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Abstract

NORIi is a machine-learned (ML) parameterization of ocean boundary layer tur-
bulence that is physics-based and augmented with neural networks. NORI stands for neu-
ral ordinary differential equations (NODESs) Richardson number (Ri) closure. The phys-
ical parameterization is controlled by a Richardson number-dependent diffusivity and
viscosity. The NODEs are trained to capture the entrainment through the base of the
boundary layer, which cannot be represented with a local diffusive closure. The param-
eterization is trained using large-eddy simulations in an a posteriori fashion, where pa-
rameters are calibrated with a loss function that explicitly depends on the actual time-
integrated variables of interest rather than the instantaneous subgrid fluxes, which are
inherently noisy. NORI is designed for the realistic nonlinear equation of state of sea-
water and demonstrates excellent prediction and generalization capabilities in captur-
ing entrainment dynamics under different convective strengths, oceanic background strat-
ifications, rotation strengths, and surface wind forcings. NORI is numerically stable for
at least 100 years of integration time in large-scale simulations, despite only being trained
on 2-day horizons, and can be run with time steps as long as one hour. The highly ex-
pressive neural networks, combined with a physically-rigorous base closure, prove to be
a robust paradigm for designing parameterizations for climate models where data require-
ments are drastically reduced, inference performance can be directly targeted and op-
timized, and numerical stability is implicitly encouraged during training.

Plain Language Summary

Climate models struggle to represent small-scale mixing processes in the ocean that
occur at scales of 1-100 meters because global simulations can only resolve features larger
than about 10 kilometers. These mixing processes, driven by winds, evaporation, and
surface cooling, critically affect how heat, salinity, and other properties are exchanged
between the atmosphere and the interior of the ocean, influencing climate predictions.
We introduce NORI, a new approach that combines traditional physics-based equations
with modern machine learning to better represent these small-scale processes. Traditional
methods often sacrifice accuracy for computational speed or vice versa. NORi achieves
both by using neural networks to enhance simpler physics-based models where they fall
short. What makes NORI effective is our training approach—using high-resolution sim-
ulations as “ground truth” and focusing on correctly predicting the outcomes over time
rather than matching instantaneous variables. This approach produced a model that re-
mains stable when run for 100 years, despite being trained on just 2 days of data. NORi
also works efficiently with larger time steps, making it practical for long-term climate
simulations. By bridging physics and machine learning in this way, NORI represents a
new paradigm for developing accurate, computationally efficient models that require less
training data.

1 Introduction

State-of-the-art global ocean models used in climate studies solve the equations that
govern ocean dynamics and thermodynamics on grids with resolutions of 10 km or coarser (Hewitt
et al., 2020; Silvestri et al., 2025). At this resolution, many subgrid-scale processes can-
not be explicitly resolved. In the upper ocean boundary layers, these include turbulent
mixing driven by cooling, evaporation, and wind stresses on scales from a few hundred
meters down to centimeters. Despite their small spatial scales, this mixing has a funda-
mental impact on the large-scale structure of the ocean by regulating the exchange of
heat, carbon, and other climatically important tracers between the atmosphere and the
ocean interior. Subgrid-scale parameterizations are therefore introduced in climate mod-
els to represent the impact of these processes on large-scale variables.



Traditional parameterizations of turbulent mixing in the upper ocean rely on known
physics, typically encoded in scaling laws with a number of free parameters that are de-
termined with empirical data. The most parsimonious parameterizations are first-order
diffusive closures, where vertical diffusivities are increased when surface winds, cooling,
and/or evaporation are strong enough to trigger turbulent mixing. The Pacanowski-Philander
parameterization (Pacanowski & Philander, 1981) is one such example where the ver-
tical diffusivity is a function of local stratification and vertical shear via the Richardson
number. Although this diffusive closure smooths local gradients of momentum, temper-
ature, and salinity, it cannot accurately represent entrainment at the base of the bound-
ary layer. Entrainment is driven by convective plumes formed by surface cooling and/or
evaporation, which penetrate beneath the mixed layer and draw denser water from the
thermocline into the mixed layer. This process sharpens the gradient at the base of the
boundary layer—an inherently anti-diffusive, nonlocal mechanism, as illustrated in Fig-
ure 1. To represent entrainment in purely diffusive first-order closures, the widely-used
K-Profile Parameterization (KPP, Large et al., 1994) adds a nonlocal flux term to the
diffusive flux. Bulk parameterizations, originally proposed by Niiler (1977) and recently
adopted for use in large-scale ocean models (ePBL, Reichl & Hallberg, 2018), are for-
mulated only in terms of vertically-averaged properties of the boundary layer through
bulk energetic arguments and can be thought of as a fully nonlocal model. Higher-order
second-moment closure models, such as the celebrated k-e¢ parameterizations (Umlauf
& Burchard, 2003; Mellor & Yamada, 1982) address the nonlocality of turbulent mix-
ing by formulating equations that predict the evolution and transport of quantities such
as turbulent kinetic energy (TKE) and energy dissipation. Although more accurate than
first-order closure models, they are not widely used in global climate models, as they re-
quire shorter time steps than the equations for large-scale ocean dynamics and there-
fore add substantial computational cost (Reffray et al., 2015; Reichl & Hallberg, 2018).
Most recently, the Convective Adjustment TKE parameterization (CATKE Wagner, Hillier,
et al., 2025) has been introduced to leverage the benefits of higher-order models while
reducing their computational cost. CATKE is a 1.5-order closure that uses a prognos-
tic equation for TKE to compute the diffusivity. Its skill compares favorably with the
k-e parameterization at a computational cost comparable to KPP.

Despite much progress in the formulation of boundary layer parameterizations, sub-
stantial biases persist in the simulation of the upper ocean in large-scale ocean models,
especially in the Southern Ocean (DuVivier et al., 2018; Treguier et al., 2023; Sallée et
al., 2013) and the tropics (Li & Xie, 2014). In particular, the boundary layer depth bias
is often of the same order as the depth itself (DuVivier et al., 2018; Treguier et al., 2023).

Machine learning methods offer a potential path to reduce these biases and have
been increasingly used in recent years to reduce biases in climate model parameteriza-
tion for subgrid-scale processes, due to advances in computing hardware and machine
learning software (Bolton & Zanna, 2019). For upper ocean boundary layer turbulence,
a Bayesian approach has been used to tune and uncover structural deficiencies of KPP (Souza
et al., 2020). Neural networks have also been used to predict the evolution of temper-
ature and salinity at Station Papa (Liang et al., 2022), improve the parameterization of
ePBL (Sane et al., 2023), and calibrate the vertical diffusivity profile in KPP (Yuan et
al., 2024). However, the success in reducing biases has been limited.

One of the most important challenges facing neural network-based parameteriza-
tions applied to climate modeling is the numerical stability and physical accuracy over
long integration times (Chattopadhyay et al., 2023). The causes of such numerical in-
stabilities are manifold, including the spectral bias of neural networks, which prioritize
learning low frequency dynamics which may cause networks to underrepresent high-frequency
dynamics which can be important for turbulence and chaotic processes (Chattopadhyay
et al., 2023), as well as the use of a priori calibration to train the neural network (Frezat
et al., 2022). In a priori calibration, the neural network parameterization is trained of-
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Figure 1. Schematic of the vertical profile of buoyancy as a function of depth below the ocean
surface—buoyancy is negatively proportional to the density anomaly generated by a change in
temperature and salinity. At time ¢ = 0, the buoyancy decreases linearly with depth. After some
time, in response to buoyancy loss at the surface, a well-mixed buoyancy layer develops in the
upper ocean. In the absence of entrainment through the base of the mixed layer, the buoyancy
profile smoothly connects to the stratified interior. Entrainment results in a further deepening of

the boundary layer and the development of a sharp buoyancy jump at its base.

fline to match the diagnosed, unresolved subgrid-scale fluxes as a function of large-scale
variables. Since no parameterization is perfect, once implemented in the dynamical equa-
tions of the climate model, it will introduce some random errors in addition to the de-
sired fluxes. Over time, errors accumulate and amplify, leading to the climate variables
diverging from the correct trajectories, not unlike how chaotic systems will have diverg-
ing trajectories with infinitesimal perturbations in the initial conditions. This challenge
has been well documented in data-driven weather forecast models based on neural net-
works, which can be considered as the state-of-the-art in the application of machine learn-
ing tools to atmospheric models, including FourCastNet (Pathak et al., 2022), Graph-
Cast (Lam et al., 2023), and Pangu (Bi et al., 2023), which can exhibit instabilities or
error accumulation when autoregressively integrated over long times (Chattopadhyay et
al., 2023).

A recently suggested alternative to obtain stable solutions is a posteriori training,
albeit with an increase in training cost. In a posterior: training, the parameterization
is trained to match the evolution of coarse-grained variables over consecutive time steps.
Although the model still predicts subgrid-scale fluxes, the training is adjusted to iden-
tify fluxes which guarantee that the coarse-grained variables proceed similarly to the train-
ing dataset, rather than matching fluxes independently at each time step. Importantly,
the parameterized fluxes do not need to match exactly those in the training dataset, as
the training data is noisy, and the fluxes required to produce the correct tendencies are
not unique. Instead, the parameterization is trained in an end-to-end fashion by inte-
grating the coarse-grained variables forward in time and using the integrated solution
in the loss function. Examples of parameterizations calibrated a posteriori include pa-
rameterizations of 2D turbulence (Kochkov et al., 2021), quasi-geostrophic turbulence
(Frezat et al., 2022), 3D turbulence (Sirignano et al., 2020; Stachenfeld et al., 2021), and
the CATKE boundary layer parameterization (Wagner, Hillier, et al., 2025). Another
notable example of a posteriori calibration in earth system modeling is NeuralGCM (Kochkov



et al., 2024), where neural networks learn holistic tendencies to augment the dynami-

cal core rather than for targeted physical parameterizations. For many a posteriori cal-
ibration problems with relatively few number of parameters or have reasonably good pri-
ors, ensemble-based methods such as Ensemble Kalman Inversion (EKI) (Iglesias et al.,
2013; Dunbar et al., 2022) are effective and practical (Gjini et al., 2025) as they do not
require automatic-differentiability. However, neural networks generally have orders of mag-
nitude more free parameters than physical models. If ensemble-based methods are un-
able to explore the entire parameter space due to the computational expense of running
many instances of the forward model, then informative priors become especially impor-
tant. Since neural network parameters do not explicitly represent physically interpretable
processes, generating good priors for them may be challenging even with pre-training.

In such circumstances, ensemble-based methods can perform poorly on a posteriori cal-
ibration, and the model should be trained in fully differentiable frameworks. This is be-
coming more common in modern languages like Python (with the use of JAX (Frostig

et al., 2018)) and Julia (with software packages such as Lux.jl (Pal, 2023) and Enzyme.jl (Moses
& Churavy, 2020)), but it is not routine in climate modeling. Therefore, a posteriori cal-
ibration is not always possible for large models as it requires the forward model to be
fully automatic-differentiable and comes at a higher computational as well as memory
cost. However, recent developments on building out full-fledged, general purpose auto-
matic differentiability in Julia-based earth system models have made Oceananigans dif-
ferentiable, allowing a posteriori tasks to possibly be carried out natively (Moses et al.,
2025).

We present NORI (pronounced noh-ree, which refers to a dried edible seaweed in
Japanese): an ocean boundary layer parameterization that combines the strengths of physics-
based and machine-learned parameterizations. The philosophy is to start with as sim-
ple a physics-based parameterization as possible and then augment it with a data-trained
neural network. The physics-based model is a first-order diffusive closure similar to the
Pacanowski-Philander model (Pacanowski & Philander, 1981) where the eddy diffusiv-
ity is a simple function of the local gradient Richardson number. To capture the addi-
tional mixing physics of entrainment, the parameterization is augmented with neural net-
works trained a posteriori with high-resolution simulations of upper ocean turbulence.

The a posteriori calibration uses a neural ordinary differential equation (NODE) frame-
work (Chen et al., 2019; Rackauckas et al., 2021) where the parameterization is integrated
forward in time within fully-differentiable ODE solvers. This is a continuation of Ramadhan
et al. (2023, arXiv), which pioneered the idea of modeling turbulent fluxes in convective
scenarios using a physical closure (convective adjustment) augmented with neural net-
works, trained in an a posteriori fashion. Our work expands upon Ramadhan et al. (2023,
arXiv) by including effects of wind-driven mixing and taking into account realistic ther-
modynamics of seawater. NORI considers the full nonlinear equation of state (Roquet

et al., 2015) and provides a closure for the complete suite of prognostic variables for ocean
boundary layer dynamics: momentum, temperature, and salinity. We show that incor-
porating known physics into the parameterization reduces the amount of data required

for training, allows the use of a small neural network, and improves model generalizabil-

ity and numerical stability. Like all other vertical mixing schemes for the boundary layer
mentioned above, NORI currently focuses on mixing processes that deepen the bound-

ary layer, assuming that the large-scale model resolves lateral instabilities due to the mesoscales
and submesoscales that drive restratification.

