- and 7.55-degree water are349

lighter with roughly the same density. We implement a direct numerical simulation in which350

7.55-degree water overlies 1-degree water, using the TEOS10EquationOfState provided by351

the auxiliary package SeawaterPolynomials. The script is shown in listing 5. The resulting352

density and temperature fields after 1 minute of simulation are shown in figure 3. Note that353

the TEOS10EquationOfState typically depends on both temperature and salinity tracers,354

but listing 5 specifies a constant salinity S = 0 and thus avoids allocating memory for or355

simulating salinity directly.356

357358
1 grid = RectilinearGrid(GPU(), topology = (Bounded, Flat, Bounded),359

2 size = (4096, 1024), x = (0, 2), z = (-0.5, 0))360

3361

4 closure = ScalarDiffusivity(ν=1.15e-6, κ=1e-7)362

5363

6 using SeawaterPolynomials: TEOS10EquationOfState364

7 equation_of_state = TEOS10EquationOfState(reference_density=1000)365

–11–

manuscript submitted to JAMES

8366

9 buoyancy = SeawaterBuoyancy(gravitational_acceleration = 9.81);367

10 constant_salinity = 0, # set S=0 and simulate T only368

11 equation_of_state)369

12370

13 model = NonhydrostaticModel(; grid, buoyancy, closure, tracers=:T)371

14372

15 Ti(x, z) = z > -0.25 ? 7.55 : 1373

16 Ξi(x, z) = 1e-2 * randn()374

17 set!(model, T=Ti, u=Ξi, v=Ξi, w=Ξi)375
376377

Listing 5: Direct numerical simulation of convective turbulence driven by cabbeling between 1- and 7.55-
degree freshwater. ν denotes viscosity and κ denotes the tracer diffusivity. The diffusivity may also be set
independently for each tracer.

Figure 3: Density and temperature at t = 1 minute in a direct numerical simulation of cabelling in freshwater.
Note that both fields span from x = 0 to x = 2 meters; only the left half of the density field and the right
half of the temperature field are shown.

We next consider a large eddy simulation of the Eady problem (Eady, 1949). In the378

Eady problem, perturbations evolve around a basic state with constant shear Λ in thermal379

wind balance with a constant meridional buoyancy gradient fΛ, such that380

u = Λz︸︷︷︸
def
= U

+u′ , and b = −fΛy︸ ︷︷ ︸
def
=B

+ b′ . (10)

We use Oceananigans’ BackgroundFields to simulate the nonlinear evolution of (u′, v, w)381

and b′ expanded around U and B in a doubly-periodic domain. We impose an initially stable382

density stratification with b′ = N2z and N2 = 10−7 s−2 superposed with random noise. The383

Richardson number of the initial condition is Ri = N2/∂zU = N2/Λ; we choose mean shear384

Λ so that Ri = 1, which guarantees the basic state is unstable to baroclinic instability but385

stable to symmetric and Kelvin-Helmholtz instability (Stone, 1971). A portion of the script386

is shown in listing 6.387

Our Eady simulation uses fully-turbulence-resolving resolution with 4 meter horizontal388

spacing and 2 meter vertical spacing in a 4 km× 4 km× 128m domain and simulates 30 days389

on a single Nvidia H100 GPU. Four snapshots of vertical vorticity normalized by f (the390

Rossby number) are shown in figure 4, illustrating the growth of kilometer-scale vortex391

motions amid bursts of meter-scale three-dimensional turbulence that develop along thin392

filaments of vertical vorticity and vertical shear. This simple configuration captures a393

competition between baroclinic instability, which acts to “restratify” or strengthen boundary394

layer stratification, and three-dimensional turbulent mixing driven either by a forward cascade395

from kilometer-scale motions (Molemaker et al., 2010; Dong et al., 2024) or atmospheric396

storms (Boccaletti et al., 2007; Callies & Ferrari, 2018).397

Finally, we illustrate Oceananigans’ capabilities for realistic, three-dimensional large398

eddy simulations in complex geometries by simulating temperature- and salinity-stratified399

–12–

manuscript submitted to JAMES

Figure 4: Surface vertical vorticity in a large eddy simulation of the Eady problem with Ri = 1 initially,
after t = 4.6, 6, 7.7, and 20 days. The grid spacing is 4 × 4 × 2 meters in x, y, z. Part of the script that
produces this simulation is show in listing 6.

–13–

manuscript submitted to JAMES

1 grid = RectilinearGrid(GPU(); size = (1024, 1024, 64),
2 x = (0, 4096), y = (0, 4096), z = (0, 128),
3 topology=(Periodic, Periodic, Bounded))
4
5 f, N2, Ri = 1e-4, 1e-7, 1
6 parameters = (f=f, Λ=sqrt(N2/Ri)) # U = Λz, so Ri = N2 / ∂z(U) = N2 / Λ and Λ = N /

√
Ri.

7
8 @inline U(x, y, z, t, p) = + p.Λ * z
9 @inline B(x, y, z, t, p) = - p.f * p.Λ * y
10
11 background_fields = (u = BackgroundField(U; parameters),
12 b = BackgroundField(B; parameters))
13
14 model = NonhydrostaticModel(; grid, background_fields,
15 advection = WENO(order=9), coriolis = FPlane(; f),
16 tracers = :b, buoyancy = BuoyancyTracer())
17
18 ∆z = minimum_zspacing(grid)
19 bi(x, y, z) = N2 * z + 1e-2 * N2 * ∆z * (2rand() - 1)
20 set!(model, b=bi)

Listing 6: Large eddy simulation of the Eady problem expanded around the background geostrophic shear
with Ri = 1.

tidal flow past a headland, reminiscent of an extensively observed and modeled flow past400

Three Tree Point in Puget Sound in the Pacific Northwest of the United States (Pawlak et401

al., 2003; Warner & MacCready, 2014). The bathymetry involves a sloping wedge that juts402

from a square-sided channel, such that403

zb(x, y) = −H

(
1 +

y + |x|
δ

)
, (11)

where δ = L/2 represents the scale of the bathymetry, L is the half-channel width in y (the404

total width is 2L), and H = 128m is the depth of the channel, and z = zb(x, y) is the height405

of the bottom. The flow is driven by a tidally-oscillating boundary velocity406

U(t) = U2 sin

(
2πt

T2

)
(12)

imposed at the east and west boundaries. Here, T2 = 12.421 hours is the period of the407

semi-diurnal lunar tide, and U2 = 0.15m s−1 is the characteristic tidal velocity around Three408

Tree Point. The initial temperature and salinity are409

T |t=0 = 12 + 4
z

H
◦C , and S |t=0 = 32 g kg−1 . (13)

A portion of the script that implements this simulation is shown in listing 7.410

The oscillatory, turbulent flow is visualized in figure 5. The calculation of Ertel Potential411

Vorticity shown in figure 5c uses the companion package Oceanostics (Chor et al., 2025).412

3.2 Hydrostatic model with a free surface413

The HydrostaticFreeSurfaceModel solves the hydrostatic, rotating Boussinesq equations414

with a free surface. The hydrostatic approximation, inherent to the HydrostaticFreeSurface-415

Model, means that the vertical momentum equation used by NonhydrostaticModel, ẑ · (6),416

is replaced by a statement of hydrostatic balance,417

∂zp = b , (14)

while the vertical velocity is obtained diagnostically from the continuity equation,418

∂zw = −∇h · uh . (15)

–14–

manuscript submitted to JAMES

1 H, L = 256meters, 1024meters
2 δ = L / 2
3 x, y, z = (-3L, 3L), (-L, L), (-H, 0)
4 Nz = 64
5
6 grid = RectilinearGrid(GPU(); size=(6Nz, 2Nz, Nz), halo=(6, 6, 6),
7 x, y, z, topology=(Bounded, Bounded, Bounded))
8
9 wedge(x, y) = -H *(1 + (y + abs(x)) / δ)
10 grid = ImmersedBoundaryGrid(grid, GridFittedBottom(wedge))
11
12 T2 = 12.421hours
13 U2 = 0.1 # m/s
14
15 @inline Fu(x, y, z, t, p) = 2π * p.U2 / p.T2 * cos(2π * t / p.T2)
16 @inline U(x, y, z, t, p) = p.U2 * sin(2π * t / p.T2)
17 @inline U(y, z, t, p) = U(zero(y), y, z, t, p)
18
19 open_bc = PerturbationAdvectionOpenBoundaryCondition(U; inflow_timescale = 2minutes,
20 outflow_timescale = 2minutes,
21 parameters=(; U2, T2))
22
23 u_bcs = FieldBoundaryConditions(east = open_bc, west = open_bc)
24
25 @inline ambient_temperature(x, z, t, H) = 12 + 4z/H
26 @inline ambient_temperature(x, y, z, t, H) = ambient_temperature(x, z, t, H)
27 ambient_temperature_bc = ValueBoundaryCondition(ambient_temperature; parameters = H)
28 T_bcs = FieldBoundaryConditions(east = ambient_temperature_bc,
29 west = ambient_temperature_bc)
30
31 ambient_salinity_bc = ValueBoundaryCondition(32)
32 S_bcs = FieldBoundaryConditions(east = ambient_salinity_bc, west = ambient_salinity_bc)
33
34 buoyancy = SeawaterBuoyancy(equation_of_state=TEOS10EquationOfState())
35
36 model = NonhydrostaticModel(; grid, buoyancy,
37 tracers = (:T, :S),
38 advection = WENO(order=9),
39 coriolis = FPlane(latitude=47.5),
40 boundary_conditions = (; T=T_bcs, u = u_bcs, S = S_bcs))
41
42 Ti(x, y, z) = ambient_temperature(x, y, z, 0, H)
43
44 set!(model, T=Ti, S=32, u=U(0, 0, 0, 0, (; U2, T2)))

Listing 7: Large eddy simulation of flow past a headland reminiscent of Three Tree Point in the Pacific
Northwest (see Pawlak et al., 2003; Warner & MacCready, 2014).

