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ABSTRACT

The two leading empirical orthogonal functions (EOFs) of zonal-mean zonal wind describe north–south

fluctuations, and intensification and narrowing, respectively, of the midlatitude jet. Under certain circum-

stances, these two leading EOFs cannot be regarded as independent but are in fact manifestations of a single,

coupled, underlying mode of the dynamical system describing the evolution in time of zonal wind anomalies.

The truemodes are revealed by the principal oscillation patterns (POPs). The leadingmode and its associated

eigenvalue are complex, its structure involves at least two EOFs, and it describes poleward (or equatorward)

propagation of zonal-mean zonal wind anomalies. In this propagating regime, the principal component (PC)

time series associated with the two leading EOFs decay nonexponentially, and the response of the system to

external forcing in a given EOF does not depend solely on the PC decorrelation time nor on the projection of

the forcing onto that EOF. These considerations are illustrated using results from an idealized dynamical core

model. Results from Southern Hemisphere ERA-Interim data are partly consistent with the behavior of the

model’s propagating regime. Among other things, these results imply that the time scale that determines the

sensitivity of a model to external forcing might be different from the decorrelation time of the leading PC and

involves both the rate of decay of the dynamical mode and the period associated with propagation.

1. Introduction

The leading modes of variability of the extratropical

circulation are usually referred to as the ‘‘annular

modes’’ (e.g., Thompson and Wallace 2000; Thompson

et al. 2000) and are derived from empirical orthogonal

function (EOF) analysis of meteorological fields such as

geopotential height or zonal-mean zonal wind (Kidson

1988; Lorenz and Hartmann 2001, 2003). The leading

EOF of zonal-mean zonal wind takes the form of a di-

polar structure centered on the time-mean jet and de-

scribes north–south fluctuations in time of the jet. The

second EOF peaks at the maximum of the time-mean

jet, and, independently, it describes intensification and

narrowing (‘‘pulsing’’) of the midlatitude jet. However,

the leading EOFs of zonal wind are not necessarily in-

dependent of each other and, together, the two leading

EOFs may describe the poleward propagation of zonal

wind anomalies. Such propagation has been noted in

models (e.g., James and Dodd 1996; Lee et al. 2007) and

in both Northern and Southern Hemisphere observa-

tions (Feldstein 1998) and is illustrated for Southern

Hemisphere wind anomalies by the examples shown in

Fig. 1. Periods of both propagation and nonpropagation

are evident, in all seasons; propagating anomalies

typically appear in low latitudes and migrate generally

poleward over the course of 2–3 months, although

there are some instances of equatorward propagation.

In terms of the leading EOFs, propagation is man-

ifested through nonzero lag correlations between the

two corresponding principal components (Lorenz and

Hartmann 2001; Son and Lee 2006; Watterson 2007;

Sparrow et al. 2009). For the examples shown in Fig. 1,

reconstructions based on the projections onto the two

leading EOFs of zonal-mean zonal wind are shown in

Fig. 2; most of the midlatitude variability, including

propagation when it occurs, is reproduced by these two
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components, but much of the variability in low and

high latitudes is not. Among other things, Son and Lee

(2006) explored the circumstances under which the

leading modes of variability of a simplified dynamical

core model take the form of nonpropagating or prop-

agating anomalies. When the climatology exhibits a

single jet, they found nonpropagating behavior, for

which the variance is dominated by a single EOF;

with a double jet, zonal wind anomalies propagate

poleward, the variance associated with the second

EOF exceeding about one-half of that associated with

the first.

In this paper we explore the characteristics of vari-

ability in the propagating regime. We shall argue that

under such circumstances the leading, coupled, EOFs

form a single underlying mode of the system, such that

FIG. 1. Zonal-mean zonal wind anomalies from ERA-Interim data (daily anomalies from a seasonal climatology

smoothed using a 21-day centered moving average) integrated across the depth of the troposphere (925–100 hPa) for

the Southern Hemisphere in (a) 1993, (b) 1995, (c) 2004, and (d) 2007. The contour interval is 1000 hPam s21.

FIG. 2. Zonal-mean zonal wind anomalies from ERA-Interim data in Fig. 1, reconstructed from projections onto

the two leading EOFs of zonal-mean zonal wind and smoothed using a 21-day centered moving average. The

contour interval is 1000 hPam s21.
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individual EOFs cannot be properly regarded as ‘‘modes.’’

One consequence of this is that the autocorrelations of

the leading principal components (PCs) corresponding

to the individual EOFs do not decay exponentially but

show some oscillatory characteristics. This behavior, in

turn, cautions against using simple paradigms based on

stochastically forced, single component, systems as a basis

for estimating eddy feedback strength (e.g., Lorenz and

Hartmann 2001, 2003; Watterson 2007; Chen and Plumb

2009) or for estimating the sensitivity of the system to

climate perturbations (Gerber et al. 2008; Ring and

Plumb 2008).