Section 2 introduces the high-resolution, high-fidelity, large-eddy simulations (LES)
that we use to train and validate NORi. Section 3 describes the formulation of the NORi
column model. Section 4 describes the local eddy-diffusivity closure which encodes the
known physics. Section 5 describes the neural network formulation and the a posteri-
ori training paradigm used in NORI, while we assess NORi’s performance in Section 6
with single column configurations and Section 7 in a large-scale long-time double-gyre
ocean simulation. Finally, we conclude with a few closing remarks in Section 8.



2 High-resolution dataset for boundary layer turbulence
2.1 Large-eddy simulations

To train and validate NORI, high-quality, physically accurate “ground-truth” data
are required. To that end, we run large-eddy simulations (LES) of upper ocean turbu-
lence, i.e., simulations that resolve the largest turbulent eddies in the boundary layer and
use a subgrid-scale model to represent the smaller, more universal 3D eddies. The LES
are generated with Oceananigans.jl (Ramadhan et al., 2020; Wagner, Silvestri, et al., 2025),
a finite volume ocean model written in Julia (Bezanson et al., 2017) and optimized for
GPUs (Silvestri et al., 2025). The LES data suite focuses on shear-driven and convection-
driven deepening of the boundary layer against a stable background stratification. Math-
ematically, LES solve the incompressible Boussinesq form of the Navier-Stokes equations
given by
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where u are the velocities in the x, y, and z directions, f is the Coriolis parameter, k

is the unit vector in the vertical direction (normal to the fluid surface), p is the kinematic
pressure, b is the buoyancy of the fluid, 7" and S are the temperature and salinity of the
fluid, o is the potential density, g is the gravitational acceleration, and oy = 1020 kg m—3
is the reference density. The LES are run with laterally doubly-periodic boundary con-
ditions, prescribed advective fluxes of T, S, and u at the top given by J;>, g)p and JE°P,
and no-flux boundary conditions for T" and S and free-slip boundary conditions for v and
v at the bottom. Additionally, we assume that the vertical velocities at the top and bot-
tom surfaces are zero, imposing the no-penetration boundary condition given by

w(z=0)=w(z=-L;)=0. (7)

To model a realistic ocean, we use the TEOS-10 equation of state (Roquet et al.,
2015), which takes into account the nonlinear dependence of buoyancy on temperature
and salinity. This nonlinear dependence can lead to effects such as cabbeling, requiring
that temperature and salinity be modeled separately. The 9th order weighted essentially
non-oscillatory scheme (WENO, Balsara & Shu, 2000) is used as the advection scheme,
as it reduces numerical oscillations and is gradient-preserving. At the same time, the dis-
sipative numerics of the WENO scheme also act as an implicit viscous closure while pro-
viding a high effective resolution due to its gradient-preserving properties (Silvestri et
al., 2023). We do not provide any additional explicit LES closure as this technique has
been shown to be desirable when modeling sharp transitions at the thermocline with lit-
tle sacrifice to numerical accuracy (Pressel et al., 2017). The prognostic variables in (1)-
(4) are evolved using a third-order Runge-Kutta scheme with a pressure projection (or
predictor-corrector) method that involves the solution of a three-dimensional Poisson equa-
tion for pressure (Schumann & Sweet, 1988).

The snapshots in Figure 2 show the simulated buoyancy and vertical velocity fields
of two representative examples of upper ocean turbulence: free convection and shear tur-
bulence acting on a fluid initialized with constant vertical stratification. These simula-
tions used for illustration purposes in Figure 2 are run with an isotropic resolution of



0.5m and a Coriolis parameter of f = 8x10~°s~!. Turbulence in the free convection
simulation is generated by buoyancy loss at the ocean surface, leading to static insta-
bility, and in the shear simulation by a surface wind stress. Over time, convection- and
wind-driven turbulence create a well-mixed layer at the top of the fluid, which deepens
over time. Between the mixed layer and the stratified interior, a thermocline with sharp
gradients is formed. This vertical structure can be seen in the horizontally-averaged tem-
perature and salinity fields in the 3rd and 4th columns of Figure 2 for different times.
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Figure 2. Large-eddy simulations (LES) for free convection and pure wind stress scenarios in
a horizontally doubly-periodic domain of size (Lz, Ly, L.) = (128,128,128) m with a grid reso-
lution of 0.5m and a Coriolis parameter of f = 8 x 10 °s™!. The top row shows a convective
turbulence LES driven by surface cooling, while the bottom row shows a shear turbulence LES
driven by surface wind stress. The first and second columns show snapshots of the buoyancy and
vertical velocity fields. The third and fourth columns show the time evolution of the horizontally-
averaged temperature and salinity profiles characterized by a deepening mixed layer in response

to the surface forcings.

The two simulations illustrate the fundamental differences between the two scenar-
ios of boundary layer turbulence. In free convection, the case shown in the upper row
of Figure 2, coherent plumes with strong downward velocities plunge from the surface
towards and through the thermocline. As the plumes reach the base of the boundary layer,
they overshoot into the stratified ocean interior due to inertia and entrain denser fluid
from the thermocline into the mixed layer, increasing the mixed layer’s mean density.
Entrainment mixing is nonlocal as it occurs at the base of the boundary layer, driven
by surface air-sea fluxes. However, in the shear-driven case in the bottom row of Fig-
ure 2, surface wind stress creates shear instability, which generates local eddies that de-
cay away from the surface. The plumes generated by wind stress are much smaller in scale
than those created by free convection. Thus, from a parameterization perspective, the
shear instability can be regarded as a local process. We will therefore develop NORI, start-
ing with a diffusive closure that is known to represent well the local mixing induced by
both convective and shear turbulence. To address the nonlocal entrainment of fluid from



the interior into the mixed layer, which has proven very challenging to parameterize, we
will add a machine-learned neural network component to NORi.

2.2 Training and validation data generation

A LES training and validation suite is run in order to calibrate NORi. All LES are
initialized with uniform temperature and salinity profiles in the horizontal direction and
with a linear gradient in the vertical direction. The simulations are run under a variety
of surface forcing scenarios: winds only, cooling or evaporation only, cooling + evapo-
ration, winds + cooling and/or evaporation, winds + heating, and winds + heating +
precipitation. All of these forcings produce destabilizing fluxes that mix away the ocean
stratification and result in a deepening mixed layer in the upper ocean. The LES domains
are (Lg, Ly, L.) = (512,512,256) m with an isotropic resolution of 2m, which achieves
about 12 simulated days per day on an NVIDIA V100 GPU. Finer resolutions resulted
in very similar results, suggesting that the bulk of the turbulent mixing is resolved with
the 2m isotropic grid.

The initial temperature and salinity stratification is based on linear fits to sum-
mertime profiles from the ISAS reanalysis product of Argo profiles from 2002 to 2020 (Gaillard
et al., 2016)—we choose summertime profiles because we are interested in simulating the
deepening of the mixed layer in fall and winter. We consider profiles from three latitude
bands: midlatitude Atlantic (strong temperature and salinity gradient), equatorial Pa-
cific (strong temperature but weak salinity gradient) and Southern Ocean (salinity-dominated
stratification, equation of state highly nonlinear). This ensures that we cover a repre-
sentative range of oceanic stratifications that will be encountered at inference time, in-
cluding regimes where the equation of state is highly nonlinear. We complement these
observationally inspired initial profiles with additional ones designed to span a broader
parameter space, which is key to ensuring generalizability of the parameterization and
avoiding overfitting during training. In particular, some training cases lack temperature
or salinity gradients, others have inverse (stabilizing) salinity stratification, and others
operate in the more nonlinear regime of seawater’s equation of state at lower temper-
atures. The actual values of the physical parameters used in the LES suite can be found
in Appendix B.

The prescribed air-sea fluxes are constant in time and space and chosen to span
a representative range of conditions encountered in the ocean. The forcing suite covers
the most common oceanic regimes, from free convection (no wind stress) to pure wind
scenarios (no buoyancy flux) to mixed conditions. The range of air-sea flux values is very
broad to ensure, as much as possible, that NORI is never run under forcing conditions
outside the training dataset. The cooling rates range from 0 Wm™2 to 2500 Wm ™2 to
capture strong entrainment scenarios, noting that the mean monthly cooling rate of the
Gulf Stream can go up to around 600 Wm~2 (The Climode Group: et al., 2009), while
latent heat fluxes due to evaporative cooling can reach 500 W m~2 during strong wind
events such as tropical cyclones (Vreugdenhil & Gayen, 2021). On the other hand, evap-
oration rates span between 0myr~! and around 45myr~!. For context, the winter av-
erage of the evaporation rates over the Gulf Stream is around 3myr—! (Yu, 2007). Wind
stresses vary roughly from 0N m™2 to very strong winds at 0.5 Nm™2, and typical monthly-
averaged wind stress values are around 0.2 N m~2 (Copernicus Climate Change Service,
2019). The main training suite consists of 62 simulations, and the LES parameters can
be found in Tables B1, B2, B3, and B4. The parameters for the 32 simulations used in
the validation and testing suite are given in Tables B1 and B5. This suite of datasets
is publicly available for easy download and access on Zenodo (Lee, 2025b).

All LES are run for 2 days, a compromise between a long enough simulation that
captures the physics of turbulent mixing under different scenarios and short enough to
limit the memory footprint of the calibration. This is because to reduce the computa-
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tional cost, we do not perform checkpointing during the forward-backward automatic dif-
ferentiation cycle, i.e., we save the model state at all intermediate time steps rather than
at specific, sparsely distributed times. These intermediate states are needed for the serial-
in-time paradigm of a posteriori calibration during backpropagation, since the loss func-
tion depends on the entire trajectory of the model state. Using checkpointing reduces

the memory footprint at the cost of increased computational time, as the model state

at a specific time has to be recomputed from its nearest checkpoint.

3 Modeling unresolved fluxes in a coarse-grained column model

A convection-resolving simulation requires a resolution of O(1cm). Using an LES,
one might be able to represent such processes at O(1m). But even O(1m) is far beyond
the resolution that can be achieved in global oceanic simulations now and in the fore-
seeable future. Our goal is thus to develop a parameterization that predicts the deep-
ening of the boundary layer in response to forcing without the need to resolve the small-
scale horizontal motions. In practice, we want to find a closed-form 1D equation that
predicts the evolution of the LES area-averaged profiles of velocity, temperature, and salin-
ity as a function of initial conditions and air-sea fluxes.

Let us start by defining the area averaging operator of some LES variable ¢ in a
doubly-periodic horizontal domain €2,

Ax,y,2,t) = ¢(2,1) + ¢/ (2,1, 2, 1), (®)
- 1
¢= 1T Qf odady, (9)
¢ =0, (10)

where ¢ is the horizontal area-average of ¢, L, and L, are the lateral domain dimen-
sions, and ¢’ is its deviation from the horizontal average. Applying this Reynolds-like
averaging as well as the no-normal flow boundary conditions at the top and bottom of
the LES domain according to Equation (7), the momentum, temperature, and salinity
Equations (1), (2), and (3), reduce to a set of 1D equations (see complete derivation in
Appendix A),
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where v/w’, v'w’, w'T’, and w’S’ are the total unresolved momenta, temperature, and
salinity fluxes due to subgrid-scale turbulence. Their surface boundary conditions are
given by

ww'(z =0) = JI°P, (15)
vw'(z = 0) = JI°P, (16)
wT (2 =0) = JpP, (17)
w'S'(z = 0) = JgP, (18)

(19)

while their bottom boundary conditions are given by

ww'(z=—-L,) =vw(z=—-L,) =wT'(z=—-L,) =w'S(z =—-L,) =0 (20)



where L, is the vertical extent of the domain. We write equations for temperature and
salinity separately because we use the full nonlinear equation of state of seawater, and
we cannot combine the two equations into a single one for buoyancy.