–15–

manuscript submitted to JAMES

Figure 5: Along-channel velocity, temperature, and Ertel potential vorticity in a tidally-forced flow past an
idealized headland with open boundaries. The tidal flow occurs in the x-directions and the snapshot depicts
the flow just after the tide has turned to the negative-x direction.

–16–

manuscript submitted to JAMES

As a result, time-stepping the HydrostaticFreeSurfaceModel does require solving a three-419

dimensional Poisson equation for pressure. Moreover, the HydrostaticFreeSurfaceModel420

introduces a free surface displacement η, which obeys the linearized equation421

∂tη = w|z=0 . (16)

Equation (16) replaces the rigid-lid impenetrability condition w|z=0 = 0 typically applied at422

top boundaries in the NonhydrostaticModel. The numerical algorithms and computational423

performance of the HydrostaticFreeSurfaceModel are described in more detail by Silvestri,424

Wagner, Constantinou, et al. (2024).425

In the HydrostaticFreeSurfaceModel, the horizontal momentum uh = u x̂+ v ŷ evolves426

according to427

∂tuh = −∇hp− g∇hη︸ ︷︷ ︸
free surface

− (u · ∇)uh︸ ︷︷ ︸
momentum
advection

− f × u︸ ︷︷ ︸
Coriolis

− ∇ · τ︸ ︷︷ ︸
closure

+ Fuh︸︷︷︸
forcing

, (17)

where p is the hydrostatic kinematic pressure anomaly, η is the free surface displacement,428

u = u x̂+ v ŷ+w ẑ is the three-dimensional velocity, f is the background vorticity associated429

with a rotating frame of reference, τ is the stress associated with subgrid turbulent horizontal430

momentum transport, and Fuh is a body force. Momentum advection can be formulated in431

three ways,432

(u · ∇)·uh =

∇ · (uuh) “flux form” ,

ζ ẑ × uh + w ∂zuh +∇h
1
2 |uh|2 VectorInvariant ,

ζ ẑ × uh − uh ∂zw + ∂z (wuh) +∇h
1
2 |uh|2 WENOVectorInvariant ,

(18)

where the “flux form” treats momentum advection in the same way as for the Nonhydrostat-433

icModel. The numerical implementation of the WENOVectorInvariant formulation, which434

leverages Weighted Essentially Non-Oscillatory (WENO) reconstructions to selectively and435

minimally dissipate enstrophy and the variance of divergence (see section 4), is described by436

Silvestri, Wagner, Campin, et al. (2024).437

Tracer evolution is governed by the conservation law438

∂tc = − (u · ∇) c︸ ︷︷ ︸
tracer advection

− ∇ · Jc︸ ︷︷ ︸
closure

+ Sc︸︷︷︸
biogeochemistry

+ Fc︸︷︷︸
forcing

, (19)

which is identical to NonhydrostaticModel except that background fields are not supported.439

Additionally, the velocity field u can be prescribed rather than evolved.440

Listing 8 implements a simulation of tidally-forced stratified flow over a series of441

randomly-positioned Gaussian seamounts. Results are plotted in figure 6.442

Figure 6: Vertical velocity of an internal wave field excited by tidally-forced stratified flow over superposition
of randomly-positioned Gaussian seamounts, after 16 tidal periods.

–17–

manuscript submitted to JAMES

1 using Oceananigans, Oceananigans.Units
2
3 grid = RectilinearGrid(size = (2000, 200),
4 x = (-1000kilometers, 1000kilometers),
5 z = (-2kilometers, 0),
6 halo = (4, 4),
7 topology = (Periodic, Flat, Bounded))
8
9 h0 = 100 # typical mountain height (m)
10 δ = 20kilometers # mountain width (m)
11 seamounts = 42
12 W = grid.Lx - 4δ
13 x0 = W .* (rand(seamounts) .- 1/2) # mountains' positions ∈ [-Lx/2+2δ, Lx/2-2δ]
14 h = h0 .* (1 .+ rand(seamounts)) # mountains' heights ∈ [h0, 2h0]
15
16 bottom(x) = -grid.Lz + sum(h[s] * exp(-(x - x0[s])ˆ2 / 2δˆ2) for s = 1:seamounts)
17 grid = ImmersedBoundaryGrid(grid, GridFittedBottom(bottom))
18
19 T2 = 12.421hours # period of M2 tide constituent
20 @inline tidal_forcing(x, z, t, p) = p.U2 * 2π / p.T2 * sin(2π / p.T2 * t)
21 u_forcing = Forcing(tidal_forcing, parameters=(; U2=0.1, T2=T2))
22
23 model = HydrostaticFreeSurfaceModel(; grid, tracers=:b, buoyancy=BuoyancyTracer(),
24 momentum_advection = WENO(),
25 tracer_advection = WENO(),
26 forcing = (; u = u_forcing))
27
28 bi(x, z) = 1e-5 * z
29 set!(model, b=bi)

Listing 8: Two-dimensional simulation of tidally-forced stratified flow over a superposition of randomly-
positioned Gaussian seamounts. Results are shown in Figure 6.

3.2.1 Vertical mixing parameterizations443

Oceananigans’ vertical mixing parameterizations are closures that predict the vertical444

fluxes of tracers and momentum. Depending on the parameterization, the evolution of445

auxiliary tracers like turbulent kinetic energy and the turbulent kinetic energy dissipation446

rate may also be simulated. Vertical mixing parameterizations are useful for hydrostatic447

simulations where vertical mixing is otherwise unresolved due to a coarse horizontal grid448

spacing. For example, such regional and global configurations, horizontal grid spacing449

typically varies from O(100m) to O(100 km).450

Listing 9 implements a simulation of wind-driven vertical mixing in a single column451

model using two parameterizations: CATKE (Wagner, Hillier, et al., 2025), which has one452

additional equation for the evolution of turbulent kinetic energy (TKE), and k-ϵ (Umlauf453

& Burchard, 2005), which has two additional equations for TKE and the TKE dissipation454

rate. Figure 7 plots the result, showing how k-ϵ undermixes compared to CATKE. This455

discrepancy in mixing rates is likely due to differences in how the models are calibrated.456

While all of CATKE’s parameters are jointly calibrated to 35 large eddy simulations (LES)457

that include surface wave effects (Wagner, Hillier, et al., 2025), k-ϵ parameters are calibrated458

one-by-one by referencing laboratory experiments and observations of increasing complexity459

(Umlauf & Burchard, 2003). Calibrating k-ϵ parameters similarly to CATKE is an interesting460

direction for future work.461

3.3 Global ocean simulations with ClimaOcean462

The HydrostaticFreeSurfaceModel can be used to simulate regional or global ocean463

circulation on rectilinear grids, latitude-longitude grids, and the tripolar grid (Murray,464

1996) to cover the entirety of Earth’s global ocean. To illustrate global simulation with the465

HydrostaticFreeSurfaceModel, we implement a near-global simulation on a latitude-longitude466

–18–

manuscript submitted to JAMES

1 using Oceananigans
2 using Oceananigans.Units
3
4 function vertical_mixing_simulation(closure; N2=1e-5, Jb=1e-7, tx=-5e-4)
5 grid = RectilinearGrid(size=50, z=(-200, 0), topology=(Flat, Flat, Bounded))
6 buoyancy = BuoyancyTracer()
7
8 b_bcs = FieldBoundaryConditions(top=FluxBoundaryCondition(Jb))
9 u_bcs = FieldBoundaryConditions(top=FluxBoundaryCondition(tx))
10
11 if closure isa CATKEVerticalDiffusivity
12 tracers = (:b, :e)
13 elseif closure isa TKEDissipationVerticalDiffusivity
14 tracers = (:b, :e, :ϵ)
15 end
16
17 model = HydrostaticFreeSurfaceModel(; grid, closure, tracers, buoyancy,
18 boundary_conditions=(u=u_bcs, b=b_bcs))
19
20 bi(z) = N2 * z
21 set!(model, b=bi)
22
23 simulation = Simulation(model, ∆t=1minute, stop_time=24hours)
24 return run!(simulation)
25 end

Listing 9: Comparison of two vertical mixing parameterizations in the evolution of an initially linearly
stratified boundary layer subjected to stationary surface fluxes of buoyancy and momentum. Results are
shown in Figure 7.