Such questions are addressed here by application of

theory to results from a dry, dynamical core, global

model run in a simplified solsticial configuration. The

model setup and climatology are described briefly in

section 2. In section 3 it is shown that the leading modes

of variability of the zonal jets are nonpropagating in the

‘‘summer’’ hemisphere and propagating in the ‘‘winter’’

hemisphere. These two differing types of anomaly are

then used to illustrate the theoretical development of

the paper. The dynamical modes of the zonal-mean flow

system are identified in section 4 through calculation of

the principal oscillation patterns (POPs; von Storch

et al. 1988; Penland 1989). In the nonpropagating case,

the leading POP is essentially identical to the dominant

EOF, with a real eigenvalue corresponding to the de-

correlation rate of the dominant PC, as found by Ring

and Plumb (2008). In the propagating regime, on the

other hand, the leading POP and its corresponding

eigenvalue are complex; the structure of this single,

propagating, mode involves at least two EOFs. The

theoretical implications are explored in section 5, in

which the characteristics of PC auto- and cross corre-

lations in a stochastically forced system are described,

with some remarks made about the implications for the

response of the jets to climate perturbations. Finally,

in section 6 we discuss the characteristics of the ob-

served Southern Hemisphere zonal flow in the light of

these results.

2. Model details

The dynamical core model is similar to that of

Polvani and Kushner (2002), with some modifications

as described below. The model is dry and hydrostatic,

solving the global primitive equations with T42 reso-

lution in the horizontal and 40 sigma levels in the ver-

tical. There is no surface topography. Radiation and

convection schemes are replaced by relaxation to a

zonally symmetric equilibrium temperature profile

identical to Held and Suarez (1994) in the troposphere.

In the stratosphere (above 200 hPa), the equilibrium

temperature profile is a perpetual-solstice version of

the equilibrium temperature specifications used in

Sheshadri et al. (2015), with winter conditions in the

Southern Hemisphere. As will be seen below, these

choices result in a model configuration with reasonable

annular mode time scales in the Southern Hemisphere.

Themodel was run for 13000 days, and the last 10000 days

are used in the analysis.

The time-averaged zonal-mean zonal wind is shown in

Fig. 3. There is a single deep tropospheric jet near 358N in

the Northern Hemisphere; in the Southern Hemisphere,

an upper-tropospheric subtropical jet near 308S, a deeper
midlatitude jet near 458S, and a polar night jet near 608S
extending through the stratosphere. Note the hemi-

spheric asymmetry of the zonal-mean zonal winds even

in the troposphere, where the equilibrium tempera-

ture is symmetric about the equator. For simplicity, we

shall refer to the Northern and Southern Hemispheres

as summer and winter, respectively, even though there

is no such contrast in the tropospheric equilibrium

temperature.

3. EOFs of zonal-mean wind variability

The characteristics of flow variability in the atmosphere

are commonly described using principal component

analysis, in which the space–time fluctuations of the

flow are separated via singular value decomposition

X5USVT (1)

into spatial structures described by EOFs (the columns of

U) and temporal structures described by the corresponding

PCs (the columns of V contain the normalized PCs), with

S being the diagonal matrix1 containing the corresponding

singular values s. While the EOFs compactly and effi-

ciently describe the fluctuations (the contribution of each

to the total variance being proportional to s2) and are

frequently referred to asmodes (such as the annularmodes

that are our focus here), they are not necessarily modes in

the usual physical sense of being eigenmodes of the un-

derlying dynamical system. Rather, just as the variability

they describe, theEOFs and correspondingPCs depend on

how the system is forced to produce the variability, and not

just on the properties of the system modes themselves.

Moreover, they are by design orthogonal (UTU5 I5VTV)

whereas in general the system modes are not.

We consider here the EOFs of the zonal-mean zonal

wind fluctuations below 100hPa and poleward of 208

1 Here, and throughout this paper, we adopt the notation that

diagonal matrices are represented by uppercase Greek characters.
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latitude. To weight each data point appropriately, the

variable used to perform (1) is
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dp cosf

p
(u2 [u]), where

dp is the pressure thickness of the model level, f is lat-

itude, and the square brackets represent the time aver-

age of daily data and the overbar the zonal average; the

EOFs of zonal wind are thenUn(f, p)(dp cosf)
21/2. The

first two EOFs in the winter hemisphere are shown in

Fig. 4. The EOF structures are similar to those seen in

Southern Hemisphere data (e.g., Lorenz and Hartmann

2001; Fig. 11, below) and in models of this type (Son and

Lee 2006; Sparrow et al. 2009; A. Sheshadri and R. A.

Plumb 2016, unpublished manuscript): EOF1 is primarily

a dipole straddling the midlatitude jet; EOF2 is also

predominantly dipolar, but with its central extremum

coincident with the latitude of the jet. Each makes a

substantial contribution, 40% and 29%, respectively, to

the total zonal-mean wind variance. Taken separately,

as has been noted many times previously, EOF1 de-

scribes latitudinal fluctuations of the midlatitude jet

location, whereas EOF2 describes alternate strength-

ening and narrowing, and weakening and broadening,

of the jet. The PC autocorrelations are shown in Fig. 4c.

In a stable system subjected to white-noise forcing,

for a single mode in isolation, the autocorrelation de-

cays exponentially with lag (Hasselmann 1976); fitting

an exponential to each curve over a lag of 30 days

separately yields decorrelation times of 19 and 13 days.