4 “Ri”: Eddy-diffusivity closure based on local gradient Richardson
number

Following Kochkov et al. (2024), we first attempted to develop a parameterization
of the boundary layer using a purely data-driven approach by modeling the full fluxes
of ww', v'w', w'T’, and w’S’ with neural networks (note that Kochkov et al. (2024) mod-
els the tendencies instead). However, we found that neural networks were not able to
learn that vertical profiles of temperature and salinity should be persistently statically
stable, i.e., N? = % > 0 where N? is the buoyancy frequency. Instead, neural net-
works produced a boundary layer that was nearly well-mixed near the surface, but with
small random fluctuations in z where N? was negative. This led to numerical instabil-
ity in the hydrostatic formulation, which is used in large-scale ocean models. This de-
ficiency could likely be addressed by increasing the size of the training data set based
on the evidence that noise in neural network inference can be reduced by providing more
training (Subel et al., 2021). However, increasing the amount of data is costly due to the
increased computational and memory requirements during training on a per-epoch ba-
sis. Alternatively, one could increase the model’s expressivity by using a deeper neural
network, but this also leads to exploding memory and/or compute requirements during
training because of the serial-in-time nature of the a posteriori calibration approach and
raises the cost during inference, as the neural network needs to be evaluated very often
(at least once every few time steps) during a forward ocean simulation.

A more effective solution to alleviate the triple conundrum of low training cost, strong
numerical stability, and low inference cost per time step is to start by formulating a sim-
ple physics-based parameterization that captures most of the boundary layer physics and
then augment it with a neural network to address its limitations. In particular, a bound-
ary layer model that enhances the eddy diffusivity whenever the air-sea fluxes are desta-
bilizing guarantees that unstable stratification is rapidly mixed away but fails to cap-
ture nonlocal physics, such as entrainment through the boundary layer base. We will re-
fer to this model as the base closure. Training a neural network to learn the physics miss-
ing in the base closure rather than all boundary layer physics reduces the data require-
ment and model size, dramatically improves parameterization performance, and reduces
numerical instability during training and validation. Mathematically, the base closure
represents all subgrid-scale fluxes as down-gradient fluxes of momentum, temperature,
and salinity,

T = Ty vt = Vo (21)
VW' = Jy, local = ng, (22)
WT" = Jr 1ocal = —figf, (23)
w'S" = Js, 1ocal = —K?Tf, (24)

where v and k are the (positive) eddy viscosity and diffusivity, which depend on the lo-
cal gradient Richardson number R¢, given by
fored
Ri=-2%___0: (25)
70 (52)"+ (32)
The Ri-dependence is well supported by theory (Drazin & Reid, 2004), ocean observa-
tions (e.g. Price et al., 1986), and forms the basis of many ocean boundary layer param-
eterizations (e.g. Pacanowski & Philander, 1981; Large & Gent, 1999; Wagner, Hillier,
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et al., 2025). When Ri < 0, the boundary layer stratification is convectively unstable.
When the boundary layer is statically stable, but the shear is large enough such that Ri
is below some critical value Ri¢, the boundary layer is shear unstable. The specific func-
tional dependence of diffusivity and viscosity on Ri is illustrated in the upper row of Fig-
ure 3 and takes the form,

Ri .
(Vshear — Veonv) tanh Aléi + Vshear, for Ri <0

v =14 (Vo — Vshear) e + Vshear for 0 < Ri < Ri® (26)
v, for Ri > Ri°
(Hshcar - ﬁconv) tanh ARél + Kshear for Ri <0
k=1 (ko — mshear)ﬁ + Kshear, for 0 < Ri < Ri¢ (27)
K0, for Ri > Ri¢
Vsh,
Rshear = P?S“ zar ) (28)
shear
v,
Rconv = P;OHV . (29)
conv

where Veonv, Vshear, Fi¢, ARi, Preonv, and Prgpear are parameters that should be trained
with the LES suite. They represent the viscosity under convective turbulence v¢qny, and
under shear turbulence vghear- The Preony and Prghear are the turbulent Prandtl num-
bers under the convective and shear regimes. The other parameters are instead fixed:
oo = 1020kgm™3 is the reference potential density, ¢ = 9.80665ms~? is the gravi-
tational acceleration, vy = 1 x 107> m? s~ is the background viscosity whose value is
chosen to be small enough to have no impact on the training and validation tests, while
ko is computed using the shear Prandtl number kg = B Y0 This formulation is in-
spired by the Pacanowski-Philander model (Pacanowski & Phllander 1981), but differs
from it by using different functional forms and accounting for different mixing rates in
the convective and shear regimes. Also, this is only the first step in our parameteriza-

tion formulation, which is to be augmented by a neural network.

The base closure implies a change in both the magnitude of viscosity and the Prandtl
numbers between the convective, shear, and stable regimes. This is supported by the LES
solution and mixing length arguments. The eddy diffusivity/viscosity can be expressed
as the product of a turbulent velocity times a mixing length scale. Although the turbu-
lent velocity spans similar ranges in all regimes, the mixing length scale is significantly
longer in the convective regime, spanning the entire turbulent boundary layer and re-
sulting in stronger mixing of tracers. However, the turbulent Prandtl number is smaller
than one, because rotation slows momentum mixing by establishing a thermal wind if
vertical mixing is slower than the Coriolis period (Young, 1994). This is not relevant in
the shear regime, which is associated with faster mixing time scales.

The free parameters in the base closure are calibrated in an a posteriori fashion
by minimizing the mean squared difference between the LES column profiles and their
vertical gradients with those predicted by the closure for all scenarios and times. The
loss function Lyase is defined as

Ngi
o 1 sim
‘Cbase(ﬂvﬁaTMg;ebase) = N (LZ+53+£;“+EGS+£g) (30)
S1m a=1
Aa N. N X N, Ny 2
. a 0,5, a,t,] a ] —0,%,]
with £§ = Nt;\; >l - ¢LES‘ Z Z O:0rps| » (31
Z =1 j=1 =1 j=1

where ¢ and ¢ ¢ are the profiles of one of the variables (velocity, temperature, salin-
ity) as a function of vertical level ¢, time j, and scenario a—the overbars are a reminder
that we are only parameterizing the area-averaged profiles. Normalization factors Ag are
computed adaptively based on initial conditions and losses in iteration 0 before train-

ing to ensure balanced learning in all variables and loss components. This is done through
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Figure 3. The top panel shows the calibrated diffusivity and viscosity values as a function of
the local gradient Richardson number Ri in the base closure model. In the convective range, the
viscosity and diffusivity are constant, while they decrease linearly towards a background value in
the shear range. The lower panels show the vertical profiles of momentum, temperature, salinity,
and buoyancy from LES simulations forced with four different air-sea fluxes and the correspond-
ing predictions from the base closure (the dashed lines represent the initial profiles). From left
to right: a wind-forced example with no rotation and a convection example with rotation used
to train the base closure; a wind-forced example with rotation and a wind-forced example with
heating and precipitation used for validation.
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a two-stage process. Firstly, the magnitudes of temperature and salinity losses are reweighted
to be inversely proportional to their contributions to density variations, preventing ei-
ther variable from dominating the loss. The density loss is then weighted so that

Lé 1

_ 2
LY+ L 9’ (32)

imposing a weaker diagnostic constraint on the density vs. temperature and salinity. Mo-
mentum losses are normalized to match the sum of density, temperature, and salinity
losses. The same weights are also applied to their respective gradient loss counterparts.
Secondly, after these physical weightings are applied, the total profile losses and gradi-
ent losses are rescaled to be equal. This scheme ensures that all components of the loss
function contribute meaningfully to the training process. The mathematical details of
how normalization factors are computed are provided in Appendix C. The free param-
eters Opase = [Veonv, Vshear, Ri%, ARG, Preony, Prshem]T in the base closure are calibrated
with Ensemble Kalman Inversion (EKI) using the EnsembleKalmanProcesses.jl pack-

age (Iglesias et al., 2013; Dunbar et al., 2022), a gradient-free black box optimization al-
gorithm well suited for problems with a small number of parameters. Since there are only
6 tunable parameters in the base closure, we chose to use EKI rather than differentiable
methods because we are able to afford sufficient (200) ensemble members in order to more
effectively explore the parameter space compared to gradient-based methods.

The base closure is able to capture the evolution of the vertical profile of the bound-
ary layers under training and testing scenarios where instabilities are driven purely by
surface wind stresses. As expected from a purely local parameterization, the base clo-
sure underestimates the mixed layer depth when convection is present, since entrainment
is a nonlocal process (as discussed in Section 2). The bottom panels of Figure 3 show
examples of vertical profiles of temperature, salinity, and potential density from LES sim-
ulations forced with four different air-sea fluxes and the corresponding predictions from
the base closure. The base closure is unable to fully capture the deepening of the bound-
ary layer in the free convection training case (second from left), which could be attributed
to the missing nonlocal entrainment physics. The other three training and validation cases
shown in Figure 3 include purely wind-driven mixing in rotational and irrotational cases,
as well as (destabilizing) wind stress combined with (stabilizing) heating and precipita-
tion. In all three cases, mixing is purely local and the base closure is able to predict ac-
curately the depth of the mixed layer.

5 “NO”: Using neural networks to capture nonlocal entrainment

From Section 4, we have seen that the base closure is able to capture local mixing
but is unable to represent nonlocal entrainment processes driven by surface buoyancy
fluxes. We will now use neural networks as a residual model to capture nonlocal entrain-
ment physics.

5.1 Enforcing physical knowledge and constraints on neural networks
with architecture design

In NORI, the neural networks are used to predict the missing entrainment fluxes
of temperature and salinity at the base of the boundary layer. Initially, additional neu-
ral networks for momenta v and v were included, but they did not improve the param-
eterization skill despite a substantial increase in training cost. This is likely because the
momentum fluxes are dominated by inertia-gravity wave signals rather than turbulent
fluctuations, obscuring the entrainment signal that contributes to vertical mixing. De-
spite the absence of neural networks in the momentum equations, we found that due to
the base closure, entrainment fluxes in 7" and S would still lead to enhanced momenta
mixing at the base of the boundary layer.
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Mathematically, we add nonlocal terms Jyn, and Jyyg which are computed using
neural networks NNy and NNg to Equations (23) and (24),

_ dT
w'l" = JT, local + JT, nonlocal = _Ka + JNNT (33)
w'S" = JS7 local + JS, nonlocal — _H& + JNNS- (34)

By construction, the surface and bottom fluxes of Jyy, and Jyng are set to zero, ensur-
ing that the neural network only redistributes tracers within the water column without
adding or removing them from the domain. The inputs to NNz and NNg are the tem-
perature gradient, salinity gradient, potential density gradient, and gradient Richard-
son number of 5 grid points within the neighborhood of the grid point intended for in-
ference, as well as the surface buoyancy flux. The information of local shear is encoded
in the local Richardson number Ri while information regarding nonlinear seawater ther-
modynamics from TEOS-10 (Roquet et al., 2015) is explicitly encoded in the potential
density gradient inputs. The nonlocality of the neural networks is reflected in their de-
pendence on the surface buoyancy flux regardless of the location of inference within the
vertical column.

The output of each neural network NNt and NNg consists of only a scalar value
that represents the nonlocal flux at the intended point of the grid. To infer the missing
entrainment fluxes at each of these grid points, the same neural networks are “convolved”
along the vertical dimension, i.e., the weights of the neural networks are shared among
all vertical grid points. Similarly, location-dependent inputs (neighborhood tracer gra-
dients and Ri) change accordingly as the neural networks are “vertically convolved”. This
means that neural networks are depth-independent, implicitly assuming that the entrain-
ment physics do not depend on depth. However, it is important to note that rotational
effects (which are ignored in NORi) suppress entrainment in boundary layers deeper than
a kilometer as the time scale for plumes to reach the base of the boundary layer becomes
comparable to the Coriolis time scale (Marshall & Schott, 1999). Such deep boundary
layers are only found in regions of dense water formation at high latitudes and require
a dedicated parameterization that includes both vertical mixing by convection and lat-
eral restratification by lateral baroclinic instabilities (Boccaletti et al., 2007). NORI, like
all other ocean boundary layer models, is designed to capture turbulence in low- to mid-
latitude boundary layers.

Taking advantage of the fact that entrainment affects only the base of the bound-
ary layer, the neural networks are only active within five grid points below and ten grid
points above the boundary layer base, diagnosed as the nearest point from the surface
where the Richardson number exceeds the critical Richardson number Ri¢. We dedicate
a larger active zone above the base of the mixed layer than the bottom as we found through
experimentation that this allows the entrained tracers to mix uniformly across the en-
tire mixed layer column above the entrainment zone more effectively. The nonlocality
is reflected by the neural networks’ dependence on air-sea fluxes, in addition to local gra-
dients at the base of the boundary layer, consistent with evidence that the entrainment
fluxes scale nonlocally with air-sea fluxes (Deardorff et al., 1980; Van Roekel et al., 2018).
More technical details on the neural network architecture are provided in Appendix D.