Figure 7: Results from two vertical mixing parameterizations: CATKE and k-ϵ, implemented as described
in Listing 9.

–19–

manuscript submitted to JAMES

1 Nx, Ny, Nz = 4320, 1800, 40 # 1/12th degree
2 z_faces = ClimaOcean.exponential_z_faces(; Nz, depth=6000)
3 partition = Partition(8) # Distribute simulation across 8 GPUs
4 arch = Distributed(GPU(); partition)
5 grid = LatitudeLongitudeGrid(arch; size=(Nx, Ny, Nz), halo=(7, 7, 7),
6 longitude=(0, 360), latitude=(-75, 75), z=z_faces)
7
8 bathymetry = ClimaOcean.regrid_bathymetry(grid) # based on ETOPO1
9 grid = ImmersedBoundaryGrid(grid, GridFittedBottom(bathymetry))
10
11 # Build an ocean simulation initialized to the ECCO state estimate on Jan 1, 1993
12 ocean = ClimaOcean.ocean_simulation(grid)
13 date = CFTime.DateTimeProlepticGregorian(1993, 1, 1)
14 set!(ocean.model, T = ClimaOcean.ECCOMetadata(:temperature; date),
15 S = ClimaOcean.ECCOMetadata(:salinity; date))
16
17 # Near-global ocean simulation without no sea ice, forced by JRA55 reanalysis
18 backend = ClimaOcean.JRA55NetCDFBackend(41))
19 atmosphere = ClimaOcean.JRA55_prescribed_atmosphere(arch; backend)
20 coupled_model = ClimaOcean.OceanSeaIceModel(ocean; atmosphere)

Listing 10: A near-global simulation on a LatitudeLongitudeGrid distributed across 8 GPUs, leveraging
ClimaOcean.

grid using ClimaOcean (Wagner, Silvestri, et al., 2025), which is a second package that467

provides capabilities to compute interfacial fluxes between a prescribed atmosphere, a sea ice468

model, and a hydrostatic ocean simulation implemented using Oceananigans. In ClimaOcean,469

turbulent interfacial fluxes are computed using Monin-Obhukov similarity theory (Monin,470

n.d.) following (Edson et al., 2014) for air-sea fluxes and (Grachev et al., 2007) for air-ice471

fluxes. ClimaOcean additionally provides utilities for downloading and interfacing with472

JRA55 reanalysis data (Tsujino et al., 2018), building grids based on Earth bathymetry and473

initializing simulations from the ECCO state estimate (Forget et al., 2015).474

Part of a code that implements a near-global simulation with horizontal resolution of475

1/12th degree, distributed over 8 GPUs, forced by JRA55 reanalysis and initialized from476

the ECCO state estimate is shown in listing 10. The surface speed generated after 180 days477

of simulation time is shown in figure 8. For more information about Oceananigans GPU478

performance in global configurations, see Silvestri, Wagner, Constantinou, et al. (2024).479

4 Finite volume spatial discretization480

Oceananigans uses a finite volume method in which fields are represented discretely by481

their average value over small local regions or “finite volumes” of the domain. Listing 11482

discretizes c = exy on three different grids that cover the unit square. At the finest resolution,483

each cell-averaged value cfineij is computed approximately using set! to evaluate exy at the484

center of each finite volume, where i, j denote the x and y indices of the finite volumes.485

At medium and coarse resolution, the cmedium
ij and ccoarseij are computed by averaging or486

“regridding” fields discretized at a higher resolution. This computation produces three fields487

with identical integrals over the unit square. For example, integrals are computed exactly by488

summing discrete fields over all cells,489 ∫
cdxdy =

1024,1024∑
i,j

Vfine
ij cfineij =

16,16∑
i,j

Vmedium
ij cmedium

ij =

4,4∑
i,j

Vcoarse
ij ccoarseij , (20)

where Vij is the “volume” of the cell with indices i, j (more accurately an “area” in this490

two-dimensional situation). Figure 9 visualizes the three fields.491

–20–

manuscript submitted to JAMES

Figure 8: Surface speed in a near-global ocean simulation at 1/12th degree forced by JRA55 atmospheric
reanalysis (Tsujino et al., 2018) initialized from the ECCO state estimate (Forget et al., 2015). Oceananigans
can also cover the entirety of Earth’s global ocean using a tripolar grid (Murray, 1996).

1 topology = (Bounded, Bounded, Flat)
2 x = y = (0, 1)
3 c(x, y) = exp(x) * y
4
5 fine_grid = RectilinearGrid(size=(1024, 1024); x, y, topology)
6 c_fine = CenterField(fine_grid)
7 set!(c_fine, c)
8
9 medium_grid = RectilinearGrid(size=(16, 16); x, y, topology)
10 c_medium = CenterField(medium_grid)
11 regrid!(c_medium, c_fine)
12
13 coarse_grid = RectilinearGrid(size=(4, 4); x, y, topology)
14 c_coarse = CenterField(coarse_grid)
15 regrid!(c_coarse, c_medium)

Listing 11: Finite volume discretization of exy on three grids over the unit square. The fields are visualized
in figure 9. The meaning of the “Center” in “CenterField” is discussed below.

The discrete calculus and arithmetic operations required to solve the governing equations492

of the NonhydrostaticModel and HydrostaticFreeSurfaceModel use the system of “staggered493

grids” described by Arakawa (1977). Both models use “C-grid” staggering, where cells494

for tracers, pressure, and the divergence of the velocity field ∇ · u are co-located, and495

cells for velocity components u = (u, v, w) are staggered by half a cell width in the x-,496

y-, and z-direction, respectively. Listing 12 illustrates grid construction and notation for497

a one-dimensional staggered grid with unevenly-spaced cells. Figure 10 visualizes 2- and498

3-dimensional staggered grids, indicating the location of certain variables.499

500501
1 using Oceananigans502

2503

3 grid = RectilinearGrid(topology=(Bounded, Flat, Flat), size=4, x=[0, 0.2, 0.3, 0.7, 1])504

4505

5 u = Field{Face, Center, Center}(grid)506

6 c = Field{Center, Center, Center}(grid)507

7508

8 xnodes(u) # [0.0, 0.2, 0.3, 0.7, 1.0]509

9 xnodes(c) # [0.1, 0.25, 0.5, 0.85]510

10 location(∂x(c)) # (Face, Center, Center)511

–21–

manuscript submitted to JAMES

Figure 9: Finite volume discretization of exy on the unit square at three different resolutions.

512513

Listing 12: A one-dimensional staggered grid.

a) b)

x

y

x
yz

ui, j
ui-1, j

vi, j

vi, j-1

Ti, j

Ti+1, j+1

vi+1, j

ui, j+1ui-1, j+1 Ti, j+1

vi+1, j-1

Ti+1, j

wi, j, k-1

vi, j, k

ui-1, j, k

wi, j, k

vi, j, k+1

ui-1, j, k

wi-1, j, k

vi-1, j, k+1

ui-2, j, k

wi, j+1, k

vi, j+1, k+1

ui-1, j+1, k+1

Figure 10: Locations of cell centers and interfaces on a two-dimensional (a) and three-dimensional (b)
staggered grid. In (a), the red and blue shaded regions highlight the volumes in the dual u-grid and v-grid,
located at (Face, Center, Center) and (Center, Face, Center), respectively. In (b), the shaded regions highlight
the facial areas used in the fluxes computations, denoted with Ax, Ay , and Az .

4.1 A system of composable operators514

A convention for indexing is associated with staggered locations. Face indices are “left”515

of cell indices. This means that difference operators acting on fields at cells differ from those516

that act on face fields. To illustrate this we introduce Oceananigans-like difference operators,517

518

519520
1 δxf cc(i, j, k, grid, c) = c[i, j, k] - c[i-1, j, k]521

2 δxccc(i, j, k, grid, u) = u[i+1, j, k] - u[i, j, k]522
523524

where superscripts denote the location of the result of the operation. For example, the525

difference δfccx acts on fields located at ccc (meaning cell Center in the x, y and z directions526

–22–

manuscript submitted to JAMES

respectively). Complementary to the difference operators are reconstruction of “interpolation”527

operators,528

529530
1 ℑxf cc(i, j, k, grid, c) = (c[i, j, k] + c[i-1, j, k]) / 2531

2 ℑxccc(i, j, k, grid, u) = (u[i+1, j, k] + u[i, j, k]) / 2532
533534

The prefix arguments i, j, k, grid are more than convention: the prefix enables535

system for composing operators. For example, defining536

537538
1 δxf cc(i, j, k, grid, f::Function, args...) =539

2 f(i, j, k, grid, args...) - f(i-1, j, k, grid, args...)540

3541

4 δxccc(i, j, k, grid, f::Function, args...) =542

5 f(i+1, j, k, grid, args...) - f(i, j, k, grid, args...)543
544545

leads to a concise definition of the second-difference operator:546

547548
1 δ2xccc(i, j, k, grid, f::Function, a...) = δxccc(i, j, k, grid, δxf cc, f, a...)549