Lorenz and Hartmann (2001), finding similar results

from their analysis of Southern Hemisphere data, as-

cribed this difference to eddy feedback acting on EOF1

but not EOF2, but we shall arrive in what follows at a

different explanation. In fact, the dependence on lag of

FIG. 3. Time-averaged zonal-mean zonal wind (m s21) (a) in both hemispheres in the model, (b) using tropo-

spheric data for the Southern Hemisphere poleward of 208S, and (c) using tropospheric data for the Northern

Hemisphere poleward of 208N. The control interval is 5 m s21.
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the autocorrelations differs from an exponential decay in

two ways. The features evident at lags less than about

10 days can be ascribed to the finite time scale of the eddy

forcing, which is not white but has memory over times

characteristic of baroclinic eddy life cycles (Watterson

2002; Chen and Plumb 2009). The change of sign of both

autocorrelations near 40-day lag requires a different

explanation, a hint of which is provided by Fig. 4d, which

shows the lag correlation between PCs 1 and 2. Despite

the orthogonality of the PCs (which requires only that the

cross correlation vanishes at zero lag) there is a significant

lag correlation peaking at around 620 days. This char-

acteristic, noted by Lorenz and Hartmann (2001) and

discussed in depth by Son and Lee (2006) and Sparrow

et al. (2009), is such that positive PC1/ positive PC2/
negative PC1, thus implying a change of sign of PC1 and

PC2 over 40 days. The sense of the cross correlation, given

the relative structure of the EOFs, describes the poleward

propagation of zonal wind anomalies, consistent with

what has been reported in models and observations, and

which is also evident here, as shown in Figs. 5a and 5c.

This behavior should be contrasted with that of the

fluctuations of zonal wind in the summer hemisphere of

the model. Figure 6 shows the leading EOFs for that

case. The structures of the EOFs show characteristics

similar to those in the winter hemisphere, with EOF1

dominated by a dipole straddling the climatological jet

at 358; EOF2 is also dipolar but with one of its extrema

nearly coincident with the jet. In this case, however, EOF1

is dominant: it accounts for 62% of the variance, com-

pared to 12% for EOF2, and the decorrelation times of

the corresponding PCs are very different (68 vs 20 days).

Further, the cross correlation between the two EOFs is

very weak, implying that they act independently. As

Fig. 5b illustrates, one consequence of this is the ab-

sence of propagation of the wind anomalies; Fig. 5d

shows that EOF1 is sufficient to capture the evolution

of zonal-mean zonal wind anomalies. Also evident in

Fig. 5b is the remarkable longevity of zonal wind anom-

alies, consistent with the long decorrelation time ofEOF1.

Such unrealistically long decorrelation times are often

found in this kind of model (Gerber et al. 2008) and,

FIG. 4. The (a) first and (b) second EOFs of zonal-mean wind in the winter hemisphere of the model (determined

from data poleward of 208S). These two EOFs explain 40% and 29% of the zonal wind variance, respectively.

(c) The autocorrelation function of these modes and (d) their cross correlation.
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indeed, Chan and Plumb (2009) found them to be es-

pecially long when the climatological subtropical and

midlatitude jets are merged, as is the case here (Fig. 3).

Before leaving this section, it should be emphasized that

the distinction between propagating and nonpropagating

anomalies is not necessarily one associated with the dif-

ference between winter and summer, even though this is

the case here. For example, in a troposphere-only model,

Ring and Plumb (2007, 2008) found a single dominant

mode in each hemisphere. Rather, the two cases illus-

trated here as winter and summer should be seen as il-

lustrative of two distinct patterns of behavior that can be

found under different conditions. Note also that the sep-

aration into the propagating and nonpropagating regimes

is consistent with the results of Son and Lee (2006), who

found that propagation occurs whenever the subtropical

and midlatitude jets are separated, and when the variance

described by EOF2 exceeds about one-half of that de-

scribed by EOF1.

4. Principal oscillation patterns

a. Theory

We consider a forced, linear, dynamical system of the

form

›u

›t
1Au5 f . (2)

An equation of this form has been used to describe

fluctuations of zonal-mean wind about its climatological

state, both with (e.g., Lorenz and Hartmann 2001, 2003;

Chen and Plumb 2009; Byrne et al. 2016) and without

(Ring and Plumb 2007, 2008; Lutsko et al. 2015;

Hassanzadeh and Kuang 2016) vertical averaging. In the

latter case, the validity of such a representation rests

on a number of assumptions (Ring and Plumb 2008):

that the mean flow is balanced, that variations of static

stability are small, and that eddy feedback can be rep-

resented as a linear function of the instantaneous mean

zonal wind anomaly. The latter assumption restricts the

validity of (2) to time scales longer than those of baro-

clinic eddy life cycles (A. Sheshadri and R. A. Plumb

2016, unpublished manuscript).

The unforced system has modes described by the ei-

genvectors and eigenvalues of the operator A; if these

are known, then the response to any forcing f can be

determined. However, in practice A is not known, pri-

marily because it includes the eddy feedback operator, a

parameterization of which remains elusive. However

the modes are implicit in the observed behavior of the

system, which can be used to determine the eigenvectors

of A in the form of the principal oscillation patterns.

Assuming that the observed fluctuations of u are the

responses of a stable system described by (2) to white-

noise forcing, the eigenvectors of the matrix

G(t)5C(t)C(0)21 , (3)

where

C(t)5Covfu,u; tg5 u(x, t1 t)uT(x, t) (4)

FIG. 5. Plots of 1000 days of zonal-mean zonal wind anomalies (daily values smoothed using a 21-day centered

moving average) integrated across the depth of the troposphere (925–100 hPa) for the (a) Southern, ‘‘winter,’’ and

(b) Northern, ‘‘summer,’’ Hemispheres, and the extent to which this is captured by (c) a combination of EOFs 1 and

2 for the winter hemisphere and (d) EOF1 for the summer hemisphere. The contour interval is 1000 hPa m s21.
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is the lag covariance of the zonal wind anomalies, are the

eigenvectors ofA (von Storch et al. 1988; Penland 1989).