5.2 Neural ODEs: online calibration to promote accuracy, generalizabil-
ity, and stability

The boundary layer models consist of a system of neural ODEs (two velocity com-
ponents, temperature, and salinity), i.e., ODEs with embedded neural networks. Two
separate neural networks that represent the nonlocal turbulent fluxes of temperature and
salinity are embedded in their respective equations. The neural ODEs (NODEs) are cal-
ibrated a posteriori to promote numerical stability and generalizability of the solutions,
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as explained in the introduction. This means that the loss £ is a function of the full time
history of the evolving variables rather than the subgrid fluxes. Mathematically, for some
integration time from ty to t; where the variables are time-marched forward,

L(@,v,T,S;07,05) =L (u(t),v(t), T(t),S(t),o(t)), (35)

where @7 and O are the trainable weights of the neural networks, and the variables in
L are the full time series from ty to ¢; where t € [tg,t1]. The potential density o is in-
cluded in the loss because it is a nontrivial function of temperature and salinity due to
nonlinearities in the equation of state.

The neural networks are trained with a posteriori calibration. We utilize automatic
differentiation (AD) to compute how loss changes with respect to the weights of the neu-
ral networks. AD propagates derivatives through the ODE solver, enabling gradient-based
updates to parameters. In the context of the parameterization problem addressed in this
study, the climate model acts as the forward model, implying that online calibration re-
quires the climate model to be entirely differentiable. However, contemporary climate
models are not differentiable. Additionally, due to its serial-in-time calibration nature,
online training requires substantial computational power and memory. We describe in
the following how we were able to overcome both challenges. However, first, we wish to
explain why we did not resort to a prior:i calibration, which is a common strategy to sim-
plify the calibration task.

A priori (or offline) calibration trains the neural networks to match the turbulent
fluxes diagnosed from the LES as a function of the inputs with no information about the
temporal evolution of the system. Mathematically, offline training for our problem would
take the form

Eoﬂ'—line (E; v, T? gv 0T7 BS) =L (u/wla U/w/7 U}/T/, w/S/) : (36)

This approach led to numerical instabilities within a few time steps when applied to our
parameterization problem. The reason is that the diagnosed LES turbulent fluxes con-
tain noise in addition to the signal relevant to entrainment: linear internal waves gen-
erate fluctuations in all variables but have no impact on entrainment, and discretization
errors are unavoidable. Although regularization techniques can be used to reduce the im-
pact of noise contamination in training data, this is not appropriate for our purposes be-
cause the target signal, the entrainment flux, is characterized by sharp gradients at the
base of the boundary layer. Any smoothing of its vertical profile would affect the strat-
ification at the base of the boundary layer, which is a crucial variable in setting the deep-
ening of the boundary layer itself. As a result, a priori calibration results in parameter-
izations of fluxes with a small amount of noise. This noise inevitably accumulates as the
NODEs are integrated forward in time, eventually leading to a finite-time blowup.

The loss function used for a posteriori calibration has the same form as the one
used to train the base closure and given in Equation (31) except for the omission of the
momentum fields, £ and L. Including the momentum terms in the loss function sig-
nificantly deteriorates the quality of the training, because the velocity fields are dom-
inated by inertial oscillations, which have no impact on entrainment, but in an attempt
to capture them, neural networks deteriorate the quality of the predictions 7" and S. We
also found that including vertical derivatives of tracers during optimization promotes smooth
solutions free of tiny wiggles around the training data, acting as a form of regulariza-
tion. Training is carried out over Ny, = 62 simulations outlined in Tables B1, B2, B3,
and B4. The details of how normalization factors are calculated are discussed in Section
4 and Appendix C.

When we were trying to train NORi, there were no fully-differentiable ocean mod-
els which provides the functionality and interface required for our a posteriori calibra-
tion. Therefore, we wrote a custom-built, standalone implementation of the 1D bound-
ary layer model outlined in Equations (11) through (14) in the Julia programming lan-
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guage (Bezanson et al., 2017). However, it is worthwhile to note that at the time of writ-
ing, it is likely that in the near future, it will be possible to perform such training directly
in Oceananigans.jl due to recent developments in its automatic differentiation capabil-
ities (Moses et al., 2025).

The neural ODEs (11) through (14) are quite stiff (Kim et al., 2021) due to the mul-
tiscale nature of the boundary layer physics, where the diffusion terms, Coriolis terms,
and neural network entrainment terms evolve on three significantly different length and
time scales. Explicit time stepping schemes are thus prohibitively expensive for both the
forward and backward passes. Instead, we implemented a split implicit-explicit algorithm,
where the diffusion term is time stepped with the implicit Euler method and the non-
local flux is time stepped with the explicit Euler method. The NODEs are time stepped
by iterating over the non-dimensional, discretized versions of the NODEs with a constant
Atirain = 10minutes during training and Atyalidation = D minutes during validation.
(The discretized equations are provided in Appendix E and the nondimensionalization
is derived in Appendix F.) As we will also show in Section 6, NORI is insensitive to time
step size up to 1hour, so with a training time step of 10 minutes, higher-order explicit
time stepping schemes are not required.

The neural networks are built employing Lux.jl (Pal, 2023), with the Glorot method (Glorot
& Bengio, 2010) used to initialize their weights. During training, both input and out-
put data are normalized to a mean of zero and a variance of one across all training sim-
ulations. The backpropagation of the weight gradients of the neural network with respect
to the loss function is accomplished through the Enzyme.jl AD tool (Moses & Churavy,
2020) in the Julia language—see Equations (E1) through (E4). The weights of the neu-
ral network are updated using the Adam optimizer (Kingma & Ba, 2017). Through a
brief hyperparameter sweep over different activation functions, neural network layers,
and the number of units in the hidden layers, we found that 3 hidden layers with 128
units each and a rectified linear unit (ReLU, Glorot et al., 2011) provided the best per-
formance as computed following the loss function introduced right above. To avoid lo-
cal minima due to the complex loss landscape to be sampled, we employ a “curriculum
learning” strategy. This involves training the NODESs to make accurate and numerically
stable predictions over progressively extended integration time frames. Integration times
are increased in 3 stages with integration windows of 15-hour, 23.3-hour, and 43.3-hour
while decreasing the learning rate. The numerical values of the chosen integration win-
dows do not carry any significance apart from them be the 90th, 140th, and 260th time
step given 10-minute time steps. In each stage, the NODEs are trained for 2000 epochs,
and the initial model weights of each stage are selected based on the lowest training loss
in the previous stage. At the beginning of each stage, the losses are renormalized, i.e.
the A; factors in the loss function are recalculated to promote a good gradient flow to-
wards optimal model performance. The final model weights are selected on the basis of
the lowest validation loss in the final stage. We used a total of 62 training examples to
train the NODESs, which is equivalent to 62 different initial and boundary conditions in-
tegrated forward in each epoch. A “full-batch gradient descent” approach (where the loss
is computed across all training simulations for each gradient descent step) is taken, as
we found that performing minibatching worsens loss convergence. General training takes
approximately 90 hours wall time on a single CPU, trained on the Supercloud comput-
ing cluster (Reuther et al., 2018). We chose to train it on a CPU due to the more com-
plete CPU coverage of Enzyme.jl at the time of training NORAi, but in future iterations
it would be useful to train natively on Oceananigans.jl with GPUs.
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6 Training, validating, and comparing NORI in single column contexts
6.1 Training and validation loss

We trained NORi on 62 cases listed in Tables B1, B2, B3, and B4 and validated
it on an additional 30 cases shown in Table B5 to select the final model weights. We note
that the last 2 testing cases in Table B1 are not used to validate the neural network com-
ponents. This is because these cases do not have convection, and in such scenarios the
neural networks would not be turned on anyway. Figure 4 shows that the neural net-
work losses decreased during the training epochs, approaching convergence after about
4,000 epochs. Training losses remain small in cases that begin with small losses, indi-
cating that neural networks augment base closure only when there are significant resid-
ual errors. We also find that the “curriculum” learning approach, where neural networks
are trained on progressively longer integration windows, is well-balanced, with the de-
crease in loss similar across the three stages. This is likely because the physics of entrain-
ment within shallow mixed layers is independent of the depth of the boundary layer, so
each stage provides the same training information. The validation losses follow a sim-
ilar trend with epochs to the training losses, indicating that NORI interpolates well across
the physical regimes it is trained on.

6.2 Inference performance

Once trained, NORi matches the LES solutions in all training cases and demon-
strates strong predictive skills in the validation cases. This includes the cases where the
base closure was inadequate, indicating that NORI effectively captures entrainment, which
is the primary deficiency in the base closure.

We illustrate the improvement of NORi over the base closure in six representative
cases—three training cases and three validation cases—in Figure 5. NORi matches the
LES solutions in the training cases and approximates well the validation cases, showing
substantial improvement over the base closure in simulations where the entrainment is
strong. The first column of Figure 5 shows the evolution of a boundary layer subject to
strong winds and cooling. The initial stratification is strong and is derived from a lin-
ear fit of the summer Argo profiles from the midlatitude Atlantic (Gaillard et al., 2016).
During the first hours, a turbulent Ekman layer driven by wind develops on the surface
Lex =~ 0.25f ' i ~ 70 m (McWilliams, 2011). But soon afterwards convective
plumes start punching deeper, resulting in substantial entrainment captured by NORi,
but not by the base closure. In contrast, the third column of Figure 5 presents a sim-
ulation in which both NORi and the base closure match the LES solution. This solu-
tion is representative of the Equatorial Pacific where f = 0 and therefore Ly, — oo
so Ekman dynamics do not apply. Despite strong evaporation, momentum shear reaches
the base of the boundary layer and dominates over convection, resulting in minimal en-
trainment. These two examples demonstrate that NORi correctly reduces to base clo-
sure when shear dominates turbulence and deepening scales with Ri, while it improves
on base closure when convection drives entrainment.

The fourth through sixth columns of Figure 5 show validation examples that were
not seen during training. NORI generalizes well to these unseen scenarios, confirming
that the neural network effectively interpolates within the range of air-sea fluxes and strat-
ification values seen in training. Should new cases emerge where NORI fails to match
LES simulations or observational measurements of boundary layer evolution, its high ex-
pressivity and flexibility give us confidence that it can be retrained through fine-tuning
or transfer learning to capture the new physics.

Importantly, NORi works well in the nonlinear regime of the equation of state, as
demonstrated in the second and fifth columns of Figure 5, where conditions similar to
those of the Southern Ocean with low temperatures, destabilizing temperature strati-
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Figure 4. Training and validation losses of NORi. Top row: mean and individual losses
against epoch over the final integration horizon of 43.3 hours for the training suite (Tables B2,
B3, and B4) in the left panel and the validation suite (Table B5) in the right panel. All losses
are normalized only once at epoch 0—an epoch is defined as one iteration over the entire training
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and 43.3hours. The training loss is re-normalized at the start of each stage, as explained in
Appendix C. The epoch with the lowest training loss at each stage is used to initialize network
weights for the next stage. The final model weights are selected from the model with the lowest

validation loss in the final stage.
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(LES) solutions (green lines). The profiles are computed 1.75 days after the initial conditions
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fications, and salinity-dominated buoyancy structures are illustrated. The initial tem-
perature and salinity stratifications are linear with depth, but the resulting buoyancy

is not. NORI captures the entrainment of temperature, salinity, and buoyancy, which be-
have differently due to the nonlinear equation state and are missed by the base closure.

It is worth remarking that the base closure matches the buoyancy LES profiles much
better than those of temperature and salinity, which compensate strongly in these ex-
amples. This supports our argument that boundary layer parameterization must be val-
idated with solutions and observations of both temperature and salinity profiles, rather
than just buoyancy as is often done in the literature.
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Figure 6. Comparison of NORI versus k-e¢ performance in a column model setting. The model
profiles of temperature, salinity, and buoyancy are plotted together with the area-averaged LES
profiles. The examples shown are samples of validation cases not seen by NORi during training
(see Table B5 for a complete list). The profiles are computed 1.75 days after the initial conditions
(dashed lines).

So far, we have focused on demonstrating that NORi has the skill to match LES
solutions of boundary layer turbulence. In Figure 6 we further show that NORi compares
very favorably with a state-of-the-art boundary layer closure. The k-¢ model (Umlauf
& Burchard, 2003) is a second-order turbulence model that solves two additional prog-
nostic equations for the turbulent kinetic energy k and its dissipation € to predict the
turbulent fluxes w/w’, v'w’, w'T", and w’S’. Despite its much simpler formulation, NORi,
a leaner first-order model, produces single-column solutions that are practically indis-
tinguishable from k-e and the LES solutions within the validation suite used in this work.
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An additional favorable comparison of NORi against CATKE (Wagner, Hillier, et al.,
2025), a recently-developed 1.5-order closure that estimates turbulent fluxes using only
an additional prognostic equation for turbulent kinetic energy (TKE) is shown in Fig-
ure H1 in Appendix H. This makes NORi a compelling alternative in scenarios for coarse-
resolution, long-time step simulations where lower-order models are preferred. If we wish
to apply NORI to high-resolution, short-time step simulations, it is possible to extend
NOR:I to higher orders by solving additional prognostic equations for turbulent quan-
tities as well.

