What controls polar stratospheric temperature trends?

Diane Ivy, Susan Solomon, Harald Rieder, Lorenzo Polvani
(paper in preparation)
Stratospheric Climate Change

Antarctic Ozone Hole

- Caused pronounced cooling in the lower stratosphere in austral spring
- Ozone depletion has resulted in a seasonal strengthening of the polar vortex and shifting of the tropospheric jet (positive trend in the SAM)
- Influenced Southern Hemisphere surface climate

Thompson et al. (2011) Nature Geoscience
Stratospheric Climate Change

Arctic Stratosphere

Solomon et al. (2014) PNAS
Antarctic Temperature Trends

How to reconcile?

Obsvd T trends are generally smaller than models.

Here we show a way to interpret the data/model comparisons in a new way.
Stratospheric Temperatures
Roles of Radiation and Dynamics

Thermodynamic Equation

\[
\frac{dT}{dt} = Q_{rad}(t) + Q_{dy}(t)
\]

\[
\frac{dT}{dt} = -\alpha_r(T - T_r) - \overline{w}^* S
\]

\[
\overline{w}^* = \overline{w} + \frac{1}{\cos \phi} \frac{\delta \left(\frac{\cos \phi v' T'}{S} \right)}{S}
\]

http://www.ccpo.odu.edu
Stratospheric Temperatures

Dynamical contribution to stratospheric temperatures and trends

Newman et al. (2010) JGR

Bohlinger et al. (2014) ACP

Two ways to analyze contributions to \(\frac{dT}{dt} \)

- use eddy heat flux to get dynamical term and treat radiative terms as a residual

- use radiative information and treat dynamical term as a residual
Stratospheric Temperatures

Dynamical contribution to stratospheric temperatures and trends

...lower stratospheric temperature is dependent on the time-integrated effects of the eddy heat flux. We test this by averaging the NCEP/NCAR reanalysis total eddy heat flux at 100 hPa between 45°N and 75°N. The timescale of the integration in this term is near 30 days, as determined by the thermal damping rate (α^{-1}) of Newman and Rosenfield [1997]. As a simple test, Figure 1a shows this total eddy heat flux over the period January 15 to February 28 versus the 50-hPa March 1–15 polar-averaged temperature (60°–90°N) for each year from 1979 to 2000. The very strong correlation ($r = 0.82$) between March temperatures and these late winter eddy heat fluxes account for 15.3 K

Newman et al. (2010) JGR

Thermodynamic Equation

$$\frac{dT}{dt} = Q_{rad}(t) + Q_{dyn}(t)$$

...
Stratospheric Temperatures

Radiative contribution to stratospheric temperatures and trends

Parallel Offline Radiative Transfer Model
- Radiative code of NCAR’s CAM4 (Community Atmosphere Model)
- Fixed Dynamical Heating Calculation

Data
- MERRA Reanalysis
- 3 Additional Ozone Databases
- BDBP (Hassler et al., 2009)
- SPARC (Cionni et al., 2011)
- RW07 (Randel and Wu, 2007)
- Include increased long-lived GHGs

Thermodynamic Equation

\[
\frac{dT}{dt} = Q_{rad}(t) + Q_{dyn}(t)
\]
Model Forcings
Radiative and Dynamical Temperature Trends

Arctic Trends in the Lower Stratosphere

- Estimates agree well with results presented in Bohlinger et al. (2014)
- Most notable difference is Bohlinger estimates stronger radiative cooling trend in winter
- Dynamical warming in winter, indicates increased wave activity
- Summer trends are due to radiation
- Error bars on radiative trends are relatively small, reflect uncertainty on ozone trends (but checking H$_2$O is TBD)
Radiative and Dynamical Temperature Trends

Arctic and Antarctic in the Lower Stratosphere

- Cooling trend in Antarctic spring - mainly radiative
- Cooling trend in Arctic spring – dynamical
- Cooling in Arctic summer – radiative
- Cooling in Antarctic summer – radiation and dynamics
Historical Temperature Trends
Arctic and Antarctic

- Strong cooling in both hemispheres
 - Antarctic confined to lower stratosphere
 - Arctic cooling first appears in mid and upper stratosphere
- Warming trend above Antarctic cooling
Radiative and Dynamical Temperature Trends

- Peak in radiative cooling associated with ozone lags by one month
- Cooling in the Antarctic is largely radiative due to ozone depletion
- Cooling in the Arctic is dynamical
- Dynamical “Warming above the cooling” is seen in both hemispheres and isn’t confined to just mid-stratosphere
 - Acts to weaken the radiative cooling – big effect in Antarctic summer
 - Influence on strat/trop coupling
Some Key Points