Thus, for a given lag t, one can determine G(t) and

hence its eigenvectors. In principle, the result of this

process should be independent of lag; in practice this is

true only to the extent that the theory is applicable at

different lags. We shall show later that results, at least

for this example, are quite robust to different choices

of lag. The primary difficulty, however, arises from

the need to invert C(0), which can be problematic. The

inverse is dominated by those components with the

smallest singular values—that is, those that contribute

least to the variance (Martynov and Nechepurenko

2004). For this reason it has often been found expedient

to improve the inversion by mapping the data onto

a finite number of EOFs before applying (3) (e.g.,

Gritsun and Branstator 2007; Ring and Plumb 2008;

Lutsko et al. 2015).

It is possible, however, to determine the POPs without

the need to perform a matrix inversion by performing

the calculations in EOF space, thereby diagonalizing the

zero-lag covariance matrix (Penland 1989). Introducing

the lag covariance of the normalized PCs

Ĉ(t)5VT
tV , (5)

where the subscript t denotes evaluation at lag t, then

(3), with (1) and (5), gives

G(t)5USVT
tVSU

TUS22
UT 5USĈ(t)S21

UT .

Therefore, introducing the eigenvector decomposition

of Ĉ(t),

Ĉ(t)5WG(t)W21 , (6)

where G is the diagonal matrix of the eigenvalues, we

have

G(t)5USWG(t)W21S21
UT 5ZG(t)Z21 , (7)

where the columns of the matrix

Z5USW (8)

are the POPs, the eigenvectors of G(t), and hence (von

Storch et al. 1988; Penland 1989) of the system matrix.

FIG. 6. As in Fig. 4, but for the summer hemisphere.
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The eigenvalues l ofA are not the same as those ofG(t),

but they are related through

G(t)5 exp(2Lt) , (9)

where L is the diagonal matrix with elements l. Hence,

A5ZLZ21 . (10)

Thus, taking this approach yields the POPs and their

eigenvalues without the need to perform an explicit in-

version of the covariance matrix and (as we shall see

below) permits their evaluation without the need to

truncate the data. One does need to invert S to obtain

the inverses Z21 (which are required to solve the inverse

problem) but as one can obtainW21 as the eigenvectors

of ĈT, this only involves dividing by the singular values,

rather than by the square of the singular values and the

procedure is thus less ill conditioned.

One advantage of POPs over EOFs is that the latter

are dependent on how the data are weighted before

applying (1), whereas it is straightforward to show that

the POPs are independent of suchweighting (appendixA).

(This is no longer true if one uses a truncated series of

EOFs to filter the data.) This fact can become especially

important for a deep system (such as the troposphere

and stratosphere) if, say, pressure weighting is applied.

In general, sinceG(t) is real, either its eigenvalues are

real, with real eigenvectors, or they appear as conjugate

pairs with conjugate eigenvectors. If the PCs are mutu-

ally independent (i.e., their cross covariances are zero at

all lags), then

Ĉ
mn
(t)5

�
0, m 6¼ n

Ĉ
mm

(t) , m5 n

and the eigenvalues of Ĉ(t), and hence of G(t), are just

the PC autocovariances Ĉmm(t); if Ĉmm 5 exp(2amt)

(so that the decorrelation time of each PC is just a21
m )

then, by (9), the eigenvalues of A are just lm 5am.

Further, the POPsZ are the same as the EOFs. In such a

case, therefore, theEOFs and the PC decorrelation rates

describe the modes of the system. Clearly, however, this

is not generally true of a system in which the PCs have

nonzero cross correlations, as we shall now illustrate,

using results from the dry dynamical core model.

b. POPs in the dynamical core model

Following the outlined procedure, the POPs were

calculated for the winter and summer hemispheres. It is

first necessary to choose a value of lag t at which to

evaluate the PC lag covariances. For reasons noted

above, it is desirable to avoid short lags (t , 10 days);

lags much longer than one decorrelation time scale are

also best avoided, as the correlations then become weak.

Accordingly, the calculation was done for t 5 20 days

for the winter hemisphere and t 5 60 days for summer.

(Robustness of the results with respect to the chosen lag

will be discussed below.)

One further consideration concerns selection of the

POPs (of many) that are of interest. For the EOFs, the

association of their singular values with variance

explained lends itself to a natural (and conventional)

ranking by decreasing variance. No such obvious rank-

ing exists for the POPs; their eigenvalues determine the

time scales for eachmode but bear no direct relationship

to explained variance.2 Since it is the two leading EOFs

that, by definition, explain the most variance, we focus

attention here on those POPs onto which the first two

EOFs project the most strongly.

The resulting POPs, and their eigenvalues, form a

complex conjugate pair. The real and imaginary parts of

the POPs Z(u, p) and Z*(u, p) are shown in Fig. 7. In

the winter case, Re(Z) and Im(Z) strongly reflect the

structure of the EOFs, with only minor differences. The

corresponding eigenvalues are l5 lR 1 ilI 5 0:02566
0:0467i day21. Each of the conjugate pair of modes has

space–time structure

Z(u, p) exp(2l
R
t) exp(il

T
t)

5 fRe[Z(f,p)]cosl
I
t2Im[Z(f, p)] sinl

I
tgexp(2l

R
t)

and thus describes a propagating decaying disturbance.

