Impacts of historical ozone changes on climate in GFDL-CM3

Larry Horowitz (GFDL)

with: Vaishali Naik (GFDL), Pu Lin (CICS), and M. Daniel Schwarzkopf (GFDL)

Antarctic Ozone Depletion Impacts on Southern Hemisphere Tropospheric Climate

Response of tropospheric climate to historical ozone and WMGHG changes

Relative contributions of ozone and WMGHG?

Polvani et al. (2011)

Ozone changes dominate temperature response

Polvani et al. (2011)

Ozone changes dominate jet shift

Polvani et al. (2011)

CM3 Coupled Climate Model

Stratospheric ozone distributions and trends are generally well simulated

Ozone Column

Development of Antarctic Ozone Hole

Eyring et al., JGR (2013)

Stratospheric ozone and temperature respond strongly to volcanic eruptions

Ozone Column

Temperature

Austin et al., J.Clim. (2013); WMO (2014)

CM3 Historical Simulations (All Forcings)

Ozone mixing ratio in CM3 (SON)

Historical changes in ozone well-simulated by CM3

Ozone mixing ratio in CM3 (SON)

"Ozone only" experiment includes changes in ODS concentrations and uses background (1860) volcanic aerosols

Zonal winds in CM3 (DJF)

Circulation shifts more strongly in response to historical ozone depletion than to WMGHG increase

3

Surface winds in CM3 (DJF)

Poleward shift in surface winds in response to both ozone depletion and WMGHG increase (non-linear)

Sea ice in CM3 (DJF)

All Forcings

15

WMGHG only

Ozone only

Stronger response of sea ice to ozone than to WMGHG

Sensitivity to model configuration

Zonal winds (DJF) AM4 (63L)

AM3 (48L)

Atmosphere-only simulations with prescribed ozone change (2000 minus 1960)

Weaker tropospheric jet response in AM4 32L

AM4 (32L)

Sensitivity to model configuration

Surface winds (DJF) AM4 (63L)

AM3 (48L)

AM4 (32L)

Atmosphere-only simulations with prescribed ozone change (2000 minus 1960)

Weaker surface wind shift in AM4 32L

Cloud Radiative Forcing at TOA (DJF)

-3

-6

-3

Cloud-Induced Radiation Anomalies: OZONE

Compare response in CM3

Grise et al. (2013)

Net Clear-Sky Shortwave Flux at TOA (annual)

Simulations with prescribed ozone change (2000 minus 1960)

Strong clear-sky SW cooling over pole

Net Shortwave Flux at TOA (annual)

Simulations with prescribed ozone change (2000 minus 1960)

Strong cooling over pole, partially offset by SW mid-lat cloud warming

Net Radiative Flux at TOA (annual)

Simulations with prescribed ozone change (2000 minus 1960)

LW warming damps SW radiative effect

Conclusions

- Strong poleward shift of SH summer jet in response to ozone depletion in GFDL-CM3
- Surface wind shift and intensification sensitive to model configuration (vertical resolution)
- Shortwave (direct+indirect) forcing damped by long-wave
- Sea ice decreases more strongly in response to historical ozone depletion than to WMGHG increase

Caveat:

- Only one ensemble member (CM3 coupled runs)
- Only one model