550551

Operator composition is used throughout Oceananigans source code to implement stencil552

operations.553

4.2 Tracer flux divergences, advection schemes, and reconstruction554

The divergence of a tracer flux J = Jx x̂+ Jy ŷ + Jz ẑ is discretized conservatively by555

the finite volume method via556

∇ · J ≈ 1

Vc

[
δx
(
AxJx︸ ︷︷ ︸
fcc

)
+ δy

(
AyJy︸ ︷︷ ︸
cfc

)
+ δz

(
AzJz︸ ︷︷ ︸
ccf

)]
, (21)

where δx, δy, δz are difference operators in x, y, z, Vc denotes the volume of the tracer cells,557

Ax, Ay, and Az denote the areas of the tracer cell faces with surface normals x̂, ŷ, and ẑ,558

respectively. Equation (21) indicates the location of each flux component: fluxes into tracers559

cell at ccc are computed at the cell faces located at fcc, cfc, and ccf.560

The advective tracer flux in (9) is written in “conservative form” using incompressibil-561

ity (2), and then discretized similarly to (21) to form562

u · ∇c = ∇ · (uc) ≈ 1

Vc

[
δx
(
Axu

⌊
c
⌉
x

)
+ δy

(
Ayv

⌊
c
⌉
y

)
+ δz

(
Azw

⌊
c
⌉
z

)]
, (22)

where
⌊
c
⌉
x

denotes a reconstruction of c in the x-direction from its native location ccc to563

the tracer cell interface at fcc;
⌊
c
⌉
y

and
⌊
c
⌉
z

in (22) are defined similarly.564

The advective fluxes uc must be computed on interfaces between tracer cells, where565

the approximate value of c must be reconstructed. (Velocity components like u must also566

be reconstructed on interfaces. Within the C-grid framework, we approximate u on tracer567

cell interfaces directly using the values uijk, which represent u averaged over a region568

encompassing the interface.) The simplest kind of reconstruction is Centered(order=2),569

which is equivalent to taking the average between adjacent cells,570

⟨c⟩i = 1
2 (ci + ci−1) , (23)

where ⟨c⟩i denotes the centered reconstruction of c on the interface at x = xi−1/2. Also571

in (23) the j, k indices are implied and we have suppressed the direction x to lighten the572

notation. Reconstructions stencils for Center(order=N) are automatically generated for573

–23–

manuscript submitted to JAMES

even N up to Nmax = 12, where Nmax is an adjustable parameter in the source code. All574

subsequent reconstructions are described in the x-direction only.575

Centered schemes should be used when explicit dissipation justified by a physical576

rationale dominates at the grid scale. In scenarios where dissipation is needed solely for577

artificial reasons, we find applications for UpwindBiased schemes, which use an odd-order578

stencil biased against the direction of flow. For example, UpwindBiased(order=1) and579

UpwindBiased(order=3) schemes are written580

u[c]1x =

u ci−1 if u > 0 ,

u ci if u < 0 ,
and u[c]3x =

u 1
6 (−ci−2 + 5ci−1 + 2ci) if u > 0 ,

u 1
6 (2ci−1 + 5ci − ci+1) if u < 0 ,

(24)

where [c]Nx denotes N th-order upwind reconstruction in the x-direction. (Note that u[c]Nx = 0581

if u = 0.)582

The compact form of equations (24) demonstrates how upwind schemes introduce vari-583

ance dissipation through numerical discretization. In particular, an UpwindBiased(order=1)584

reconstruction can be rewritten as a sum of a Centered(order=2) discrete advective flux and585

a discrete diffusive flux586

u[c]1x = u
ci + ci−1

2
− κ1

ci − ci−1

∆x
, where κ1 =

|u|∆x

2
. (25)

Reordering the UpwindBiased(order=3) advective flux in the same manner recovers a sum587

of a Centered(order=4) advective flux and a 4th-order hyperdiffusive flux, equivalent to a588

finite volume approximation of589

uc+ κ3
∂3c

∂x3
, where κ3 =

|u|∆x3

12
. (26)

UpwindBiased reconstruction can be always reordered to expose a sum of Centered recon-590

struction and a high-order diffusive flux with a velocity-dependent diffusivity. The diffusive591

operator associated with UpwindBiased(order=1) and UpwindBiased(order=3) is enough to592

offset the dispersive errors of the Centered component and, therefore, eliminate the artificial593

explicit diffusion needed for stability purposes. However, this approach does not scale to594

high order since the diffusive operator associated with a high order UpwindBiased scheme595

(5th, 7th, and so on), becomes quickly insufficient to eliminate spurious errors associated596

with the Centered component (Godunov, 1959).597

The inability to achieve high order and, therefore, low dissipation motivated the im-598

plementation of Weighted, Essentially Non-Oscillatory (WENO) reconstruction (C. Shu,599

1997; C.-W. Shu, 2009). WENO is a non-linear reconstruction scheme that combines a600

set of odd-order linear reconstructions obtained by stencils that are shifted by a value s601

relative to the canonical UpwindBiased stencil, using a weighting scheme for each stencil602

that depends on the smoothness of the reconstructed field c. Since the constituent stencils603

are lower-order than the WENO order, this strategy yields a scheme whose order of accuracy604

adapts depending on the smoothness of the reconstructed field. In smooth regions high-order605

is retained, while the order quickly decreases in the presence of noisy regions, decreasing the606

order of the associated diffusive operator. WENO proves especially useful for high-resolution,607

turbulence-resolving simulations (either at meter or planetary scales) without requiring any608

additional explicit artificial dissipation (Pressel et al., 2017; Silvestri, Wagner, Campin, et609

al., 2024).610

To illustrate how WENO works we consider a fifth-order WENO scheme for u > 0,611

{c}5 = γ0[c]
3,0 + γ1[c]

3,1 + γ2[c]
3,2 , (27)

–24–

manuscript submitted to JAMES

where the notation [c]3,s denotes an UpwindBiased stencil shifted by s indices, such that612

[c]3
def
= [c]3,0. The shifted upwind stencils [c]N,s

i evaluated at index i are defined613

[c]3,si =
1

6

−ci−1 + 5ci + 2ci+1 for s = −1 ,

2ci−2 + 5ci−1 − ci for s = 0 ,

2ci−3 − 7ci−2 + 11ci−1 for s = 2 .

(28)

The weights γs(c) are determined by a smoothness metric that produces {c}5 ≈ [c]5 when c is614

smooth, but limits to the more diffusive {c}5 ≈ [c]3 when c changes abruptly. Thus WENO615

adaptively introduces dissipation as needed based on the smoothness of c, yielding stable616

simulations with a high effective resolution that require no artificial dissipation. WENO can617

alternatively be interpreted as adding an implicit hyperviscosity that adapts from low- to618

high-order depending on the local nature of the solution. To compute the weights γs(c), we619

use the WENO-Z formulation (Balsara & Shu, 2000).620

The properties of Centered, UpwindBiased, and WENO reconstruction are investigated621

by listing 13, which simulates the advection of a top hat tracer distribution. The results are622

plotted in figure 11.623

624625
1 using Oceananigans626

2627

3 grid = RectilinearGrid(size=128; x=(-4, 8), halo=6, topology=(Periodic, Flat, Flat))628

4 advection = WENO(order=9) # Centered(order=2), UpwindBiased(order=3)629

5 velocities = PrescribedVelocityFields(u=1)630

6 model = HydrostaticFreeSurfaceModel(; grid, velocities, advection, tracers=:c)631

7632

8 top_hat(x) = abs(x) > 1 ? 0 : 1633

9 set!(model, c = top_hat)634

10635

11 simulation = Simulation(model, ∆t=1/grid.Nx, stop_time=4)636

12 run!(simulation)637
638639

Listing 13: A script that advects a top hat tracer profile in one-dimension with a constant prescribed velocity.
We use halo=6 to accommodate schemes up to WENO(order=11).