The time scale for decay is l21
R 5 39 days and the period

of oscillation 2pl21
I 5 135 days; these do not appear to

correspond well to the PC decorrelation times of 19 and

13 days, but it will be shown below that they are, in fact,

mutually consistent.

The summer case, on the other hand, is more straight-

forward. The real part of Z is almost identical to EOF1,

while its imaginary part is very small. Similarly, its cor-

responding eigenvalue l 5 0.0134 6 0.0033iday21 is

dominated by its real part. To a first approximation, then,

this mode describes a decaying disturbance, with very

weak propagation and decay time l21
R 5 75 days, not very

different from the PC decorrelation time of 68 days. This

reinforces the suggestion made above that when lagged

cross correlations betweenPCs areweak, POPs andEOFs

are essentially identical.

The robustness of the calculation to chosen lag t for

evaluation of the cross correlation is illustrated in Fig. 8,

which shows how the eigenvalue l for the propagating

2A methodology for ascribing variance explained to the POPs

has been outlined in Gallagher et al. (1991).
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case depends on t. While there is some sensitivity, there

is a wide range of lags 20 # t # 50 days over which the

eigenvalue changes little. (The calculation becomes

problematic near t 5 60 days, where the cross correla-

tions pass through zero.)

5. Lag covariances under stochastic forcing

a. Covariances of the POP coefficients

Once the eigenvectors and eigenvalues have been

determined from (8) for a given lag t5 t0, (6) can then

be used to predict the covariances at other lags, under

the assumption that the variability is the response to

white-noise forcing. Then, as noted above and expressed

by (9), G(t) varies exponentially with lag, and therefore

the PC covariances become

Ĉ(t)5W[G(t
0
)]t/t0W21 (11)

(Penland 1989). For the two PCs of major interest, then,

Ĉ
mn
(t)5 �

N

p51

W
mp
g
t/t0
p (W21)

pn
, (12)

wherem, n5 1 or 2,N is the total number of modes, and

gp is the pth element of the diagonal matrix G(t0).

Given the dominance of PC1 and PC2 (explaining

69% of the variance between them) and the finding that

to a good approximation they are encapsulated in a

single conjugate pair of POPs (whose eigenvectors and

eigenvalues are mutual complex conjugates), it is in-

structive to truncate to these two modes by terminating

the sum in (12) at N 5 2, in which case we have

Ĉ
mn
(t)5W

m1
g
t/t0
1 (W21)

p1
1 c:c:, (13)

where ‘‘c.c.’’ denotes complex conjugate. Then it is

shown in appendix B that the autocorrelations are

Ĉ
11
(t)5

cos(l
I
jtj1 x)

cosx
exp(l

R
jtj) and (14)

FIG. 7. Principal oscillation patterns determined separately for each hemisphere from zonal wind data poleward

of 208S. (a) Real and (b) imaginary parts of the dominant winter hemisphere POP calculated at 20-day lag and

chosen as described in the text. The corresponding eigenvalue is l 5 0.0256 6 0.0467i day21. (c) Real and

(d) imaginary parts of the dominant summer hemisphere POP calculated at 60-day lag and chosen as described in

the text. The corresponding eigenvalue is l 5 0.0134 6 0.0033i day21.
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Ĉ
22
(t)5

cos(l
I
jtj2 x)

cosx
exp(l

R
jtj) , (15)

and the cross correlation is

Ĉ
12
(t)5

8>>>>><
>>>>>:

jW
12
j2

Im(W
11
W

12
* )

sin(l
I
t) exp(l

R
jtj) ; t, 0

2
jW

11
j2

Im(W
11
W

12
* )

sin(l
I
t) exp(l

R
jtj) ; t. 0

,

(16)

where x5 arg(2iW11W12* ) and

l
1
5 l

R
1 il

I
5 t21

0 lng
1
, (17)

where lR and lI are real.

Several points of interest become evident from

(14)–(16). First, the decay of the autocorrelations is not

exponential, except in the limit of a single uncoupled

mode for which lI 5 0. Second, the two autocorrelations

have different dependencies on lag, despite the fact that

they are manifestations of the same mode. Third, the

cross correlation is asymmetric: the coefficients in (16)

differ for positive and negative t. We shall now assess the

impact of these characteristics on the example from the

model’s winter hemisphere.

b. Application to model data

For the propagating case of the model’s winter

hemisphere discussed in sections 3 and 4 and shown in

Figs. 4 and 7, reconstructed lag correlations of the PCs

given by (11) are shown in Figs. 9a and 9b. The sepa-

ration of the two PC autocorrelations is noticeable, as is

the asymmetry of the cross correlation. Comparing these

predictions with the PC lag correlations determined from

themodel and shown in Fig. 4, the similarity is obvious. It

should be noted that although there is some circularity in

this comparison—the coefficients were themselves de-

rived from the model results—all the information was

obtained from the PC covariances at a single lag: the lag

dependence shown in Fig. 9 derives entirely from the

theoretical analysis.

Lag correlations calculated from the truncated results

given in (14)–(16) are shown in Figs. 9c and 9d. Agree-

ment with the model results shown in Figs. 4c and 4d is

now more qualitative. Nevertheless, from (14) and (15)

and Fig. 9c, the more rapid decay of PC2 compared with

PC1 evident in Fig. 4c and in its shorter ‘‘decorrelation

time’’ can now be seen as a consequence of the propa-

gation of the mode. Although the decay time of the

mode l21
R is 39 days, the autocorrelations decay much

more rapidly, because of the trigonometric terms in (16).

