WHOI scientists Kurt Polzin, Ray Schmitt, Lou St. Laurent, and John Toole used an instrument called the High Resolution Profiler to track how waters mixed in the deep ocean in the Brazil Basin, where the flat abyssal plain abuts the undersea mountain chain of the Mid-Atlantic Ridge. The experiment revealed much more turbulence and mixing above the seafloor in areas with mountainous terrain than in areas with a relatively smooth seafloor because internal tides running over the abyssal hills generate energy that propagtes upward to drive mixing in the waters well above the hills. The experiment clearly established the importance of seafloor topography in mixing deep water masses back toward the surface. (Gray bars indicate places where data were not collected.) (Kurt Polzin, Woods Hole Oceanographic Institution)

WHOI scientists Kurt Polzin, Ray Schmitt, Lou St. Laurent, and John Toole used an instrument called the High Resolution Profiler to track how waters mixed in the deep ocean in the Brazil Basin, where the flat abyssal plain abuts the undersea mountain chain of the  Mid-Atlantic Ridge. The experiment revealed much more turbulence and mixing above the seafloor in areas with mountainous terrain than in areas with a relatively smooth seafloor because internal tides running over the abyssal hills generate energy that propagtes upward to drive mixing in the waters well above the hills. The experiment clearly established the importance of seafloor topography in mixing deep water masses back toward the surface. (Gray bars indicate places where data were not collected.) (Kurt Polzin, Woods Hole Oceanographic Institution)