Figure 11: Advection of a top hat tracer distribution in one-dimension using various advection schemes.
Centered and Upwind

4.2.1 Discretization of momentum advection640

The discretization of momentum advection with a flux form similar to (22) is more641

complex than the tracer case because both the advecting velocity and advected velocity642

require reconstruction. We use the method described by Ghosh and Baeder (2012) and Pressel643

–25–

manuscript submitted to JAMES

x
y

z

FFT in z FFT in xFFT in y

transpose z to y transpose y to x

iFFT in z iFFT in xiFFT in y

transpose y to z transpose x to y

Solve Poisson equation
in Fourier space

Figure 12: A schematic showing the distributed Poisson solver procedure with a pencil parallelization that
divides the domain in two ranks in both x and y. The schematic highlights the data layout in the ranks
during each operation.

et al. (2015), wherein advecting velocities are constructed with a high-order Centered scheme644

when the advected velocity component is reconstructed with a high-order UpwindBiased645

or WENO scheme. We have also developed a novel WENO-based method for discretizing646

momentum advection in the rotational or “vector invariant” form especially appropriate for647

representing mesoscale and submesoscale turbulent advection on curvilinear grids (Silvestri,648

Wagner, Campin, et al., 2024).649

5 Parallelization650

Oceananigans supports distributed computations with slab and pencil domain decompo-651

sition. The interior domain is extended using “halo” or “ghost” cells that hold the results of652

interprocessor boundaries. “halo” cells are updated before the computation of tendencies653

through asynchronous send / receive operations using the message passing interface (MPI)654

Julia library (Byrne et al., 2021). For a detailed description of the parallelization strategy of655

the HydrostaticFreeSurfaceModel; see Silvestri, Wagner, Constantinou, et al. (2024). The656

NonhydrostaticModel implements the same overlap of communication and computation for657

halo exchange before the calculation of tendencies. For the FFT-based three-dimensional658

pressure solver, we implement a transpose algorithm that switches between x-local, y-local,659

and z-local configurations to compute efficiently the discrete transforms. The transpose660

algorithm for the distributed FFT solver is shown in figure 12.661

6 Conclusions662

This paper describes GPU-based ocean modeling software called “Oceananigans” written663

in the high-level Julia programming language. Oceananigans enables high resolution simu-664

lations of oceanic motion at any scale with an innovative user interface design that makes665

simple simulations easy and complex, creative simulations possible. The current state of666

Oceananigans realizes a particular strategy for improving dynamical cores: simple, C-grid,667

WENO numerics for turbulence resolving simulations coupled to the raw power of GPU668

acceleration.669

Using GPUs enables high-resolution simulations on few resources — such as a single GPU670

instance on the cloud — increasing access to ocean modeling. But it also enables a new class671

of very high resolution simulations. For example, on the Perlmutter supercomputer (National672

Energy Research Scientific Computing Center, 2025), it is currently possible to complete a673

100-member ensemble of century-long global ocean simulations at 10 kilometer resolution in674

–26–

manuscript submitted to JAMES

10 days of wall time — thereby resolving mesoscale turbulent mixing, a prominent bias in675

ocean models and a fundamental process missing from most climate simulations today. These676

new capabilities address uncertainty in ocean heat and carbon uptake in climate projections.677

Oceananigans is designed for composition with external packages, which has fostered the678

development of a number of auxiliary packages. For example, OceanBioME (Strong-Wright679

et al., 2023) implements Oceananigans-compatible biogeochemistry models, oriented towards680

ecosystem dynamics and compatible with both the hydrostatic and nonhydrostatic models.681

A second biogeochemistry package is also under development for climate simulations. The682

Oceanostics (Chor et al., 2025) package implements complex diagnostics in Oceananigans683

syntax, useful for online and offline analysis of large eddy simulations.684

A next step is to couple ocean models built with Oceananigans to prognostic atmosphere685

models, including the Climate Modeling Alliance atmosphere dynamical core (Yatunin et al.,686

2025) and the simpler SpeedyWeather (Klöwer et al., 2024). A further possibility, enabled687

by Oceananigans GPU capabilities, is to couple to hybrid physics/AI atmosphere models688

(Kochkov et al., 2024), or fully-AI atmosphere models like ACE (Watt-Meyer et al., 2023,689

2024) and GraphCast (Lam et al., 2023). A sea ice model called ClimaSeaIce, which uses690

the same finite volume engine underpinning Oceananigans, is under active development to691

support coupled ocean-sea-ice simulations. There is also an ongoing effort to use Enzyme692

(Moses et al., 2021) to develop an adjoint for Oceananigans, and to more generally use693

autodifferentiation to compute the gradients of cost functions that invoke Oceananigans694

simulations.695

Each achievement — groundbreaking performance, physics flexibility, or an innovative696

design — would, on their own, enable scientific breakthroughs. This matters because ocean697

modeling software will have to continue to evolve rapidly to keep pace with the advancing698

state of computational science to remain cutting-edge: to continue to use the world’s largest699

supercomputers, to present the most productive possible abstractions for both users and700

developers, and to enable the next generation of parameterizations and AI-based model701

components.702

Appendix A Time stepping and time discretization703

In this section we describe time stepping methods and time discretization options for704

the NonhydrostaticModel and the HydrostaticFreeSurfaceModel.705

A1 Time discretization for tracers706

Tracers are stepped forward with similar schemes in the NonhydrostaticModel and the707

HydrostaticFreeSurfaceModel, each of which includes optional implicit treatment of vertical708

diffusion terms. Equation (9) is abstracted into two components,709

∂tc = Gc + ∂z (κz∂zc) , (A1)

where, if specified, κz is the vertical diffusivity of c to be treated with a VerticallyIm-710

plicitTimeDiscretization, and Gc is the remaining component of the tracer tendency from711

equation 9. (Vertical diffusion treated with an ExplicitTimeDiscretization is also absorbed712

into Gc.) We apply a semi-implicit time discretization of vertical diffusion to approximate713

integral of (A1) from tm to tm+1,714

(1−∆t ∂z κ
m
z ∂z) c

m+1 = cm +

∫ tm+1

tm
Gc dt , (A2)

where ∆t
def
= tm+1 − tm. The tendency integral

∫ tm+1

tm
Gc dt is evaluated either using a715

“quasi”-second order Adams-Bashforth scheme (QAB2, which is actually first-order lets add a716

reference), or a low-storage third-order Runge-Kutta scheme (RK3). For QAB2, the integral717

–27–

manuscript submitted to JAMES

in (A2) spans the entire time-step and takes the form718

1

∆t

∫ tm+1

tm
Gc dt ≈

(
3
2 + χ

)
Gm

c −
(
1
2 + χ

)
Gm−1

c , (A3)

where χ is a small parameter, chosen by default to be χ = 0.1. QAB2 requires one tendency719

evaluation per time-step. For RK3, the indices m = (1, 2, 3) correspond to substages, and720

the integral in (A2) takes the form721

1

∆t

∫ tm+1

tm
Gc dt ≈ γmGm

c − ζmGm−1
c , (A4)

where γ = (8/15, 5/12, 3/4) and ζ = (0, 17/60, 5/12) for m = (1, 2, 3) respectively. RK3722

requires three evaluations of the tendency Gc per time-step. RK3 is self-starting because723

ζ1 = 0, while QAB2 must be started with a forward-backwards Euler step (the choice724

χ = −1/2 in (A3)). Equation (A2) is solved with a tridiagonal algorithm following a second-725

order spatial discretization of ∂zκn
z ∂zc

m+1 — either once per time-step for QAB2, or three726

times for each of the RK3’s three stages.727

VerticallyImplicitTimeDiscretization permits longer time-steps when using fine vertical728

spacing. Listing 14 illustrates the differences between vertically-implicit and explicit time729

discretization using one-dimensional diffusion of by a top-hat diffusivity profile. The results730

are shown in figure A1.731

732733
1 using Oceananigans734

2735

3 grid = RectilinearGrid(size=20, z=(-2, 2), topology=(Flat, Flat, Bounded))736

4 time_discretization = VerticallyImplicitTimeDiscretization()737

5 κ(z, t) = exp(-zˆ2)738

6 closure = VerticalScalarDiffusivity(time_discretization; κ)739

7 model = HydrostaticFreeSurfaceModel(; grid, closure, tracers=:c)740
741742

Listing 14: Diffusion of a tracer by a top hat tracer diffusivity profile using various time steps and time
discretizations.

Figure A1: Simulations of tracer diffusion by a top hat diffusivity profile using various choices of time-
discretization and time-step size. With a long time-step of ∆t = 0.5, ExplicitTimeDiscretization is unstable
while VerticallyImplicitTimeDiscretization is stable. Let the vertically-implicit solution depends on the long
time-step ∆t = 0.5, as revealed by comparison with ExplicitTimeDiscretization using ∆t = 10−4.

–28–

manuscript submitted to JAMES

A2 The pressure correction method for momentum in NonhydrostaticModel743

The NonhydrostaticModel uses a pressure correction method for the momentum equa-744

tion (6) that ensures ∇ · u = 0. We rewrite (6) as745

∂tu = −∇p+ b ẑ +Gu + ∂z (νz∂zu) , (A5)

where, if specified, νz is the vertical component of the viscosity that will be treated with a746

vertically-implicit time discretization, ∇p is the total pressure gradient, and Gu is the rest747

of the momentum tendency. We decompose p into a “hydrostatic anomaly” p′ tied to the748

density anomaly ρ′, and a nonhydrostatic component p̃, such that749

p = p̃+ p′ , where ∂zp
′ def
= b . (A6)

By computing ph in (A6), we recast (A5) without b and with ∇p = ∇pn +∇hph. Next,750

integrating (A5) in time from tm to tm+1 yields751

um+1 = um +

∫ tm+1

tm
[Gu −∇p̃+ ∂z (νz∂zu)] dt . (A7)

Next we introduce the predictor velocity ũ, defined such that752

(1−∆t ∂zν
m
z ∂z) ũ = um +

∫ tm+1

tm
Gu dt , (A8)

or in other words, defined as a velocity-like field that cannot feel nonhydrostatic pressure753

gradient ∇p̃. Equation (A8) uses a semi-implicit treatment of vertical momentum diffusion754

which is similar but slightly different to the treatment of tracer diffusion in (A2),755 ∫ tm+1

tm
∂z (νz∂zu) dt ≈ ∆t ∂z (ν

m
z ∂zũ) . (A9)

