The Response of Southern Ocean SSTs to SAM

Yavor Kostov

Massachusetts Institute of Technology

John Marshall, Kyle Armour, Ute Hausmann

Convolving the Step Response S with the Evolution of Historical Forcing F_{hist}

The convolution

$$SST_{hist}(t) = \int_{0}^{t} S(\tau) \left(\frac{dF_{hist}}{dt} \right|_{(t-\tau)} \right) d\tau$$

gives us an estimate of the historical SST response at time *t*. See Marshall et al., 2014.

The SAM index compared to a Southern Ocean SST index

Example: Model CCSM4

Extracting the Response to Impulse Forcing from Unforced Control Experiments

Least-squares regression of the lagged SST and wind (SAM) timeseries gives the coefficients g_i , where

$$SST(t) \approx \sum_{i=0}^{\tau_{max}} g_i u(t-i) + \varepsilon$$

can be written in matrix notation as

$$Y = Xg + \varepsilon$$

 \Rightarrow We estimate $\hat{g} = (X^T X)^{-1} X^T Y$

We also calculate uncertainties for each estimated \widehat{g}_i .

Extracting the Response to Impulse Forcing from Unforced Control Experiments

$$Y = Xg + \varepsilon$$

 \Rightarrow We estimate $\hat{g} = (X^T X)^{-1} X^T Y$ and residuals ε We calculate uncertainties for each estimated \hat{g}_i .

• The covariance matrix

$$\left(\frac{\widehat{\boldsymbol{\varepsilon}}^T \widehat{\boldsymbol{\varepsilon}}}{Length(\boldsymbol{Y}) - n}\right) (\boldsymbol{X}^T \boldsymbol{X})^{-1}$$

gives us the uncertainties for each estimate \widehat{g}_i .

Extracting the Response to Impulse Forcing from Unforced Control Experiments

- We obtain an uncertainty envelope by varying the number n of impulse response coefficients g_i (how far our memory of previous forcing states goes).
- We also use different shorter chunks of the available SST and wind time series to see how this affects our estimates.

Extracting the Response to Step Wind Forcing from Unforced Control Experiments

We integrate the estimated impulse response to obtain the step response.

The response to step forcing applied at time 0 is SST Step Response $S(t) = \int_{0}^{t} G(\tau) d\tau \approx \sum_{i=0}^{\tau_{max}} g_i$

Smoother but more uncertain than the Green's function.

As we go further in time, larger uncertainties on our Step Response Function estimate **accumulate**.

How would CMIP5 models respond to a SAM-like wind perturbation?

Using lagged regressions on output from control runs.

-- <u>Fast Response</u>: Equatorward transport of colder water \rightarrow **Cooling**;

-- <u>Slow Response</u>: Upwelling of warmer water \rightarrow **Warming**;

(Mechanisms discussed in Ferreira et al 2015, Marshall et al 2014).

Fast Response:

> The year 1 cooling response to a $+1\sigma$ SAM is correlated with the meridional gradient of climatological SST.

Conclusions

- Many CMIP5 models exhibit a two-timescale response as in Ferreira et al., 2015;
- We attempt to explain the processes which govern how the Southern Ocean SSTs respond to a SAM perturbation;
- We relate the intermodel diversity in the step response functions to differences in the climatological stratification of Southern Ocean across the CMIP5 ensemble.