Before testing NORI in more general settings, we next evaluate NORi’s numerical
stability, an important consideration in neural network-based models, and its sensitiv-
ity to the time step used to march the boundary layer equations forward.

6.3 Numerical stability

To assess whether NORI is numerically stable on time scales longer than the train-
ing horizon of 2 days, we run NORI for 60 days in a single 768 m deep column with a con-
stant grid resolution of 8 m and a time step of 5 minutes. The simulation is initialized
with a constant temperature gradient of % =9.77x1072°Cm~! and a salinity gra-
dient of % = 1.46 x 1073 psum ™!, and surface values Ty(z = 0) = 30°C and Sy(z =
0) = 37psu. Surface forcing is imposed through a constant momentum flux of JE°P =
—1 x 107*m?s~2 and time-dependent sinusoidal temperature and salinity fluxes

2
J;Op = [2 cos (1d7;yt> + 1:| x 1074 OCmS_l, (37)
to 27T - -
J§" = ~2cos <263158dyt %107 psums, %)

with a Coriolis parameter of f = 1 x 107*s~!. The “magic number” 2.631 58 days is
chosen ad-hoc so that when combined, the temperature and salinity fluxes result in ir-
regular fluctuations in the surface buoyancy flux, primarily destabilizing, but occasion-
ally stabilizing. Because they have different periods, the temperature and salinity fluxes
are not in phase. At certain times they act in opposite directions (one stabilizing, an-
other destabilizing), while at other times they are jointly stabilizing or destabilizing. So,
in addition to testing numerical stability, we also test whether NORi can simulate the
evolution of a boundary layer under time-dependent air-sea fluxes despite being trained
only in settings with constant air-sea fluxes. NORI correctly turns on the neural network
to capture entrainment only when the buoyancy flux drives convection (destabilizing).

To test whether NORI is not only stable but also accurate on long time scales, in
Figure 7 we compare the NORI profiles of the velocity, temperature, and salinity fields
at 60 days with the profiles of an LES simulation and the k-e model forced with the same
time-dependent air-sea fluxes. We note that the momentum components u and v can be
highly noisy in LES due to internal oscillations that do not contribute to entrainment,
so the analysis of results against LES should focus on the temperature and salinity fields.
This also illuminates why the loss function used to train NORi does not include momen-
tum terms (see our discussion in Section 5).

The profiles are quite similar, but differences do emerge: the k-¢ model produces
a mixed layer that is around 50 m deeper than that of NORi by the end of 60 days. Com-
paring both models with the LES solution, we see that NORI is slightly undermixed while
k-€ is slightly overmixed, where the biases are around 25m in each direction. This sug-
gests that the NORI representation of the entrainment may need further tuning over longer
integration times. However, the k- model has not been tuned against the same suite of
LES simulations used to train NORI, so any statement about its capabilities would not
be entirely fair. That said, this experiment shows that despite NORi and k-¢ being vir-
tually indistinguishable over short time scales (see Figure 6), tiny biases will accumu-

21—



late, leading to differences over longer time scales. Although these biases might appear
minor at 60 days, they are in fact of great significance, as ocean models are typically in-
tegrated for at least decades.
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Figure 7. Velocity, temperature, and salinity profiles 60 days after initialization (dashed lines)

-2

for simulations forced with a constant wind stress, J°° = —1 x 107*m?s~2 and time-dependent

heat and freshwater fluxes given by Equations (37) and (38). The Coriolis parameter is set to
f = 1 x 107*s™!. Solutions are reported from the NORi and k-e models together with the area-
averaged LES.

6.4 Time step dependence

An important consideration in the development of parameterizations for large-scale
ocean models is the time step required to get stable and accurate solutions. To address
this point, we run NORIi and the k-e¢ model with increasing time steps from 1 minute to
2 hours. To focus on the limitations of the time steps associated with the parameteri-
zations and not with the inertial oscillations, we set f = 0. The simulations are initial-
ized with a temperature gradient of % = 1.5 x 1072°Cm~! and a salinity gradient
of % = 2 x 1073 psum™!, with surface values Ty(z = 0) = 20°C and Sp(z = 0) =
37psu. The surface fluxes are set to JIP = —1x10~*m?s~2, JiP = 2x10"4°Cms~!,
and J¢® = —2 x 107° psums ™, respectively. The models are integrated for 4 days.
Figures 8 and 9 show the final velocity, temperature and salinity profiles for the differ-
ent time steps computed using the NORI closure and the k-e¢ closure.

As shown in Figure 8, the NORI solutions are independent of time step if shorter
than 1hour. The solution, instead, begins to deviate from the true solution when the time
step is increased to 2 hours; the mixed layer becomes too deep because NORIi begins to
overestimate mixing. In contrast, the model k-e shows time step dependence even be-
low 1hour. Interestingly, k-¢ tends to underestimate the mixing as the time step increases.
This is unsurprising as it is well known that higher-order boundary layer models, such
as k-¢, require shorter time steps than their lower-order counterparts, and that is the main
reason why they are not commonly used in large-scale coarse resolution ocean models
that require longer time steps (Reichl & Hallberg, 2018; Wagner, Hillier, et al., 2025).

For NORi, with 1hour time steps, we find that the solutions of 7" and S remain accu-
rate compared to the LES solution, indicating that NORi can be used with time steps
up to 1 hour without loss of accuracy. The same could also be said for k-¢ at or below
30 minutes time steps. Additionally, regardless of time steps, the velocity profiles of both
NORi and k-e show greater deviations from the LES solution. However, velocities are
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Figure 8. Velocity, temperature, and salinity profiles 4 days after initialization generated with
NORI using a range of time steps. The surface forcing parameters are given in the text. There is
no v velocity component, because the simulation is not rotating and the surface momentum stress

acts in the z-direction. The LES solution is also shown for reference.
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Figure 9. Same as Figure 8 but generated with the k-e model.
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less important for capturing the vertical mixing processes in which we are primarily in-
terested, since both models can capture the stratification accurately despite not getting
momentum entirely right.

In a highly unoptimized, naive first implementation of NORi in Oceananigans.jl
where data is copied to and from the working arrays for neural network inference, NORi
is around 15% slower than k-e on a per-time step basis. Given that NORi remains ac-
curate at time steps more than twice as long as k-¢, we conclude that there are compu-
tational advantages to using NORIi over higher-order models in large-scale simulations.

At the same time, we have seen in Figure 7 that this set of trained NORi weights pro-
duces biases that are of the same magnitude as k-¢ when compared to LES in our sim-
ulation over 60 days, making the case for using NORI in large-scale simulations even more
compelling.

7 Testing NORIi on a large-scale, centennial double-gyre simulation

To test NORi’s skill in large-scale simulations, an idealized double-gyre simulation
is set up that includes many key components of realistic ocean simulations. Implement-
ing NORI in Oceananigans.jl was straightforward; it is only necessary to set up input and
output fields for neural network inference, as the neural network package Lux.jl easily
integrates into Oceananigans.jl without the need for intermediate wrappers. NORi works
flexibly with both CPU and GPU backends in Oceananigans.jl, allowing us to take ad-
vantage of hardware acceleration for large-scale simulations.

The double-gyre has dimensions of (Lg, Ly, L,) = (4000, 6000, 1.6) km with a grid
size of (N, Ny, N,) = (100,100, 200), which fits on a single NVIDIA V100 GPU. We
do not include any other parameterizations in order to isolate and observe only the ef-
fects of boundary layer schemes. The setup uses a S-plane approximation with f = 2{2sin 45° ~
1.0 x 10~*s! at the center of the domain and 8 = % ~1.6x107"m s,
where € is the rotation rate of the Earth and Rgartn is the radius of the Earth. The merid-
ional extent of the gyre is 6000 km and corresponds approximately to 54° in latitude. Forc-
ing consists of restoring on an 8 day time scale of temperature and salinity to linear pro-
files decreasing with latitude from 30°C to 0°C and from 37 psu to 34 psu, respectively
(see Figure 10). Momentum forcing is through a sinusoidal wind stress of magnitude 1x
1074m?s™2 ~ 0.1 Nm~? driving westerlies north and south and easterlies at the cen-
ter latitude as shown in Figure 10. A linear drag with a damping time scale of 30 days
is imposed at the deepest grid level. The double-gyre simulation is run for 100 years with
a constant time step of 5 minutes, chosen short enough to compare the results with the
NORIi and k-€ boundary layer models. The simulation is initialized with a uniform tem-
perature field in the horizontal direction and with a linear vertical gradient decreasing
from 30°C at the top to 10°C at the bottom. The salinity field is initialized with no ver-
tical gradient but with a meridional linear gradient decreasing from 37 psu to 34 psu with
latitude. Figure 10 shows the equilibrated 3D buoyancy field, a horizontal temperature
slice at a depth of 164 m, and the vertically-integrated barotropic streamfunction ¥ av-
eraged over 10years defined as

v 0 oV 0
—-— =- dz, — = d 39
Iy /Lz T e /Lz o (39
o 1 year 100
7oL / wt. (40)
10 years Jyear 90

The barotropic streamfunction is characterized by two intensified gyres on the west. A
thermocline develops in the southern half of the domain consistent with the Ventilated
Thermocline Theory (Pedlosky, 1996; Vallis, 2017). Deep convection generates a well-

mixed water column at the northern edge of the domain.
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Figure 10. The configuration of the double-gyre simulation. The results shown in this figure
are produced using the NORI closure implemented in Oceananigans.jl, run on GPUs, taken at

t = 100years. The subfigure on the left shows a 3D snapshot of the buoyancy field as well as
the zonally-averaged buoyancy of the simulation. The subfigures on the right show the surface
temperature, salinity surface restoring profiles (top left), the surface wind stress (top right),

the barotropic streamfunction averaged over the last 10 years (bottom left), and a horizontal
temperature slice at a depth of 164 m (bottom right). The barotropic streamfunction reaches a

maximum of around 40 Sv in the subtropical gyre.

We run simulations using NORI, the base closure model, and the k-e¢ model. In this
naive first implementation of NORi in Oceananigans.jl, we allocated additional work-
ing arrays to store the inputs and outputs of the neural networks; thus a neural network
inference is a forward pass over the input working array. Admittedly, this is a highly in-
efficient approach as it incurs severe memory overhead as well as data duplications. How-
ever, this simple implementation has already yielded a performance that is barely 15 %
slower than k-e¢ on a per-time step basis. Combining a more efficient implementation with
the larger time steps with which NORi can be run (see Figures 8 and 9), NORi has the
potential to be significantly faster than higher-order closures when deployed in large-scale
simulations.

NORIi is stable for the full 100 years of simulation despite being trained with an
integration time of less than 2 days. In the many different setups we have run during ex-
perimentation, NORi has never once crashed due to numerical instabilities. Figure 11
compares the zonally-averaged temperature at t = 2.5 years from double-gyre simula-
tions using the three boundary layer models. NORI simulates deeper mixed layers than
the base closure as expected, because the base closure lacks the representation of entrain-
ment. Instead, NORi produces shallower mixed layers than k-¢, especially in the north-
ern part of the domain. Interestingly, this bias pattern is the same as what we observed
in the single-column comparison at 60 days with LES in Figure 7. Although NORIi and
k-e produce very similar solutions over the 2-day training periods, important differences
can emerge over longer time periods, as also discussed in Section 6.3. However, the dis-
crepancies in this case may also arise from interactions between the parameterizations
and the large-scale ocean dynamics. Figure G1 in Appendix G confirms that these dis-
crepancies persist in time by showing the same zonally-averaged temperature after 100 years.
In Appendix H we further show that NORi generates deeper mixed layers than CATKE (Wagner,
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Hillier, et al., 2025) at 100 years, suggesting that more studies are needed to determine
which model is more accurate.

NOR; closure k-¢ closure _ NORi - k-€
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Figure 11. Zonally-averaged temperature slice from simulations using NORi, k-¢, and the
base closure in the double-gyre simulation. The snapshots above are taken at ¢ = 2.5years. The

rightmost column shows the temperature differences between NORi and the other two models.