• Estimated the radiative and dynamical contributions to polar stratospheric temperature trends – lower stratospheric results are similar to those using the eddy-heat flux

• Radiative approach can be used over a broad range of altitudes (at least up to 10 mbar); depends mainly on accuracy of knowledge of ozone and T trends

• Arctic summer and fall seasons are close to radiative equilibrium; temperature trends are result of radiative cooling associated with ozone depletion (and increased greenhouse gases)

• Dynamical changes are evident in both hemispheres:
 • Arctic: Strengthening of BDC in winter and in weakening in spring
 • Antarctic: Strengthening of BDC in spring and summer; dynamical response to Antarctic ozone hole, the Antarctic dynamical response acts to weaken the radiative cooling.
 • Warming above the cooling is an indicator of circulation changes – value as a diagnostic
Additional slides, not for presentation
Stratospheric Climate Change

Antarctic Ozone Hole

- Large ozone depletion event in austral spring
- Ozone depletion occurs as heterogeneous chemistry on polar stratospheric clouds
Stratospheric Climate Change

Arctic Stratosphere

- Temperatures on the threshold for polar stratospheric cloud formation
- Coldest winters are getting colder
- Implications for future ozone loss
Stratospheric Climate Change

Comparison of Models

- CCMVal-1 gave stronger tropospheric response than CCMVal-2 but much of that traced to a single model

- CCMVal-2 shows similar results as AR4 models

- Models aren’t able to capture the seasonality in Arctic winter/spring trends and overall cool too much compared to lower stratospheric temperatures

Son et al. (2010) JGR

Wang et al. (2012) JGR
Stratospheric Temperatures

Dynamical contribution to stratospheric temperatures

Lower stratospheric temperatures are dependent on the time-integrated effects of the eddy heat flux. We test this by averaging the NCEP/NCAR reanalysis total eddy heat flux at 100 hPa between 45°N and 75°N. The timescale of the integration in this term is near 30 days, as determined by the thermal damping rate (α^{-1}) of Newman and Rosenfield [1997]. As a simple test, Figure 1a shows the total eddy heat flux over the period January 15 to February 28 versus the 50-hPa March 1–15 polar-averaged temperature (60°–90°N) for each year from 1979 to 2000. The very strong correlation ($r = 0.82$) between March temperatures and these late winter eddy heat fluxes account for 15.3 K.

Thermodynamic Equation

\[
\frac{dT}{dt} = Q_{rad}(t) + Q_{dyn}(t)
\]

\[
\frac{dT}{dt} = -a_r(T - T_r) - \bar{w}S^*
\]

\[
\bar{w}^* = \bar{w} + \frac{1}{a \cos \phi \delta \phi} \left(\frac{\cos \phi v' T'}{S} \right)
\]

Newman et al. (2010) JGR
Radiative Temperature Trends

Arctic and Antarctic in the Lower Stratosphere

- Fu et al. (2010) used eddy-heat flux to estimate the dynamical contribution to trends in Arctic and Antarctic (1980-2008)
- Antarctic radiative trend peaks in November
- Arctic radiative trend peaks in March
- Antarctic fall and Arctic summer and fall trends are similar at -0.5 K/decade
Radiative and Dynamical Temperature Trends

Arctic Trends in the Lower Stratosphere

- Winter trends are subject to large uncertainties and are sensitive to end-year
- Dynamical cooling in February
- Stronger radiative cooling with trends ending in 2000
- Summer trends are robust and are driven by radiation
Dynamical Temperature Trends

Arctic and Antarctic in the Lower Stratosphere

- Dynamical trends show similar seasonality as Fu et al. (2010)
- Fu et al. (2010) found a strengthening of BDC SH cell in July - November; strengthening of NH cell in DJF and weakening in MAM
Historical Temperature Trends

Warming above the cooling

- Dynamical response to Antarctic ozone hole; enhanced gravity wave propagation (Calvo et al., 2012).
- Warming above cooling modeled in chemistry climate models
- Not seen in GCMs with prescribed ozone
- Young et al. (2013) suggests “warming above cooling” is a benchmark for models representation of middle atmospheric dynamics
Radiative and Dynamical Temperature Trends

Arctic Upper Troposphere

- Arctic summer trends in the lower stratosphere are driven by changes in radiative cooling associated with ozone depletion; these trends extend down to 250hPa.
Radiative and Dynamical Temperature Trends

Antarctic Upper Troposphere

- Antarctic summer trends in the lower stratosphere are driven changes in radiative cooling associated with ozone depletion and dynamical warming
- Lowermost stratospheric and upper tropospheric trends are driven by radiation