The integral in (A8) is evaluated with the same methods used for tracers — either (A3) for756

QAB2 or (A4) when using RK3. With a second-order discretization of vertical momentum757

diffusion, the predictor velocity in (A8) may be computed with a tridiagonal solver.758

Introducing a fully-implicit time discretization for p̃,759 ∫ tm+1

tm
∇p̃dt ≈ ∆t∇p̃m+1 , (A10)

and inserting (A10) into (A8), we derive the pressure correction to the predictor velocity,760

um+1 − ũ = −∆t∇p̃m+1 . (A11)

The final ingredient needed to complete the pressure correction scheme is an equation761

for the nonhydrostatic pressure p̃m+1
n . For this we form ∇ · (A11) and use ∇ · um+1 = 0 to762

obtain a Poisson equation for p̃m+1
n ,763

∇2p̃m+1 =
∇ · ũ
∆t

. (A12)

Boundary conditions for equation (A12) may be derived by evaluating n̂ · (A7) on the764

boundary of the domain.765

On RectilinearGrids, we solve (A12) using an eigenfunction expansion of the discrete766

second-order Poisson operator ∇2 evaluated via the fast Fourier transform (FFT) in eq-767

uispaced directions (Schumann & Sweet, 1988) plus a tridiagonal solve in variably-spaced768

directions. With the FFT-based solver, boundary conditions on p̃m+1 are accounted for769

by enforcing n̂ · ũ = n̂ · um+1 on boundary cells — which is additional and separate from770

–29–

manuscript submitted to JAMES

the definition ũ in (A9). This alteration of ũ on the boundary implicitly contributes the771

appropriate terms that account for inhomogeneous boundary-normal pressure gradients772

n̂ · ∇p̃m+1 ̸= 0 to the right-hand-side of (A12) during the computation of ∇ · ũ.773

A preconditioned conjugate gradient iteration may be used on non-rectilinear grids,774

including complex domains. For domains that immerse an irregular boundary within a775

RectilinearGrid, we have implemented an efficient, rapidly-converging preconditioner that776

leverages the FFT-based solver with masking applied to immersed cells. The FFT-based777

preconditioner for solving the Poisson equation in irregular domains will be described in a778

forthcoming paper.779

A3 Time discretization of the HydrostaticFreeSurfaceModel780

The HydrostaticFreeSurfaceModel uses a linear free surface formulation paired with781

a geopotential vertical coordinate that may be integrated in time using either a fully782

ExplicitFreeSurface, an ImplicitFreeSurface utilizing a two-dimensional elliptical solve, or a783

SplitExplicitFreeSurface. The latter free surface solver can also be used to solve the primitive784

equations with a non-linear free surface formulation and a free-surface following vertical785

coordinate (the z⋆ vertical coordinate, Adcroft & Campin, 2004). For brevity, we describe786

here only the SplitExplicitFreeSurface, which is the most generally useful method. The787

SplitExplicitFreeSurface substeps the depth-integrated or “barotropic” horizontal velocity788

Uh along with the free surface displacement η using a short time step while and the depth-789

dependent, “baroclinic” velocities, along with tracers, are relatively stationary.790

The barotropic horizontal transport Uh is defined791

Uh
def
=

∫ η

−H

uh dz , (A13)

where uh = (u, v) is the total horizontal velocity and H is the depth of the fluid.792

Similarly integrating the horizontal momentum equations (17) from z = −H to z = η793

yields an evolution equation for Uh,794

∂tUh = −g(H + η)∇hη +

∫ η

−H

Guh dz , (A14)

where Guh includes all the tendency terms that evolve “slowly” compared to the barotropic795

mode:796

Guh = −(u · ∇)uh − f × u−∇ · τ + Fh . (A15)

The evolution equation for the free surface is obtained by integrating the continuity equa-797

tion (15) in z to obtain ∇ ·Uh = −w|z=η, and inserting this into (16) to find798

∂tη = −∇h ·Uh . (A16)

The pair of equations (A14) and (A16) characterize the evolution of the barotropic mode,799

which involves faster time-scales than the baroclinic mode evolution described by equations800

(17). To resolve both modes, we use a split-explicit algorithm where the barotropic mode is801

advanced in time using a smaller time-step than the one used for three-dimensional baroclinic802

variables. In particular, a predictor three-dimensional velocity is evolved without accounting803

for the barotropic mode evolution, using the QAB2 scheme described by A3. We denote this804

“predictor” velocity, again, with a tilde as done in section A2.805

(1−∆t ∂zν
m
z ∂z)ũh − um

h ≈
∫ tm+1

tm
Guh dt . (A17)

We then compute the barotropic mode evolution by sub-stepping M times the barotropic806

equations using a forward-backward time-stepping scheme and a time-step ∆τ = ∆t/N ,807

ηn+1 − ηn = −∆τ∇h ·Un
h , (A18)

–30–

manuscript submitted to JAMES

808

Un+1
h −Un

h = −∆τ

[
g(H + η)∇hη

n+1 − 1

∆t

∫ η

−H

∫ tm+1

tm
Guh dtdz

]
. (A19)

The slow tendency terms are frozen in time during substepping. The barotropic quantities809

are averaged within the sub-stepping with810

Ūh =
M∑
n=1

anU
n
h , η̄ =

M∑
n=1

anη
n , (A20)

where M is the number of substeps per baroclinic step, and an are the weights are calculated811

from the provided averaging kernel. The default choice of averaging kernel is the minimal812

dispersion filters developed by Shchepetkin and McWilliams (2005). The number of substeps813

M is calculated to center the averaging kernel at tm+1. As a result, the barotropic subcycling814

overshoots the baroclinic step, i.e. M > N with a maximum of M = 2N . Finally, the815

barotropic mode is reconciled to the baroclinic mode with a correction step816

um+1
h = ũh +

1

H + η

(
Ūh −

∫ η

−H

ũh dz

)
. (A21)

The barotropic variables are then reinitialized for evolution in the next barotropic mode817

evolution using the time-averaged η̄ and Ūh.818

Appendix B Table of numerical examples819

Description Code Visualization

2D turbulence using WENO(order=9) advection listing 1 fig. 1

2D turbulence with moving tracer source listing 2 fig. 1

DNS and LES of flow around a cylinder at various Re listing 4 fig. 2

DNS of cabbeling in freshwater listing 5 fig. 3

LES of the Eady problem with WENO(order=9) listing 6 fig. 4

Tidally-oscillating flow past Three Tree Point listing 7 fig. 5

Internal waves generated by tidal forcing over bathymetry listing 8 fig. 6

Comparison of vertical mixing parameterizations listing 9 fig. 7

Near-global ocean simulation with ClimaOcean listing 10 fig. 8

Visualization of the finite volume discretization listing 11 fig. 9

One-dimensional advection of a top-hat tracer profile listing 13 fig. 11

Tracer diffusion with various time discretizations listing 14 fig. A1

820

Open Research Section821

Oceananigans is available at the GitHub repository github.com/CliMA/Oceananigans.jl.822

Oceananigans documentation lives at https://clima.github.io/OceananigansDocumentation.823

All the scripts that reproduce the simulations and figures in this paper are available at the824

GitHub repository github.com/glwagner/OceananigansPaper. Visualizations were made825

using Makie.jl (Danisch & Krumbiegel, 2021).826

Acknowledgments827

This project is supported by Schmidt Sciences, LLC and by the National Science Foundation828

–31–

https://github.com/CliMA/Oceananigans.jl
https://clima.github.io/OceananigansDocumentation
https://github.com/glwagner/OceananigansPaper

manuscript submitted to JAMES

grant AGS-1835576. N.C.C. is additionally supported by the Australian Research Council829

under the Center of Excellence for the Weather of the 21st Century CE230100012 and the830

Discovery Project DP240101274.831

References832

Adcroft, A., & Campin, J.-M. (2004). Rescaled height coordinates for accurate representation833

of free-surface flows in ocean circulation models. Ocean Modelling , 7 (3-4), 269–284.834

Arakawa, A. (1977). Computational design of the basic dynamical processes of the UCLA835

general circulation model. Methods in Computational Physics/Academic Press.836

Balsara, D., & Shu, C. (2000). Monotonicity preserving weighted essentially non-oscillatory837

schemes with increasingly high order of accuracy. Journal of Computational Physics,838

160 (2), 405-452. doi: 10.1006/jcph.2000.6443839

Besard, T., Foket, C., & De Sutter, B. (2018). Effective extensible programming: unleashing840

Julia on GPUs. IEEE Transactions on Parallel and Distributed Systems, 30 (4), 827–841

841.842

Bezanson, J., Edelman, A., Karpinski, S., & Shah, V. B. (2017). Julia: A fresh approach to843

numerical computing. SIAM review , 59 (1), 65–98.844

Boccaletti, G., Ferrari, R., & Fox-Kemper, B. (2007). Mixed layer instabilities and restratifi-845

cation. Journal of Physical Oceanography , 37 (9), 2228–2250.846

Bou-Zeid, E., Meneveau, C., & Parlange, M. (2005). A scale-dependent Lagrangian dynamic847

model for large eddy simulation of complex turbulent flows. Physics of fluids, 17 (2).848