The results of the double-gyre solutions highlight the importance of recalibrating
boundary layer parameterizations in global simulations with climatological observations,
because the small residuals in the calibration with LES simulations can build up over
longer times and larger scales. However, calibration with short-term, high-resolution sim-
ulations or observations provides essential initial estimates for the model parameters, re-
ducing the amount of data required for calibration in the global context.

8 Conclusion

We introduced NORI, a parameterization of oceanic surface boundary layer tur-
bulence formulated with neural ODEs where neural networks augment a simple phys-
ical closure. Some important overarching themes guided the development, iteration, and
calibration of NORi. We recognized that to overcome the triple conundrum of high nu-
merical stability, fast model inference, and relatively cheap training, the neural networks,
as highly expressive as they are, must be constrained by our physical understanding of
the vertical mixing process. With many more free parameters and training data than
what we attempted, using a purely neural network approach may yield higher model ac-
curacy and generalization. However, the computational cost of generating the training
data and performing inference renders this approach unrealistic. It is well understood
that incorporating physical knowledge into model design drastically reduces the amount
of data required and the size of the model (Goyal & Bengio, 2022). Through numerous
experiments, we designed a physical closure that is “simple but not any simpler”. Lay-
ered on top of it are highly expressive neural networks that capture more complicated
processes, where good representations have eluded traditional parameterizations for decades.
Specifically, in the context of NORi, we used neural networks to capture nonlocal entrain-
ment fluxes which are missing from the local eddy-diffusivity closure.

During the design process of NORi, we paid special attention to ensuring that ev-
ery choice is physically principled. Since neural networks predict fluxes instead of ten-
dencies, NORI satisfies conservation laws to machine precision by construction. The non-
linear thermodynamics of seawater are explicitly incorporated, thus NORi can be read-
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ily deployed in realistic ocean simulations. By sharing the same neural network weights
across all vertical levels, we ensure that the entrainment dynamics of NORi are indepen-
dent of mixed layer depth. However, this also means that NORi cannot capture deep con-
vection dynamics (see our discussion in Section 5.1), but a simple extension of includ-

ing the mixed layer depth in the neural network inputs can be used to address this lim-
itation. To reduce inference cost, the neural networks in NORI are relatively lean, with
only three hidden layers and 128 neurons per hidden layer. With further work on dis-
tillation and pruning, the neural networks could be made even smaller without a signif-
icant loss in accuracy. NORIi has excellent training and generalization performance, as

it is able to accurately predict the depth of the mixed layer in a variety of realistic oceanic
forcings across a wide range of wind, cooling, evaporation, and rotational strengths un-
der various stratifications with different thermodynamic regimes. NORI is also time step-
independent below 1 hour, which is appropriate for large-scale, coarse-resolution ocean
simulations.

Good calibration techniques go hand-in-hand with good model design, since the
right calibration techniques promote desirable model features beyond the direct depen-
dencies within the loss function. From the outset, we designed NORi within the a pos-
teriori paradigm, where the loss function explicitly depends on the entire time history
of coarse-grained variables rather than on instantaneous turbulent fluxes alone, without
considering the resulting trajectories. This ensures that we optimize the model directly
to our desired target. By using the neural ODE approach, we also explicitly optimized
for numerical stability, since models which are numerically unstable will incur a high loss
and are thus avoided. Using this approach, NORI is numerically stable for at least 100 years,
despite being trained on LES with timespans of roughly 2 days. In the many double-gyre
configurations we have explored during experimentation, NORi has never once crashed
due to numerical instabilities. However, in pursuit of numerical stability, we have made
sacrifices in the scalability of the calibration process because of the serial-in-time nature
of neural ODEs. Furthermore, we speculate that the loss landscape for a posteriori train-
ing is likely to be noisier than a priori training, making it less amenable to gradient-based
optimization which could lead to worse training outcomes. Despite these drawbacks, we
have found that a posteriori training is paramount for building a model that is usable
in practice, as training neural networks directly on instantaneous turbulent fluxes leads
to models which are highly numerically unstable and exhibit finite time blowup. This
also means that models pre-trained on instantaneous fluxes were not good priors for a
posteriori training. Without good priors, ensemble-based methods are likely to strug-
gle as well when we cannot afford sufficient ensemble members to explore the entire pa-
rameter space. Eventually, we found that providing more structure and physical induc-
tive biases in the model design seems to be essential for improving training outcomes.

We have designed NORI to be relatively straightforward to implement and deploy
in GPU-based ocean models. Using the Julia software stack, we were able to integrate
NORIi into Oceananigans.jl with minimal effort and no intermediate wrappers. Owing
to the GPU-oriented design of Oceananigans.jl, neural network inference is straightfor-
ward and efficient as we do not require data transfers between CPU and GPU. However,
in our first naive implementation of NORi in Oceananigans.jl, additional working arrays
are allocated for neural network inputs and outputs, leading to memory-bound perfor-
mance due to large transfers of values between working arrays and native Oceananigans.jl
fields. Despite such inefficiencies, NORi’s performance is only 15 % slower than the state-
of-the-art k-¢ closure on a per-time step basis. A more efficient implementation of NORi
would involve writing custom forward pass kernels that access native Oceananigans.jl
arrays directly, thereby eliminating the need for large working arrays. This performance
engineering task should be done in the future once NORI is fully production-ready.

There remain a few important challenges not addressed in this study that are im-
portant to address in the next step. A major caveat in this work is that NORi has been
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trained and deployed with a fixed grid resolution of 8 m. For NORi to be flexibly used
in large-scale ocean simulations, it has to be able to support variable vertical grid sizes.
The most straightforward approach is to interpolate between the dynamics grid and the
physics grid, running NORI inference at a fixed 8 m resolution and then interpolating
the fluxes back to the dynamics grid which is coarser and potentially variable, similar
to that of Molod (2009). A first attempt at this approach has been carried out using sim-
ple linear interpolation, but the results were unsatisfactory. Unsurprisingly, entrainment
fluxes weaken with coarser vertical resolutions, leading to shallower mixed layers. This
is because a coarser grid is less able to support the sharp gradients at the base of the
mixed layer characteristic of entrainment. Thus, more sophisticated reconstruction tech-
niques or a resolution-independent representation of entrainment fluxes may be poten-
tial solutions.

After variable vertical grid support is implemented and validated, we can then run
NORI in a regional and/or global ocean simulation with realistic forcings, setups that
are verifiable against observations. This has to be done in order to assess whether NORi
is successful in alleviating known biases in the mixed layer depth of large-scale climate
simulations. Ultimately, we want to calibrate NORi a posteriori within the regional and/or
global ocean simulation contexts, where the model is initialized, forced, and verified against
observations. This would allow for the fine-tuning of NORi to account for biases found
in large-scale simulations, which are not present in idealized column setups. Importantly,
the neural network weights we have learned so far will serve as good priors, which are
paramount for a posteriori calibration given the complexity of the forward model. Ex-
tending this holistic approach, a thorough and unbiased comparison between current state-
of-the-art boundary layer parameterizations calibrated against a common suite of ocean
scenarios can be carried out to rigorously assess their respective biases.

So far, we have only focused on the deepening phases of the mixed layer, which oc-
cur when the surface buoyancy fluxes are destabilizing. Restratification during the warm-
ing phases due to submesoscale processes that shallow the mixed layer have been ignored
as they are governed by processes at very different length scales than those that deepen
it. In the future, we aim to extend NORI to include restratification processes within a
similar framework, thereby allowing for a more complete representation of the mixed layer
dynamics across the entire seasonal cycle.
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Appendix A Column model derivation of the ocean surface bound-
ary layer

For easier reference, we first rewrite equations (1), (2), (3), and (4) into its com-
ponent form:

% — V- (uu) + fv— dup, (A1)
% — V- (wv) — fu—d,p, (A2)
%gz,v.mwy7@p+a (A3)
%%i:-—v'(uTﬁ (A4)
% — V. (uS), (A5)
V-u=0. (A6)

We again note that by decomposing a field into its horizontally-averaged component and
perturbations away from the average ¢ = ¢(z,t) + ¢'(x,y, 2,t), in a laterally doubly-

periodic domain, the horizontal averaging operator () has the property that

99 _ 99 _
96 09
¢ =0. (A9)

By applying the horizontal averaging to Equation (A6) and noting properties (A7)

and (A8), we obtain
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"o, (A1)

w=C (A12)
where C' is a constant. We now apply the horizontal averaging operator to the impen-
etrability boundary condition at the surface z = 0, i.e., Equation (7), yielding
w(z=0)=0, (A13)
Lw=C=0, (A14)

since w is a constant everywhere in the column.

Expanding the terms in Equation (A1) and applying the horizontal averaging op-
erator, we have (in Cartesian coordinates)

m 0 0
%%::fﬂﬁﬁfggﬁﬁf—ﬁﬂmi+ff—ﬁﬁf (A15)
0 0

— 782 <uﬁ’+ W+ T’ + u’w’) + fv, (A16)
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P 0
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where u/w’ is the vertical flux of horizontal momentum in the z-direction, arriving at Equa-
tion (11). Similarly, we can apply the same procedure above to Equations (A2), (A4),
and (A5) to arrive at Equations (12), (13), and (14) respectively.

Appendix B Training and testing suite

In this section, we provide the complete training and testing suite used to train,
validate and test NORi. Table B1 shows the training cases driven by shear instability
(wind-driven mixing) and two testing cases used to evaluate the base closure, Table B2
shows the training free convection cases driven by buoyancy instability (no winds), Ta-
ble B3 shows the training cases driven by both shear and convective instabilities, while
Table B4 shows the remaining miscellaneous training cases that include cases with the
same forcings and stratifications as some of those before but in different thermodynamic
regimes (lower temperatures) as well as cases with no temperature or salinity gradient.
Finally, Table B5 shows the validation cases used to select the final weights of the neu-
ral network after training. Note that J'° = 0 in all simulations as imposing nonzero
JE°P is dynamically equivalent to imposing nonzero J:°P during training and inference
since momenta is only implicitly provided to NORI via the Richardson number.

J;op J:ﬁqop JZOP % % f Ttop Stop
(°Cms™") (psums™')  (m*s7?) (°Cm™") (psum™!) (s7h) (°C)  (psu)
0 0 —5x 1074 1.4 x 1072 2.1x 1073 8 x 1075 18 36.6
0 0 —2x 1074 1.4 x 1072 2.1x 1073 8 x 1075 18 36.6
0 0 —5x 1074 1.3 x 1072 7.5 x 1074 0 145 35
0 0 —2x 1074 1.3 x 1072 7.5 %x 1074 0 145 35
0 0 —5x107% —25x1072 —45x107% 125x107* 0 33.9
0 0 —2x107* —25x1072 —45x107% 1.25x10~* 0 33.9
—3x107* 3x10°° —5x 1074 1.5 x 1072 1.5 x 1073 1x 1074 20 37
0 0 —3.5x107*  1.5x 1072 1.5 x 1073 1x10~% 20 37

Table B1. Cases driven by shear instability used to train and evaluate NORi. The last two

rows in the table denote testing cases for the base closure.

