John Marshall

Cecil and Ida Green Professor of Oceanography, MIT

Present to 2016

[23]Hemispherically asymmetric trade wind changes as signatures of past ITCZ shifts (McGee, D., Moreno-Chamarro, E., Green, B., Marshall, J., Galbraith, E., and Bradtmiller, L.), Quaternary Science Reviews, vol. 180, pp. 214–228, 2018. [doi] [reference]
[22]Contributions of Greenhouse Gas Forcing and the Southern Annular Mode to Historical Southern Ocean Surface Temperature Trends (Kostov, Y., Ferreira, D., Armour, K.C., and Marshall, J.), Geophysical Research Letters, vol. 45, 2018. [doi] [reference]
[21]The dependence of the ocean’s MOC on mesoscale eddy diffusivities: A model study (Marshall, J., Scott, J., Romanou, A., Kelley, M., and Leboissetier, A.), Ocean Modelling, vol. 111, pp. 1-8, 2017. [doi] [reference]
[20]Coupling of Trade Winds with Ocean Circulation Damps ITCZ Shift (Green, B. and Marshall, J.), Journal of Climate, vol. 30, no. 12, 2017. [doi] [reference]
[19]Observed mesoscale eddy signatures in Southern Ocean surface mixed-layer depth (Hausmann, U., McGillicuddy Jr., D., and Marshall, J.), Journal of Geophysical Research, vol. 122, pp. 617-635, 2017. [doi] [reference]
[18]Seasonally derived components of the Canada Basin halocline (Timmermans, M.L., Marshall, J., Proshutinsky, A., and J.Scott), Geophysical Research Letters, vol. 44, no. 10, pp. 5008–5015 , 2017. [doi] [reference]
[17]Role of the ocean’s AMOC in setting the uptake efficiency of transient tracers (Romanou, A., Marshall, J., Kelley, M., and J. Scott), Geophysical Research Letters, vol. 44, no. 11, pp. 5590–5598, 2017. [doi] [reference]
[16]High-order accurate finite-volume formulations for the pressure gradient force in layered ocean models (Engwirda, D., Kelley, M., and J. Marshall), Ocean Modelling, vol. 116, pp. 1-15, 2017. [doi] [reference]
[15]"Climate response functions" for the Arctic Ocean: a proposed coordinated modelling experiment (Marshall, J., Scott, J., and A. Proshutinsky), Geoscientific Model Development, vol. 10, pp. 2833-2848, 2017. [doi] [reference]
[14]Twentieth century correlations between extratropical SST variability and ITCZ shifts (Green, B., Marshall, J., and Donohoe, A.), Geophysical Research Letters, 2017. [doi] [reference]
[13]Modulation of the Seasonal Cycle of Antarctic Sea Ice Extent Related to the Southern Annular Mode (Doddridge, E. and Marshall, J.), Geophysical Research Letters, vol. 44, no. 19, pp. 9761–9768 , 2017. [doi] [reference]
[12]Virtually Enhanced Fluid Laboratories for Teaching Meteorology (Illari, L., Marshall, J., and McKenna, W.D.), AMS, pp. 1949-1960, 2017. [doi] [reference]
[11]Observational Inferences of Lateral Eddy Diffusivity in the Halocline of the Beaufort Gyre (Meneghello, G., Marshall, J., Cole, S., and Timmermans, M.L.), Geophysical Research Letters, vol. 44, no. 24, pp. 12,331–12,338, 2017. [doi] [reference]
[10]Fast and slow responses of Southern Ocean sea surface temperature to SAM in coupled climate models (Kostov, Y., Marshall, J., Hausmann, U. et al.), Climate Dynamics, pp. 1-15, 2016. [doi] [reference]
[9]Southern Ocean warming delayed by circumpolar up-welling and equatorward transport (Armour, K.C., Marshall, J., Scott, J.R., Donohoe, A., and E.R. Newsom), Nature Geoscience, vol. 9, pp. 549–554, 2016. [doi] [reference]
[8]Mechanisms controlling the SST air-sea heat flux feedback and its dependence on spatial scale (Hausmann, U., Czaja, A. & Marshall, J.), J. Clim. Dyn., pp. 1-11, 2016. [doi] [reference]
[7]Observations, inferences, and mechanisms of Atlantic Meridional Overturning Circulation variability: A review (Martha W. Buckley and John Marshall), Review of Geophysics, 2016. [doi] [reference]
[6]Estimates of air–sea feedbacks on sea surface temperature anomalies in the Southern Ocean (Hausmann, U., Czaja, A., and Marshall, J.), Journal of Climate, vol. 29, no. 2, pp. 439-454, 2016. [doi] [reference]
[5]Mesoscale modulation of air-sea CO2 flux in Drake Passage (Song, H., Marshall, J., Munro, D., Dutkiewicz, S., Sweeney, C., McGillicuddy Jr., D.J., Hausmann, U.), Journal of Geophysical Researach, vol. 121, 2016. [doi] [reference]
[4]Source waters for the highly productive Patagonian shelf in the southwestern Atlantic (Song, H., Marshall, J., Follows, M., Dutkiewicz, S., and Gaël Forget), Journal of Marine Systems, vol. 158, pp. 120-128, 2016. [doi] [reference]
[3]Circulation and Stirring in the Southeast Pacific Ocean and the Scotia Sea sectors of the Antarctic Circumpolar Current (Balwada, D., Speer, K., LaCasce, J., Owens, W. B., Marshall, J., and Ferrari, R.), Journal of Physical Oceanography, 2016. [doi] [reference]
[2]The Flux-Anomaly-Forced Model Intercomparison Project (FAFMIP) contribution to CMIP6: investigation of sea-level and ocean climate change in response to CO2 forcing (Gregory, J., Bouttes, N., Griffies, S., Haak, H., Hurlin, W., Jungclaus, J., Kelley, M., Lee, W., Marshall, J., Romanou, A., Saenko, O., Stammer, D., and Winton, M.), Geoscientific Model Development, vol. 9, pp. 3993-4017, 2016. [doi] [reference]
[1]Sensitivity of Antarctic sea ice to the Southern Annual Mode in coupled climate models (Holland, M., Landrum, L., Kostov, Y., and J. Marshall), Climate Dynamics, pp. 1-19, 2016. [doi] [reference]