Thus, the loss of correlation is as much a consequence of

propagation—P1 becomingP2 and vice versa—as of true

decay of the mode. Indeed, the autocorrelations change

sign at lags of 42 and 31 days. There are discrepancies: it

has already been noted that the assumption of white-

noise forcing renders the results inapplicable at short

lags, and the timing of the zero crossings is not quite

correct. Nevertheless, it seems clear that the fact that we

are here dealing with a propagating mode is the basic

reason for the separation of the PC autocorrelations

seen in the model output.

The cross correlations determined from the truncated

result in (16), while qualitatively satisfactory, are too

large in magnitude [as compared with the model results

of Fig. 4d and with the untruncated theoretical pre-

diction of (11) and Fig. 9b] by a factor of about 1.7. The

discrepancies between the truncated and untruncated

results indicate that, despite some indications to the

contrary, contributions to the leading mode from EOFs

other than the first two are not quantitatively negligible.

c. Implications for the climate perturbation problem

Finally, we note the implications of these results for

the ‘‘climate’’ problem of the system response to steady,

weak, imposed forcing. Solution of (2) for such a case

requires inversion of the operatorA; assuming Gaussian

PDFs of the variability, the fluctuation–dissipation the-

orem (Leith 1975; North et al. 1993; Majda et al. 2005;

Gritsun and Branstator 2007) states that

L5A21 5

ð‘
0

G(t) dt ,

whereG(t) was defined in (3). Using our formulation (7)

with (9), this becomes simply

FIG. 8. Dependence of the calculated eigenvalue l5lR 1 ilI on

the choice of lag t.
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L5ZL21Z21 . (18)

For the steady response to steady forcing in (2), the

zonal wind response in each POP mode becomes

Z21u5L21Z21f (19)

(i.e., simply the projection Z21f of the forcing onto the

POPs divided by the corresponding eigenvalue). [Note,

following Ring and Plumb (2008) and Lutsko et al.

(2015), that f is not just the imposed forcing that appears

in themomentum equation but is the ‘‘Eliassen response’’

of the zonal wind tendency to any imposed mechanical or

thermal forcing.]

Interpretation of (19) is confounded somewhat by the

fact that the POPs Z and their eigenvalues l are com-

plex. The relationship can also be expressed in terms of

the projection of the response and forcing onto the

EOFs U, using (8) to give

UTu5DUTf , (20)

where

D5SWL21W21S
21

. (21)

As discussed earlier, in circumstances in which the

PCs are all independent, the POPs are just the EOFs, the

eigenvalues are real and equal to the inverse of the PC

decorrelation time, andW is diagonal, so thatD5L21 is

also diagonal. Then if we write the projection of re-

sponse and forcing onto the nth EOF as un 5 (UTu)n and

gn 5 (UTf)n, we have un 5 l21
n gn, and thus the response

in the leading mode depends on the projection of the

forcing onto the EOF, multiplied by a time scale given

by the corresponding PC decorrelation time (Ring and

Plumb 2008). Thus, for example, if the forcing projects

equally onto all EOFs, response is favored in the EOF

corresponding to the longest decorrelation time (Gerber

et al. 2008; Ring and Plumb 2008).

In the more general case, however, including the

propagating regime, D is not diagonal, implying that

the response in a given EOF does not depend solely on

FIG. 9. Predicted lag correlations of the PCs using parameters from the model results at a lag of 20 days.

(a) Autocorrelations of P1 (solid) and P2 (dashed). (b) Lag correlation of P1 and P2. (c) Autocorrelations and

(d) cross correlation after truncating the series in (12) to N 5 2.
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the projection of the forcing onto that EOF. For the

23 2 problem, in which we truncate to the two leading

EOFs and the corresponding two, mutually conjugate,

POPs, it can be shown that

D5

 
D

11
D

12

D
21

D
22

!

5 [jlj2Re(m)]21

"
Re(ml) 2Im(l)

jmj2Im(l) Re(ml*)

#
, (22)

where m is defined in appendix B. Hence there is cross

fertilization—a nonzero response in EOF2 (EOF1) to a

forcing purely in EOF1 (EOF2)—whenever Im(l) 6¼ 0

(i.e., whenever there is propagation). We illustrate this

by forcing the dynamical core model with a steady lo-

calized torque. The torque is Gaussian in latitude and in

the model’s vertical coordinate, peaking at 340 hPa and

at the peaks of EOF1 at this pressure level; the shape of

the torque is indicated in the black and white contours in

Fig. 10a. The response, shown in Fig. 10b, is dipolar, but

does not exactly match the latitudinal structure of EOF1.

Much of this discrepancy can be explained by the com-

ponent of the response explained by EOF2 (Fig. 10c),

resulting in a poleward shift of the response with respect

to EOF1, and demonstrating that a forcing designed to

match the structure of EOF1 results in a substantial re-

sponse in EOF2. Note that there is no differential selec-

tivity of EOF1 versus EOF2 responses based on their

decorrelation times, which do not appear separately in

the problem.