Appendix C Loss scalings

As seen in Equations (30) and (31), during training of both the base closure and
neural networks, we use a weighted loss function to balance the contributions of each vari-
able using normalization factors Aj for the field ¢ in simulation a within the training
suite. The difference between the loss functions for the base closure and neural network
training is that velocity components u and v are not included in the neural network train-
ing loss as these fields are dominated by inertial oscillations which do not affect verti-
cal mixing. The values of Ag are recalculated at the beginning of each training stage to
renormalize the training loss. A‘; is dependent on the relative contribution of temper-
ature and salinity to the potential density in the initial condition of the neural ODEs,
as well as the relative contribution of each loss component to the total loss. A% and A%
are calculated in this way:

a[|[ATS o + BIASE o

A% = 1

4 AT (1)
o ATE | + B ASS]

A% = S > 2

5 B1AST] (G2)
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J;OP J;,Op Jiop % % f Ttop Stop
(°Cms™")  (psums™') (m®s7%)  (°Cm™") (psum™!) G| (°C)  (psu)
5x 1074 0 0 1.4 x 1072 2.1x1073 8 x 1075 18 36.6
1x10~* 0 0 1.4 x 1072 2.1x 1073 8 x 107° 18 36.6
0 —5x 1075 0 1.4 x 1072 2.1x 103 8 x 107° 18  36.6
0 —1x1075 0 1.4 x 1072 2.1x 103 8 x 107° 18  36.6
3x107%* —3x10°° 0 1.4 x 1072 2.1 %1073 8 x 1075 18 36.6
3x107%* —3x107° 0 14x1072 —21x1073 8§ x 1075 18 36.6
1x107% —1x107° 0 1.4 x 102 2.1x 1073 8 x 107° 10  36.6
5x 104 0 0 1.3 x 1072 7.5 %1074 0 145 35
1x107% 0 0 1.3 x 1072 7.5 %1074 0 145 35
0 —5x 1075 0 1.3 x 1072 7.5 %1074 0 145 35
0 —1x107° 0 1.3 x 1072 7.5 x 1074 0 14.5 35
3x107* —3x10°° 0 1.3 x 102 7.5 %1074 0 145 35
3x107* —3x10°° 0 1.3x1072 —75x107* 0 145 35
1x107% —1x107° 0 1.3 x 1072 7.5 %1074 0 10 35
5x 104 0 0 —25x1072 —45x1072 —125x10"* 0O 33.9
1x 104 0 0 —25x1072 —45x107% —1.25x10~* 0 33.9
0 —5x107° 0 —25x1072 —45x1073% —125x10~* 0 33.9
0 —1x107° 0 —25%x1072 —45x107% —1.25x10~* 0 33.9
3x107* -3 x107° 0 —25x1072 —45x107% —125x10"* 0O 33.9

Table B2. Free convection cases used to train NORI.

where ATY and AS§ are relative contributions of temperature and salinity to the total
potentlal density variation in the initial condition of the training case a, ||A¢§||,, = max ¢0
min qSO is the maximum difference in the field of temperature or salinity initially through-
out the vertical column, while a and S are the thermal expansion and haline coefficients

of seawater respectively. Other components of Ag are chosen such that

Lo 1
s, T £y 9 (©3)
profile = Lgradient: (C4)
Loradions = 45,78 (9:T)" + 4550 (9:5)" + 45_,0 (9:9)" (Co)
- Agmdlem (450 (0.7)" + A%5 (9.5)" + A% (0.9)" ), (C6)

N. Ny 2
= W 33 Je - s (c7)

where ¢ and ¢ ggs are one of the variables’ (temperature, salinity, potential density) ver-
tical gradient profile as a function of vertical level ¢, time j, and scenario a—the over-
bars are a reminder that we are only parameterizing the area-averaged profiles.

Appendix D Neural network architecture

In NORI, neural networks are used to predict the entrainment fluxes of tempera-
ture and salinity, augmenting the physical base closure. This is reflected in the design
of neural networks, where they are only active within the zone where entrainment oc-
curs and are inactive everywhere else in the vertical column. For interior face-centered
cell indices ¢ = 2,3,..., N, where ¢ = 1 indicates the face location at the ocean sur-
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J;OP J;,Op JfLop % % f Ttop Stop
(°Cms™") (psums™) (m*s7?) (°Cm™") (psum™!) (s7h) (°C)  (psu)
5x 104 0 —2x107* 14x1072 2.1x 1073 8 x 107° 18  36.6
1x10°4 0 —2x107* 14x1072 2.1x 1073 8 x 107° 18  36.6
5x 1074 0 —5x107* 1.4x1072 21%x 1073 8 x 107° 18  36.6
1x1074 0 —5x107%  1.4x1072 2.1x 1073 8 x 107° 18  36.6

0 —5x107° —2x107* 1.4x102 2.1x 1073 8 x 1075 18 36.6
0 —1x107% —2x107* 1.4x1072 2.1 %1073 8 x 1075 18 36.6
0 —5%x107° —5x107* 1.4x102 2.1x 1073 8 x 1075 18  36.6
0 —1x107% —-5x107% 1.4x10°2 21%x 1073 8 x 107 18  36.6
3x107% —3x107° —2x107* 1.4x102 2.1%x 1073 8 x 107° 18  36.6
3x107*  —3x107° —5x107* 1.4x1072 2.1 %1073 8 x 107> 18  36.6
5x 1074 0 —2x107* 1.3x1072 7.5 x 1074 0 14.5 35
1x10~% 0 —2x107* 1.3x1072 7.5 x 1074 0 145 35
5x 107* 0 —5x107* 1.3x1072 7.5x 1074 0 145 35
1x10°4 0 —5x107* 1.3x1072 7.5x 1074 0 145 35
0 —5%x107° —2x107* 1.3x10°2 7.5 %1074 0 14.5 35
0 —1x107% —2x107* 1.3x1072 7.5 x 107% 0 14.5 35
0 —5%x107° —5x107* 1.3x10°2 7.5 x 1074 0 14.5 35
0 —1x107° —5x107* 1.3x10°2 7.5 x 1074 0 145 35
3x107* —3x107° —2x107* 1.3x10°2 7.5%x 1074 0 145 35
3x107* —3x107® —5x107* 1.3 x1072 7.5 %1074 0 145 35
5x 1074 0 —2x107* —25x1072 —45x10% —1.25x 10~ 0 33.9
1x 1074 0 —2x107* —25x1072 —45x10"% —1.25x 10~ 0 33.9
5x 104 0 —5x107* —25x1072 —45x1073% —125x10"* 0 33.9
1x10°% 0 —5x107* —25x1072 —45x1073 —125x10"* 0 33.9
0 —5x107°% —2x107% —25x1072 —45x1073 —-125x107% 0 33.9
0 —1x107° —2x107* —25x107%2 —45x10"% —-125x10"* 0 33.9
0 —5x107° —5x107* —25x1072 —45x1073 —1.25x10~* 0 33.9
0 —1x107° —5x107*% —25x10"2 —45x10"% —1.25x10"* 0 33.9
5x107%  —5x107° —2x107* —25x1072 —45x1073 —125x10"* 0 33.9
5x107%  —5x107° —5x107* —25x1072 —45x1073 —1.25x10"* 0 33.9
Table B3. Wind + convection cases used to train NORAI.

J;OP J;,Op JfLop ?i% % f Ttop Stop
(°Cms™')  (psums™')  (m*s7?)  (°Cm~') (psum™') (s7h) (°C)  (psu)
3x10°* 0 —1x107* 1x10°2 0 1x1074 10 35
5x 104 0 —1x107* 14x10°2 0 1x1074 10 37

0 —5x107°> —1x10* 0 —5%x107% 15x107* 0 34

0 —5x107® —1x10* 0 —1x1073% 1x107* 10 35
5x 1074 —5x107° —1x10"* 6x 102 8 x 1073 1x107* 30 37
3x107%  —3x107® —1x10"%* 6x1072 8 x 1073 1x 1074 30 37
1x107% —1x107% —1x10"* 6x1072 8 x 1073 1x1074 30 37
Table B4. Miscellaneous training cases, including cases with no temperature or salinity gradi-

ents, and cases with very strong stratification at warm temperatures used to train NORi.
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J;op J:ﬁqop JZOP % % f Ttop Stop
(°Cms™")  (psums™!) (m?s™?) (°Cm™") (psum™!) (s7h) (°C)  (psu)
3.5 x 1074 0 0 1.5 x 1072 2 %1073 1x 104 20 37

0 —3.5x107° 0 1.5 x 1072 2 %1073 1x1074 20 37
2x 1074 —2x107° —1x107* 1.5 x 1072 2x 1073 1x1074 20 37
2x107% —15x107° —-35x10"* 1x1072 1.5 x 1073 1x107% 17 36
15x107%  —2x107° —25x107% 1.7x1072 1.8 x 1073 1x107% 12 37
5x 1075 —5x 109 —4x 104 1.2 x 1072 1.2 x 1073 1x107* 10 37
3.5x107% —35x107® —3x107* 1x 1072 —2x 1073 1.5 x 104 16 34
45x107% —4x107° —45x10"* 1.3x10°2 —1x1073 7x107° 13 35
3.5x 1074 0 0 1x 102 5x 107* 0 17 345

0 —-3.5%x107° 0 1x 1072 5x107* 0 17 345
2 x10~* —2 %1075 —1x10~4 1x 1072 5x 10~* 0 17 345
2x107% —15x107° —35x107* 12x1072 7x 1074 —1x107° 13 36
1.5x107* —2x107° —25x10"* 1.6x1072 6x 10~ —2x107° 16 34
5x107° —5x 1076 —4x1074 1.1 x 1072 3x107% 3x107° 10 36.5
35x107% —35x107° —3x1074 1.5 x 1072 —5x 1074 —5x107° 20 37
45x107% —4x107®> —45x107* 1.7x1072 —8x 1074 —1x107* 12 35
3.5 x 1074 0 0 —2x1072 —47x107% —15x10"* 0 34.5

0 —3.5x107° 0 —2x1072 —47x1073 —15x10"* 0 34.5
2x 104 —2x107° —1x107* —2x1072 —47x107% —15x10"* 0 34.5
2x107%  —15x107° —35x107* —1.7x10"2 —4x1073 1.5 x 1074 3 34
4 %1074 —4x107° —25x107* —-15x10"2 —4x1073 1x107% -1 36
5x 1075 —5x 10~ —4x 104 —1x1072 —3x107% 125x107* 0 33.5
3.5x107% —35x107® —3x107* —2x 1072 —4x107% —14x10~* 1 35.5
45x107% —4x107° —45x107* —2x1072 —45x10% —1x10~* 2 34
4.5 x 1074 0 —2x 1074 3 x 1072 0 1x107% 20 37
1.5 x 1074 0 —3x1074 1x 1072 0 1x107% 15 35

0 —4 %1075 —3x 1074 0 —45%x107% —1x10~* 17 36

0 —2x107® —15x107% 0 —25%x107% —1x10~* 16 34
4x 1074 —4x107° —4x10% 5 x 102 —7x 1073 1x 104 25 36
3x107* —2x107° —2x107% 3 x 1072 —7.5x1073 1x1074 27 35
Table B5. Validation cases to evaluate performance and select final trained weights of NORAi.
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face and ¢ = N + 1 indicates the grid point at the bottom of the domain,

; NN¢(hi;0¢), for i = Tmins bmin + 1, - - -, Tmax,
Jin, = D1
NNy {O, otherwise, (D1)
i 7\ ¢ o\ ¢ % ) o T
hl = [(aZT) zone ’ (aZS) zone ’ (azﬁ)zone ) arCtan('l%fl’zone)v Jlf p] ) (DQ)
Prone = [(ﬁmi“{i““, gL, i gmaxtizh2), ¢m““‘“‘2’2}] (D3)

where NNy is a neural network to predict the turbulent flux of tracer ¢, h' is the input
vector to the neural network at index 4, 84 are the trainable weights for the neural net-
work NNy, 4min and ipax are the first and last grid index inclusive of which the neural
networks are active, ¢, . denotes the 5-element vector of variable ¢ around the local
neighborhood of index i, @, is the discrete gradient operator in z, and J;°P is the sur-
face buoyancy flux. For any face-centered grid point within the “entrainment zone”, the
value of the temperature and salinity fluxes are predicted by NNt and NNg, respectively,
where they each output a scalar which is the predicted value of temperature or salinity

flux at the grid point.

The inputs of NNy and NNg are the temperature gradient, salinity gradient, po-
tential density gradient, and gradient Richardson number of 5 grid points within the neigh-
borhood of the grid point intended for inference, as well as the surface buoyancy flux.

The inputs and outputs of the neural networks are normalized using a z-score normal-
ization against the entire training suite to ensure that for each variable, the distribution
of their values within the training suite has zero mean and unit variance. More details
on feature normalization can be found in Appendix F.

We adopt the principle of “simple, but not any simpler” to selecting the appropri-
ate input variables to be included in the feature vector h’, and their reasons are as such:

1. The rate of entrainment, which is the process we want to model using neural net-
works, is primarily dependent on the strength of the buoyancy flux JZOP at the ocean
surface. This is because the surface buoyancy flux is the source of entrainment mix-
ing through the generation of vertically coherent plumes. The buoyancy flux is a
function of the temperature and salinity fluxes, but we provide only the buoyancy
flux to the neural network to eliminate the need for neural networks to learn the
implicit correlation between temperature, salinity and buoyancy fluxes. This is
because the strength of the penetration of the entrainment is a function of buoy-
ancy, not temperature or salinity separately.

2. The strength of entrainment mixing is strongly dependent on the ratio between
local shear and background stratification at the base of the mixed layer. A strong
stratification in the thermocline would reduce the extent of penetrative convec-
tion where convective plumes overshoot into the interior due to inertia, while stronger
local shear leads to stronger plume “rollup”, which also reduces the plume pen-
etration. The information about local shear and stratification is encoded in the
local Richardson number Ri.

3. The mixing rate due to entrainment depends on local tracer gradients regardless
of their absolute values. To enforce this tracer invariance, the temperature, salin-
ity and potential density gradients %—Z, % and g—f as well as the Richardson num-
ber Ri are used as input of the neural network instead of @, 7, T, S, and &, since
their actual values do not play a direct role in mixing dynamics.