Bryan, K. (1969). A numerical method for the study of the circulation of the world ocean.849

Journal of Computational Physics, 135 (2), 154–169.850

Burns, K. J., Vasil, G. M., Oishi, J. S., Lecoanet, D., & Brown, B. P. (2020). Dedalus: A851

flexible framework for numerical simulations with spectral methods. Physical Review852

Research, 2 (2), 023068.853

Byrne, S., Wilcox, L. C., & Churavy, V. (2021). MPI.jl: Julia bindings for the Message854

Passing Interface. In Proceedings of the JuliaCon Conferences (Vol. 1, p. 68). doi:855

10.21105/jcon.00068856

Callies, J., & Ferrari, R. (2018). Baroclinic instability in the presence of convection. Journal857

of Physical Oceanography , 48 (1), 45–60.858

Chassignet, E. P., & Xu, X. (2017). Impact of horizontal resolution (1/12 to 1/50) on Gulf859

Stream separation, penetration, and variability. Journal of Physical Oceanography ,860

47 (8), 1999–2021.861

Chassignet, E. P., & Xu, X. (2021). On the importance of high-resolution in large-scale862

ocean models. Advances in Atmospheric Sciences, 38 , 1621–1634.863

Chor, T., Constantinou, N. C., Bisits, J. I., Wagner, G. L., Ramadhan, A., Zheng, Z., &864

Whitley, V. (2025). Oceanostics.jl. Zenodo. Retrieved from https://doi.org/865

10.5281/zenodo.8280754 doi: 10.5281/zenodo.8280754866

Churavy, V. (2024). KernelAbstractions.jl. Zenodo. Retrieved from https://doi.org/867

10.5281/zenodo.13773520 doi: 10.5281/zenodo.13773520868

Cox, M. D. (1984). A primitive equation, 3-dimensional model of the ocean (Tech. Rep.869

No. 1). Princeton, NJ: NOAA Geophysical Fluid Dynamics Laboratory.870

Craik, A. D., & Leibovich, S. (1976). A rational model for Langmuir circulations. Journal871

of Fluid Mechanics, 73 (3), 401–426.872

Danilov, S., Sidorenko, D., Wang, Q., & Jung, T. (2017). The finite-volume sea ice–ocean873

model (FESOM2). Geoscientific Model Development , 10 (2), 765–789.874

Danisch, S., & Krumbiegel, J. (2021). Makie.jl: Flexible high-performance data visualization875

for Julia. Journal of Open Source Software, 6 (65), 3349. doi: 10.21105/joss.03349876

Dong, J., Fox-Kemper, B., Wenegrat, J. O., Bodner, A. S., Yu, X., Belcher, S., & Dong,877

C. (2024). Submesoscales are a significant turbulence source in global ocean surface878

boundary layer. Nature Communications, 15 (1), 9566.879

Eady, E. T. (1949). Long waves and cyclone waves. Tellus, 1 (3), 33–52.880

–32–

https://doi.org/10.5281/zenodo.8280754
https://doi.org/10.5281/zenodo.8280754
https://doi.org/10.5281/zenodo.8280754
https://doi.org/10.5281/zenodo.13773520
https://doi.org/10.5281/zenodo.13773520
https://doi.org/10.5281/zenodo.13773520

manuscript submitted to JAMES

Edson, J. B., Jampana, V., Weller, R. A., Bigorre, S. P., Plueddemann, A. J., Fairall, C. W.,881

. . . Hersbach, H. (2014). On the exchange of momentum over the open ocean. Journal882

of Physical Oceanography , 44 (9), 1589.883

Forget, G., Campin, J.-M., Heimbach, P., Hill, C., Ponte, R., & Wunsch, C. (2015). ECCO884

version 4: An integrated framework for non-linear inverse modeling and global ocean885

state estimation. Geoscientific Model Development , 8 (10), 3071–3104.886

Ghosh, D., & Baeder, J. D. (2012). High-order accurate incompressible Navier–Stokes887

algorithm for vortex-ring interactions with solid wall. AIAA journal , 50 (11), 2408–888

2422.889

Godunov, S. K. (1959). A difference scheme for numerical solution of discontinuous solution890

of hydrodynamic equations. Matematicheskii Sbornik , 47 , 271–306. (Translated by US891

Joint Publications Research Service, JPRS 7226, 1969)892

Grachev, A. A., Andreas, E. L., Fairall, C. W., Guest, P. S., & Persson, P. O. G. (2007). Sheba893

flux–profile relationships in the stable atmospheric boundary layer. Boundary-layer894

meteorology , 124 , 315–333.895

Griffies, S. M., Adcroft, A., & Hallberg, R. W. (2020). A primer on the vertical lagrangian-896

remap method in ocean models based on finite volume generalized vertical coordinates.897

Journal of Advances in Modeling Earth Systems, 12 (10), e2019MS001954.898

Griffies, S. M., Pacanowski, R. C., & Hallberg, R. W. (2000). Spurious diapycnal mixing899

associated with advection in a z-coordinate ocean model. Monthly Weather Review ,900

128 (3), 538–564.901

Griffies, S. M., Stouffer, R. J., Adcroft, A. J., Bryan, K., Dixon, K. W., Hallberg, R., . . .902

Rosati, A. (2015). A historical introduction to MOM. URL https://www. gfdl. noaa.903

gov/wp-content/uploads/2019/04/mom_history_2017 , 9 .904

Häfner, D., Nuterman, R., & Jochum, M. (2021). Fast, cheap, and turbulent—global ocean905

modeling with GPU acceleration in Python. Journal of Advances in Modeling Earth906

Systems, 13 (12), e2021MS002717.907

Halliwell, G. R. (2004). Evaluation of vertical coordinate and vertical mixing algorithms in908

the HYbrid-Coordinate Ocean Model (HYCOM). Ocean Modelling , 7 (3-4), 285–322.909

Held, I. M. (2005). The gap between simulation and understanding in climate modeling.910

Bulletin of the American Meteorological Society , 86 (11), 1609–1614.911

Huang, N. E. (1979). On surface drift currents in the ocean. Journal of Fluid Mechanics,912

91 (1), 191–208.913

Kärnä, T., Kramer, S. C., Mitchell, L., Ham, D. A., Piggott, M. D., & Baptista, A. M.914

(2018). Thetis coastal ocean model: discontinuous Galerkin discretization for the915

three-dimensional hydrostatic equations. Geoscientific Model Development , 11 (11),916

4359–4382.917

Kiss, A. E., Hogg, A. M., Hannah, N., Boeira Dias, F., Brassington, G. B., Chamberlain,918

M. A., . . . others (2020). Access-om2 v1. 0: a global ocean–sea ice model at three919

resolutions. Geoscientific Model Development , 13 (2), 401–442.920

Klöwer, M., Gelbrecht, M., Hotta, D., Willmert, J., Silvestri, S., Wagner, G. L., . . . others921

(2024). Speedyweather. jl: Reinventing atmospheric general circulation models towards922

interactivity and extensibility. Journal of Open Source Software, 9 (98), 6323.923

Kochkov, D., Yuval, J., Langmore, I., Norgaard, P., Smith, J., Mooers, G., . . . others924

(2024). Neural general circulation models for weather and climate. Nature, 632 (8027),925

1060–1066.926

Korn, P., Brüggemann, N., Jungclaus, J. H., Lorenz, S., Gutjahr, O., Haak, H., . . . others927

(2022). Icon-o: The ocean component of the icon earth system model—global simulation928

characteristics and local telescoping capability. Journal of Advances in Modeling Earth929

Systems, 14 (10), e2021MS002952.930

Lam, R., Sanchez-Gonzalez, A., Willson, M., Wirnsberger, P., Fortunato, M., Alet, F., . . .931

others (2023). Learning skillful medium-range global weather forecasting. Science,932

382 (6677), 1416–1421.933

Leclair, M., & Madec, G. (2011). z-coordinate, an arbitrary lagrangian–eulerian coordinate934

separating high and low frequency motions. Ocean Modelling , 37 (3-4), 139–152.935

–33–

manuscript submitted to JAMES

Lilly, D. K. (1983). Stratified turbulence and the mesoscale variability of the atmosphere.936

Journal of the Atmospheric Sciences, 40 (3), 749–761.937

Marshall, J., Adcroft, A., Hill, C., Perelman, L., & Heisey, C. (1997). A finite-volume,938

incompressible Navier Stokes model for studies of the ocean on parallel computers.939

Journal of Geophysical Research: Oceans, 102 (C3), 5753–5766.940

Marshall, J., Hill, C., Perelman, L., & Adcroft, A. (1997). Hydrostatic, quasi-hydrostatic, and941

nonhydrostatic ocean modeling. Journal of Geophysical Research: Oceans, 102 (C3),942

5733–5752.943

McDougall, T. J., & Barker, P. M. (2011). Getting started with TEOS-10 and the Gibbs944