6. Propagation in Southern Hemisphere data

In this section, we investigate the applicability of the

model behavior to observations of the Southern Hemi-

sphere zonal flow. We use daily data from the ERA-

Interim (Dee et al. 2011) for the years 1979–2013 on 21

vertical levels between 1000 and 100 hPa. Examples of

the evolution of zonal-mean zonal wind anomalies were

FIG. 10. (a) The shape of the imposed torque (black and white contours indicate positive and negative values,

respectively), superimposed on the latitude–pressure structure of EOF1, (b) the zonal-mean zonal wind response to

the imposed torque, and (c) the zonal wind response at 340 hPa (solid blue line), the EOF1 component of this

response (dashed green line), the EOF2 component of this response (red crosses), and the sum of the EOF1 and

EOF2 components (solid cyan line).
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shown in Fig. 1. As with the model analysis in section 2,

we consider fluctuations of zonal-mean zonal wind pole-

ward of 208S, over the entire record (i.e., including all

seasons). The first two EOFs of zonal-mean zonal wind

are shown in Fig. 11. These two leading EOFs contribute

37% and 19%, respectively, to the total variance and

have decorrelation times of 11 and 8 days. Figure 11 also

shows the PC auto- and cross correlations associated with

these twoEOFs. Note that the autocorrelations appear to

asymptotically approach a nonzero positive value at large

lag, which may indicate the influence of interannual

variability (Keeley et al. 2009; Byrne et al. 2016). As in

the winter hemisphere in the idealized model, the two

PCs show some cross correlation peaking near 12 days,

but with smaller magnitudes. The POPs were calculated

and chosen based on the procedure outlined in section 4a,

with the PC covariances calculated at t5 10 days (similar

to the decorrelation time of the first PC). The results

(Fig. 12) bear a strong resemblance to those of the

model’s winter hemisphere, with the real and imaginary

parts of the POP primarily reflecting the structures of

EOFs 1 and 2 (Fig. 11). The corresponding eigenvalues

are l5 0:09026 0:0346i day21 (which imply a decay time

scale of 11.1 days and a period of oscillation of 182 days).

Figure 13 shows the auto- and cross correlations calcu-

lated using (11) in Figs. 13a and 13b and the truncated

results [see (14)–(16)] shown inFigs. 13c and 13d. There is

good agreement between the correlations shown in

Fig. 11 and the untruncated results, with differences at

the detailed level. As for the model results shown earlier,

the truncated theory is less successful at reproducing the

observed lag correlations. However, poleward propaga-

tion of zonal-mean zonal wind anomalies is not always

evident in observations of Southern Hemisphere winds,

as was shown in Fig. 1. In fact, since the ratio of variance

contributions of EOF1 and EOF2 is close to 2, this

propagating/nonpropagating behavior is consistent with

the criterion of Son and Lee (2006), for which a ratio of 2

is marginal.

7. Discussion and conclusions

These theoretical and modeling results have several

implications for our understanding of annular modes

FIG. 11. As in Fig. 4 (the two leading EOFs of zonal-mean zonal wind), but for the observed Southern Hemisphere,

calculated from ERA-Interim.
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and their role in climate variability. Perhaps the most

important conclusion is that whenever the leading

mode is propagating (revealed by finite lag correlations

between the two leading PCs) one cannot regard the

two leading EOFs as being independent; rather, they

are simply two projections into EOF space of a single

mode [as is made clear by the analyses of Son and Lee

(2006) and Sparrow et al. (2009) and by the fact that the

FIG. 12. Principal oscillation patterns for the observed Southern Hemisphere, calculated from ERA-Interim.

(a) Real and (b) imaginary parts of the dominant winter hemisphere POP calculated at 10-day lag, and chosen as

described in the text. The corresponding eigenvalue is l 5 0.0902 6 0.0346i day21.

FIG. 13. Predicted lag correlations of the PCs using parameters from the ERA-Interim results at a lag of 20 days.

(a) Autocorrelations of P1 (solid) and P2 (dashed). (b) Lag correlation of P1 and P2. (c) Autocorrelations and

(d) cross correlation after truncating the series in (12) to N 5 2.
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corresponding POPs form a conjugate pair]. Propa-

gation is not just a characteristic of this kind of

model; Feldstein (1998) described poleward-propagating

zonal wind anomalies in both hemispheres (Southern

Hemisphere propagation was also shown in Fig. 1

here), and Lorenz and Hartmann (2001) noted that

the characteristics of the two leading Southern Hemi-

sphere PCs are consistent with propagation. Reasons

for the propagation are not addressed here; Robinson

(1994, 2000) and Lee et al. (2007) have described how

the eddy flux response to zonal wind anomalies can lead

to poleward propagation in the atmosphere, while

Chan et al. (2007) have described similar processes

leading to equatorward propagation in a simple

ocean model.

One important consequence of the propagation is that

the PC autocorrelations decay nonexponentially and

faster than themode itself decays. In the winter example

discussed here, the apparent decorrelation time, ob-

tained by fitting an exponential to the PC1 autocorre-

lation function, of 19 days is much shorter than the POP

decay time of 39 days. Since the persistence of themode,

beyond time scales of dissipation by surface drag, can be

taken as indicative of eddy feedback acting to maintain

the anomalous winds, it follows that the eddy feedback

may be underestimated if the PC decorrelation time is

interpreted as the relevant decay time (e.g., Chen and

Plumb 2009). A second consequence is that the auto-

correlation functions of the two leading PCs separate

and have different apparent decorrelation times. Lorenz

and Hartmann (2001) interpreted such a separation

between the PCs corresponding to the two leading

Southern Hemisphere EOFs as indicative of eddy

feedback acting on EOF1 but not EOF2, an in-

terpretation that clearly would not be valid in the winter

case analyzed here. In a propagating regime, decay of

the autocorrelations occurs through conversion between

PCs, and not just dissipation of the mode. Moreover,

since the two modes share a conjugate pair of eigen-

values, they must be subject to the same eddy feedback

strength.