4. NOR!I is designed for the nonlinear equation of state TEOS-10 (Roquet et al., 2015).
Therefore, the correlation between temperature and salinity gradients with strat-
ification depends on the actual values of temperature and salinity. To encode in-
formation on nonlinearities in the equation of state explicitly in neural networks,

the potential density gradient % is also provided.
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5. Entrainment can be thought of in terms of the interaction between nonlocal buoy-
ancy fluxes with local tracer gradients. The mixing occurs only locally due to a
nonlocal flux source. Therefore, tracer gradients are provided locally, while the
surface buoyancy fluxes are provided nonlocally to the neural networks.

The weights of NNt and NNg are shared between all points on the grid. The local gra-
dient Richardson number is provided as the inputs to the neural networks in the form

of arctan(Ri) so that it is bounded from above and below by +7, while having the largest
gradients where Ri ~ O(1), which is in the fluid regime where turbulent dynamics are
most sensitive to shear. The “entrainment zone” where the neural network is active is
diagnosed from the diffusivity field x by

iy, = min{i : [i] = Kofori =1,2,..., N + 1}, (D4)
imin = max{i, — 10,2}, (D5)
imax = min{i, +5, N}, (D6)

where 7, is the grid point closest to the ocean surface where the base closure diffusiv-
ity k is equal to the background diffusivity kg. This is equivalent to the nearest point
from the surface where Ri > Ri® where Ri¢ is given by the base closure. The neural
networks do not predict any turbulent fluxes at the grid point on the ocean surface i =

1 and the bottom grid point ¢ = N + 1. At these boundary points, the temperature
and salinity fluxes are given by the boundary conditions. This restriction of the predic-
tion zone of the neural networks reduces inference time, but implicitly assumes that con-
vective plumes cannot penetrate deeper than 40 m, which has been the case in all the
LES generated. However, should it be found that the extent of entrainment exceeds 40 m
in the cases we have not considered, such as very deep mixed layers, we can easily in-
crease the depth of the neural network prediction zone by changing the values of iy
and imax Without any modifications to the neural network architecture. Figure D1 illus-
trates a schematic of the neural network architecture.

This design enforces some important physical principles:

1. The top and bottom fluxes are prescribed in order to satisfy the surface bound-
ary conditions. This enforces tracer conservation as a hard constraint; NORi can
only redistribute tracers in the interior.

2. In NORI, the local neighborhood visible to the neural networks as inputs spans
48 m, as we have found this to be a vertical extent that is sufficient for the neu-
ral networks to characterize the location of inference relative to the base of the
boundary layer while ensuring generalizability across different locations within the
vertical column.

3. Entrainment has local effects: it enhances mixing in a small neighborhood near
the base of the boundary layer as it brings denser fluid from the ocean interior into
the mixed layer. Therefore, the neural network only needs to know the informa-
tion around its neighborhood to determine if entrainment occurs, and produces
a local flux to represent any mixing.

Appendix E PDE discretization of the 1D column model

To solve the partial differential equations (11), (12), (13), and (14) numerically, we
perform numerical discretizations both spatially and temporally. The spatial dimensions
are discretized using the finite volume method, while the temporal discretization is done
using the split implicit-explicit (IMEX) method. The diffusion terms are time stepped
with the implicit backward Euler method, while the advection terms (fu and fv) and
neural network fluxes are time stepped with the explicit forward Euler method. The dis-
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Figure D1.

closure to capture missing entrainment fluxes. Top panel: the inputs of the neural networks

Schematic of NORi’s neural network architecture used to augment the base

NNz : R?* — R and NNg : R*! — R, as well as their outputs, which are the entrainment temper-
ature and salinity fluxes J%y nonlocals Jg, nonlocal- Lhe light yellow zones indicate the depth range
where the neural networks are active. Beyond these zones neural network fluxes are zero. The
temperature and salinity output fluxes show the neural network augmenting the base closure due
to entrainment. Bottom panel: neural network architecture. The neural networks each produce
one output which are the residual fluxes at grid point ¢ given input h* € R?!, consisting of tracer
gradients 5 grid points in the local neighborhood of grid point i and the surface buoyancy flux

(see Appendix D). The neural networks do not predict fluxes at the top and bottom grid points.
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cretized equations are given by

%t—i" =0, (vo.u"t) + fo", (E1)

WHA%W =0, (vo,o" ) — fu", (E2)

AR J—,

T+At_T = 0. (k0T — 0.3, (E3)

SnHAt_Sn =0, (naj”“) R L (E4)
where n =0, 1,--- indicate discrete time steps with t"*! — " = At and 0, is the dis-

crete gradient operator in z.

Appendix F Variable normalization and model non-dimensionalization

In order to promote better training behavior of neural networks and to allow for
the addition of field quantities with different units, we normalize the field and flux vari-
ables using a Z-score normalization such that the variables in the training suite have a
zero mean and unit variance. This approach allows for all features to be treated equally
during neural network training. Z-score normalization can be expressed as

T = u ;E,UU7 (F1)
T — v ;;W’ (F2)
g ;’“L T (F3)
T
5 = SUS“S (F4)
ww = %, (F5)
vw = %, (Fo6)
A (F7)
w!' T’
wr = W5 s (F8)
w’ S’

where g and o4 are the mean and standard deviation of the field ¢ throughout the train-
ing suite in space and time. Using the normalization above, starred quantities ¢* are nondi-
mensional. We also non-dimensionalize the time and space dimensions using

t* = (F9)

nY

where 7 is the duration of the training of each simulation in the training suite, while H
is the total depth of the domain. Using the nondimensional variables above and express-
ing the fluxes fully in terms of the local fluxes as predicted by the base closure as well
as the nonlocal entrainment fluxes as predicted by the neural networks, the nondimen-
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sional equations which are solved during the training of NORI closure are

dur T 0 ou* fr.o
5 = s (Vo )+ Lo ), (1
ot 1t 0 ov* fr.o
or- v o ([ oT" T O O

- |- 1w Ji F13
ot H29z* (K 32*) H o 0z NNz (F13)
0" 1 8 [ 95\ Toog O

= — - JNNg - F14
ot  HZ?9z* (K 82*) H og 0z* s (F14)

Appendix G Double-gyre solution at 100 years

Here we show a snapshot of the zonal average of the double-gyre simulation at ¢ =
100 years to complement Figure 11 in the main text. At ¢ = 100 years, the double-gyre
stratifications begin to show significant differences between NORI, its unaugmented base
closure, and k-e closure. From Figure G1, when compared with k-e and the base closure,
we see that NORIi produces deeper mixed layers along the entire zonal extent of the basin
except for in the northernmost regions where the deep mixed layers reach the bottom
of the domain. However, we do not have a “ground truth” solution as a reference since
this is an idealized setup. Therefore, further qualification of each model’s skill requires
running realistic ocean simulations, where observational data are available for compar-
ison. However, this is beyond the present scope, and we aim to provide a thorough and
systematic evaluation of various closures in realistic ocean simulations in the future.

NORI closure k-€ CIOS NORi - k-€

Base closure NOR:Ii - base closure

L A
=

—1000

—1500

—2000 —1000 0 1000 2000
y (km)

5 10 15 20 25 -2 0 2
Temperature (°C) Temperature anomaly (°C)

Figure G1. Zonally-averaged temperature stratification comparison between NORi, k-¢
(Umlauf & Burchard, 2003), and the unaugmented base closure in the double-gyre simulation.
The snapshots above are taken at ¢ = 100 years. At this time, the simulation has not fully equili-
brated yet. The rightmost column shows the temperature differences of the stratification between

the NORI closure solution with that of k-¢’s and the unaugmented base closure.

Appendix H NORI solution comparison with CATKE

In this section, we show some results comparing between NORi and CATKE (Wagner,
Hillier, et al., 2025), a physics-based boundary layer parameterization that uses a diag-
nostic mixing length with a convective adjustment component and a prognostic turbu-
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lent kinetic energy (TKE). CATKE demonstrated superior capabilities against commonly-
used boundary layer parameterizations such as K-Profile Parameterization (KPP) (Large

et al., 1994) and the Langmuir turbulence second moment closure (SMC-LT) described

in (Harcourt, 2015) when benchmarked against idealized and realistic LES (Wagner, Hillier,
et al., 2025).

Before making any comparisons, one important caveat is that CATKE is trained
with an LES suite which takes into account the effects of additional mixing due to sur-
face waves under shear-driven mixing scenarios, i.e., Langmuir turbulence. In addition,
CATKE and NORI are calibrated using different training suites with LES of different
background stratification, surface forcings, equations of state, and rotation rates. Un-
der the same surface wind stress and initial conditions, LES which takes into account
wave effects will in general create a deeper mixed layer. By extension, we would expect
that CATKE would produce deeper mixed layers than NORI in strongly wind-driven sce-
narios, since NORI is trained on simulations that do not take into account wave effects.
This is because the intention of developing NORI is to illustrate a new design and train-
ing paradigm for data-driven ocean modeling, and we have chosen to demonstrate it us-
ing a reduced set of physics that capture the leading order effects of vertical mixing due
to winds and convection. Although the specific physical details of the training data are
crucial, the NORI framework can be flexibly adapted to variants of microturbulence clo-
sures that take into account other physical processes through fine-tuning and/or trans-
fer learning. Using the approach outlined in this work, other versions of NORi which ac-
count for additional complications such as wave effects and rotation-dependent deep con-
vection or solve additional prognostic turbulent quantities can be developed in future
work.

As expected, CATKE produces deeper mixed layers in single column training and
validation cases driven by strong winds. In Figure H1, the first and fourth columns are
cases of strong wind, where CATKE produces slightly deeper mixed layers than NORi.
As noted earlier, the LES solutions shown in Figure H1 do not take into account wave
effects; therefore, it is not surprising that they are generally shallower than the predic-
tions of CATKE’s. Discrepancies between CATKE and NORI are expected given the dif-
ferences in their training data.

In the double-gyre simulation, the differences between CATKE and NORI are sim-
ilar to those between k-¢ and NORI (see Figures 11 and G1). At 2.5 years, shown by the
zonally-averaged temperature in Figure H2, NORi produces shallower mixed layers than
CATKE in the northern regions of the simulation. Interestingly, NORi also produces slightly
deeper mixed layers in areas near the equator. At ¢t = 100 years, we can see from Fig-
ure H3 that NORI generates mixed layers which are much deeper than CATKE in most
regions except at the northernmost part of the basin where deep mixed layers reach the
bottom, similar to the comparison with k-e. As we do not have a ground truth solution
for this idealized setup, a thorough evaluation of NORi and CATKE would require run-
ning realistic regional/global ocean simulations where observational data is available for
comparison. However, it is not surprising that CATKE and k-e¢ behave similarly, as CATKE
is heavily inspired by higher-order closures such as k-e.

Open Research Section

The LES data used for the training and validation of NORIi are generated from open
source software Oceananigans.jl (Ramadhan et al., 2020; Wagner, Silvestri, et al., 2025).
These LES data are packaged into a publicly available data set SOBLLES - A Salty Ocean
Boundary Layer Large-Eddy Simulation Dataset hosted on Zenodo (Lee, 2025b). The
base closure in NORI is calibrated using open source software EnsembleKalmanProcesses.jl (Dunbar
et al., 2022). The neural networks in NORi are implemented using open source software
Lux.jl (Pal, 2023) and calibrated using Enzyme.jl (Moses & Churavy, 2020). Scripts for
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Figure H1. Comparison of NORi performance in the column model setting with CATKE
(Wagner, Hillier, et al., 2025), a physics-based boundary layer parameterization that uses a diag-
nostic mixing length with a convective adjustment component and a prognostic turbulent kinetic
energy (TKE). The comparison is made between the temperature, salinity, and buoyancy fields
with respect to LES solutions. All examples shown are validation cases which were not seen by

NORI during training.
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Figure H2. Zonally-averaged temperature stratification comparison between NORi, CATKE
(Wagner, Hillier, et al., 2025), and the unaugmented base closure in the double-gyre simulation.
The snapshots above are taken at ¢ = 2.5 years, when the mixed layer extends to almost the
entire water column in the north. The rightmost column shows the temperature differences of the
stratification between the NORI closure solution with that of CATKE’s and the unaugmented

base closure.
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Figure H3. Same as Figure H2 above, but at ¢t = 100 years.



the training and validation of NORI, as well as its implementation in Oceananigans.jl,
together with the scripts to reproduce all figures in this paper are available at the Github
repository NORiOceanParameterization.jl (Lee, 2025¢). A data companion to NORiO-
ceanParameterization.jl which hosts the data required to reproduce all figures in this pa-
per is available on Zenodo (Lee, 2025a).
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