Seawater (GSW) oceanographic toolbox. Scor/iapso WG , 127 (532), 1–28.945

Molemaker, M. J., McWilliams, J. C., & Capet, X. (2010). Balanced and unbalanced routes946

to dissipation in an equilibrated eady flow. Journal of Fluid Mechanics, 654 , 35–63.947

Monin, A. (n.d.). Basic laws of turbulent mixing in the surface layer of the atmosphere.948

Moses, W. S., Churavy, V., Paehler, L., Hückelheim, J., Narayanan, S. H. K., Schanen, M.,949

& Doerfert, J. (2021). Reverse-mode automatic differentiation and optimization of gpu950

kernels via enzyme. In Proceedings of the international conference for high performance951

computing, networking, storage and analysis (pp. 1–16).952

Murray, R. J. (1996). Explicit generation of orthogonal grids for ocean models. Journal of953

Computational Physics, 126 (2), 251–273.954

National Energy Research Scientific Computing Center. (2025). Perlmutter archi-955

tecture. Retrieved from https://docs.nersc.gov/systems/perlmutter/956

architecture/ (Accessed: 2025-02-18)957

Pawlak, G., MacCready, P., Edwards, K., & McCabe, R. (2003). Observations on the958

evolution of tidal vorticity at a stratified deep water headland. Geophysical Research959

Letters, 30 (24).960

Pearson, B. (2018). Turbulence-induced anti-Stokes flow and the resulting limitations of961

large-eddy simulation. Journal of Physical Oceanography , 48 (1), 117–122.962

Petersen, M. R., Jacobsen, D. W., Ringler, T. D., Hecht, M. W., & Maltrud, M. E. (2015).963

Evaluation of the arbitrary Lagrangian–Eulerian vertical coordinate method in the964

MPAS-Ocean model. Ocean Modelling , 86 , 93–113.965

Phillips, N. A. (1956). The general circulation of the atmosphere: A numerical experiment.966

Quarterly Journal of the Royal Meteorological Society , 82 (352), 123–164.967

Pressel, K. G., Kaul, C. M., Schneider, T., Tan, Z., & Mishra, S. (2015). Large-eddy968

simulation in an anelastic framework with closed water and entropy balances. Journal969

of Advances in Modeling Earth Systems, 7 (3), 1425–1456.970

Pressel, K. G., Mishra, S., Schneider, T., Kaul, C. M., & Tan, Z. (2017). Numerics and971

subgrid-scale modeling in large eddy simulations of stratocumulus clouds. Journal of972

Advances in Modeling Earth Systems, 9 (2), 1342–1365.973

Ramadhan, A., Wagner, G., Hill, C., Campin, J.-M., Churavy, V., Besard, T., . . . Marshall,974

J. (2020). Oceananigans.jl: Fast and friendly geophysical fluid dynamics on GPUs.975

Journal of Open Source Software, 5 (53).976

Ringler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W., & Maltrud, M. (2013).977

A multi-resolution approach to global ocean modeling. Ocean Modelling , 69 , 211–232.978

Roquet, F., Madec, G., Brodeau, L., & Nycander, J. (2015). Defining a simplified yet979

“realistic” equation of state for seawater. Journal of Physical Oceanography , 45 (10),980

2564–2579.981

Roquet, F., Madec, G., McDougall, T. J., & Barker, P. M. (2015). Accurate polynomial982

expressions for the density and specific volume of seawater using the TEOS-10 standard.983

Ocean Modelling , 90 , 29–43.984

Rozema, W., Bae, H. J., Moin, P., & Verstappen, R. (2015). Minimum-dissipation models985

for large-eddy simulation. Physics of Fluids, 27 (8).986

Schumann, U., & Sweet, R. A. (1988). Fast Fourier transforms for direct solution of Poisson’s987

equation with staggered boundary conditions. Journal of Computational Physics,988

75 (1), 123–137.989

Shchepetkin, A. F., & McWilliams, J. C. (2005). The regional oceanic modeling system990

–34–

https://docs.nersc.gov/systems/perlmutter/architecture/
https://docs.nersc.gov/systems/perlmutter/architecture/
https://docs.nersc.gov/systems/perlmutter/architecture/

manuscript submitted to JAMES

(ROMS): a split-explicit, free-surface, topography-following-coordinate oceanic model.991

Ocean modelling , 9 (4), 347–404.992

Shu, C. (1997). Essentially non-oscillatory and weighted essentially non-oscillatory schemes993

for hyperbolic conservation laws (ICASE Report No. 97-65). Institute for Computer994

Applications in Science and Engineering, NASA Langley Research Center.995

Shu, C.-W. (2009). High order weighted essentially nonoscillatory schemes for convection996

dominated problems. SIAM review , 51 (1), 82–126.997

Silvestri, S., Wagner, G. L., Campin, J.-M., Constantinou, N. C., Hill, C. N., Souza, A., &998

Ferrari, R. (2024). A new WENO-based momentum advection scheme for simulations999

of ocean mesoscale turbulence. Journal of Advances in Modeling Earth Systems, 16 (7),1000

e2023MS004130.1001

Silvestri, S., Wagner, G. L., Constantinou, N. C., Hill, C. N., Campin, J.-M., Souza, A. N., . . .1002

Ferrari, R. (2024). A GPU-based ocean dynamical core for routine mesoscale-resolving1003

climate simulations. Authorea Preprints . doi: 10.22541/essoar.171708158.82342448/v11004

Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I.1005

The basic experiment. Monthly weather review , 91 (3), 99–164.1006

Stone, P. H. (1971). Baroclinic stability under non-hydrostatic conditions. Journal of Fluid1007

Mechanics, 45 (4), 659–671.1008

Strong-Wright, J., Chen, S., Constantinou, N. C., Silvestri, S., Wagner, G. L., & Taylor, J. R.1009

(2023). OceanBioME.jl: A flexible environment for modelling the coupled interactions1010

between ocean biogeochemistry and physics. Journal of Open Source Software, 8 (90),1011

5669.1012

Tsujino, H., Urakawa, S., Nakano, H., Small, R. J., Kim, W. M., Yeager, S. G., . . . others1013

(2018). JRA-55 based surface dataset for driving ocean–sea-ice models (JRA55-do).1014

Ocean Modelling , 130 , 79–139.1015

Umlauf, L., & Burchard, H. (2003). A generic length-scale equation for geophysical turbulence1016

models.1017

Umlauf, L., & Burchard, H. (2005). Second-order turbulence closure models for geophysical1018

boundary layers. a review of recent work. Continental Shelf Research, 25 (7-8), 795–827.1019

Vanneste, J., & Young, W. R. (2022). Stokes drift and its discontents. Philosophical1020

Transactions of the Royal Society A, 380 (2225), 20210032.1021

Vreugdenhil, C. A., & Taylor, J. R. (2018). Large-eddy simulations of stratified plane Couette1022

flow using the anisotropic minimum-dissipation model. Physics of Fluids, 30 (8).1023

Wagner, G. L., Chini, G. P., Ramadhan, A., Gallet, B., & Ferrari, R. (2021). Near-inertial1024

waves and turbulence driven by the growth of swell. Journal of Physical Oceanography ,1025

51 (5), 1337–1351.1026

Wagner, G. L., Hillier, A., Constantinou, N. C., Silvestri, S., Souza, A. N., Burns, K., . . .1027

others (2025). Formulation and calibration of CATKE, a one-equation parameterization1028

for microscale ocean mixing. Authorea Preprints. doi: 10.48550/arXiv.2306.132041029

Wagner, G. L., Silvestri, S., Constantinou, N. C., Strong-Wright, J., Byrne, S., Bozzola, G., . . .1030

Churavy, V. (2025, February). CliMA/ClimaOcean.jl: v0.4.0. Zenodo. Retrieved from1031

https://doi.org/10.5281/zenodo.14890032 doi: 10.5281/zenodo.148900321032

Warner, S. J., & MacCready, P. (2014). The dynamics of pressure and form drag on a sloping1033

headland: Internal waves versus eddies. Journal of Geophysical Research: Oceans,1034

119 (3), 1554–1571.1035

Watt-Meyer, O., Dresdner, G., McGibbon, J., Clark, S. K., Henn, B., Duncan, J., . . . others1036

(2023). ACE: A fast, skillful learned global atmospheric model for climate prediction.1037

arXiv preprint arXiv:2310.02074 .1038

Watt-Meyer, O., Henn, B., McGibbon, J., Clark, S. K., Kwa, A., Perkins, W. A., . . . Brether-1039

ton, C. S. (2024). ACE2: Accurately learning subseasonal to decadal atmospheric1040

variability and forced responses. arXiv preprint arXiv:2411.11268 .1041

Yatunin, D., Byrne, S., Kawczynski, C., Kandala, S., Bozzola, G., Sridhar, A., . . . others1042

(2025). The Climate Modeling Alliance Atmosphere Dynamical Core: Concepts,1043

Numerics, and Scaling. Authorea Preprints.1044

–35–

https://doi.org/10.5281/zenodo.14890032