Analysis of Southern Hemisphere winds from ERA-

Interim produces results that are consistent with the

propagating regime in the winter hemisphere of the

dynamical core model: the two leading EOFs are man-

ifestations of a single dynamical mode with complex

conjugate eigenvectors and eigenvalues. Poleward

propagation of zonal-mean zonal wind anomalies is

clearly evident in reanalysis data and is not obviously

confined to any given season, but unlike in the propa-

gating regime in the idealized model, this feature is not

ubiquitous, consistent with the criterion of Son and Lee

(2006), which, given the ratio of variances explained by

EOFs 1 and 2, places the observed Southern Hemi-

sphere as marginal for propagation, at least over the

multiyear and all-season average used here.

Finally, we note that the ‘‘climate’’ problem of the

steady response to anomalous steady forcing is more

complex in the propagating regime than in the non-

propagating case. For the nonpropagating case with a

single dominant EOF, the eigenvalue l is just the inverse

of the decorrelation time of the primary PC, and thus the

response in the leading mode depends on the projection

of the forcing onto the EOF, multiplied by a time scale

given by the PC decorrelation time. In such a regime,

Ring and Plumb (2008) found some success, though with

quantitative limitations, applying (18) to amodel similar

to that used here, and using the PC decorrelation time as

the time scale. Nevertheless, it is clear that, in the

propagating regime, the relevant time scale may differ

significantly from the PC decorrelation time (as is the

case in the example analyzed here). Moreover, since the

leading mode comprises (at least) two EOFs, a forcing

that projects purely onto EOF1 will produce a response

in EOF2 as well as EOF1, and vice versa. We note that

this might explain the findings of Black et al. (2006)

and Black and McDaniel (2007), from Northern and

Southern Hemisphere observations, and Sheshadri et al.

(2014), from a dynamical core model, that the tropo-

spheric response to the stratospheric final warming does

not project very well onto the leading EOF of zonal wind

variability. In particular, responses are likely to project

onto at least two EOFs [this is consistent with Sheshadri

and Plumb (2016), who found that the tropospheric re-

sponse to lower-stratospheric cooling in a very similar

idealized model as is used here contained a substantial

contribution from EOF2, in addition to EOF1]. Further,

the coefficient that determines the sensitivity of the

system is not just the decorrelation time of the leading

PC, but involves at least two time scales: that governing

the rate of decay of the dynamical mode and the period

associated with the propagation.
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APPENDIX A

Independence of POPs under Weighting

If the variable X is weighted, ~X5VX, the covariances

in weighted space are

~C
t
5 ~X

0
~XT
t 5VX

0
(VX

t
)T 5VX

0
XT
tV5VC

t
V ,

where V is the diagonal matrix of weights. Then

~C21
0 5 (VC

0
V)21 5V21C21

0 V21 .

So,

~G
t
5 ~C

t
~C21
0 5VC

t
VV21C21

0 V21 5VG
t
V21 .

Hence, ~Gt 5 (VW)G(VW)21.

So the eigenvalues are the same, and the deweighted

eigenvectors V21(VW)5W are also the same as in the

unweighted case.

APPENDIX B

Covariances When Truncated to Two Modes and
Two EOFs

If the two EOFs of interest areU1(u, p) andU2(u, p),
and the two corresponding truncated POPs are Z1(u, p)
and Z2(u, p)5Z1*(u, p), with eigenvalues l1 5 l2*5 l,

then

Z
1
5U

1
s
1
W

11
1U

2
s
2
W

21
and

Z
2
5U

1
s
1
W

12
1U

2
s
2
W

22
,

whereW12 5W11* andW22 5W21*.DefiningRT 5W21, then

�
R

11
R

12

R
21

R
22

�
5

1

(W
11
W

21
* 2W

11
* W

21
)
3

 
W

21
* 2W

21

2W
11
* W

11

!
.

Since the only independent coefficients areW11 andW12,

we can simplify the algebra by defining m such that

W21 5m*W11; then, using (15) and (11),

Ĉ
11
(t)5

�
m

m2m*

�
elt 1 c:c:, t. 0,

where ‘‘c.c.’’ denotes complex conjugate. If we define

x5 arg(2im), then

�
m

m2m*

�
5

1

2

eix

cosx
,

whence Ĉ11(t)5 [cos(lIt1 x)/cosx]elRt, t. 0.

Therefore, since Ĉ11(2t)5 Ĉ11(t),

Ĉ
11
(t)5

cos(l
I
jtj1 x)

cosx
elRjtj, "t .

Similarly, we find

Ĉ
22
(t)5

cos(l
I
jtj2 x)

cosx
elRjtj, "t .

The cross correlations are, for t. 0,

Ĉ
12
(t)52

1

Im(m)
elRt sinl

I
t, t. 0 and

Ĉ
21
(t)5

jmj2
Im(m)

elRt sinl
I
t, t. 0:

Since Ĉ12(2t)5 Ĉ21(t), it follows that

Ĉ
12
(t)52

jmj2
Im(m)

elRjtj sinl
I
t, t, 0 and

Ĉ
21
(t)5

1

Im(m)
elRjtj sinl

I
t, t, 0:
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