John Marshall

Professor of Ocean and Climate Science

Present to 2021

[22]Impact of sea ice transport on Beaufort Gyre liquid freshwater content (Cornish, S., Muilwijk, M., Scott, J., Kostov., Y., Marshall, J., et al.), Climate Dynamics, 2023. [doi] [reference]
[21]The Flux‐Differencing Discontinuous Galerkin Method Applied to an Idealized Fully Compressible Nonhydrostatic Dry Atmosphere (Souza, A., He, J., Bischoff, R., Waruszewski, M., Novak, L., Marshall, J., Ferrari, R, et al. ), JAMES, vol. 15, no. 4, 2023. [doi] [reference]
[20]Global Climate Impacts of Greenland and Antarctic Meltwater: A Comparative Study (Li, Q., Marshall, J., Rye, C., Romanou, A., Rind, D, and Kelley, M.), Journal of Climate, pp. 1-40, 2023. [doi] [reference]
[19]Divergent Behavior of Hydrothermal Plumes in Fresh Versus Salty Icy Ocean Worlds (Bire, S., Mittal, T., Kang, W., Ramadhan, A., Tuckman, P., German, C., Thurnherr, A., and Marshall, J.), JGR Planets, vol. 128, no. 11, 2023. [doi] [reference]
[18]Anomalous Meltwater From Ice Sheets and Ice Shelves Is a Historical Forcing (Schmidt, G., Romanou, A., Roach, L., Mankoff, K., Li, Q., Rye, C., Kelley, M., Marshall, J., and Busecke, J.), Geophysical Research Letters, vol. 50, no. 24, 2023. [doi] [reference]
[17]Reduced Deep Convection and Bottom Water Formation Due To Antarctic Meltwater in a Multi-Model Ensemble (Chen, J., Swart, N., Beadling, R., Cheng, X., Hattermann, T., Li, Q., Marshall, J. et al), Geophysical Research Letters, vol. 50, no. 24, 2023. [doi] [reference]
[16]The Southern Ocean Freshwater Input from Antarctica (SOFIA) Initiative: scientific objectives and experimental design (Swart, N., Martin, T., Beadling, R., Marshall, J. et al.), Geoscientific Model Development, vol. 16, no. 12, pp. 7289–7309, 2023. [doi] [reference]
[15]Exploring Ocean Circulation on Icy Moons Heated From Below (Bire,S., Kang, W., Ramadhan, A., Campin, J.M., and Marshall, J.), JGR Planets, vol. 123, no. 3, 2022. [doi] [reference]
[14]Observations of Upwelling and Downwelling Around Antarctica Mediated by Sea Ice (Ramadhan, A., Marshall, J., Meneghello, G., Illari, L., and Speer, K. ), Frontiers in Marine Science, 2022. [doi] [reference]
[13]How does salinity shape ocean circulation and ice geometry on Enceladus and other icy satellites? (Kang, W., Mittal, T., Bire, S., Campin, J.M., and Marshall, J.), Science Advances, vol. 8, no. 29, 2022. [doi] [reference]
[12]Future Climate Change Under SSP Emission Scenarios With GISS-E2.1 (Nazarenko, L., Marshall, J., Tausnev, N., Russell, G., Rind, D., Miller, R., and Schmidt, G.), Journal of Advances in Modeling Earth Systems, vol. 14, no. 7, 2022. [doi] [reference]
[11]Ocean System Science to Inform the Exploration of Ocean Worlds (German, C., Blackman, D., Fisher, A., Girguis, P., Hand, K., Hoehler, T., Huber, J., Marshall, J., Pietro, K., Seewald, J., Shock, E., Sotin, C., Thurnherr, A., and Toner, B.), Oceanography, vol. 35, no. 1, 2022. [doi] [reference]
[10]The role of ocean circulation in driving hemispheric symmetry breaking of the ice shell of Enceladus (Kang, W., Bire, S., and Marshall, J.), Earth and Planetary Science Letters, vol. 599, 2022. [doi] [reference]
[9]Ocean dynamics and tracer transport over the south pole geysers of Enceladus (Kang, W., Marshall, J., Mittal, T., and Bire, S.), Monthly Notices of the Royal Astronomical Society, vol. 517, no. 3, 2022. [doi] [reference]
[8]Genesis and Decay of Mesoscale Baroclinic Eddies in the Seasonally Ice-Covered Interior Arctic Ocean (Meneghello, G., Marshall, J., Lique, C., Isachsen, P., Doddridge, E., Campin, J.M., Regan, H., and Talandier, C.), AMS, vol. 51, pp. 115-129, 2021. [doi] [reference]
[7]CMIP6 Historical Simulations (1850-2014) with GISS ModelE2.1 (Miller, R. et al.), JAMES, vol. 13, no. 1, 2021. [doi] [reference]
[6]On the effects of the ocean on atmospheric CFC-11 lifetimes and emissions (Wang, P., Scott, J., Solomon, S., Marshall, J., Babbin, A., Lickley, M., et. al.), PNAS, vol. 118, no. 12, 2021. [doi] [reference]
[5]Southern Ocean Heat Storage, Reemergence, and Winter Sea Ice Decline Induced by Summertime Winds (Doddridge, E., Marshall, J., Song, H., Campin, J.M., and Kelly, M.), Journal of Climate, vol. 34, no. 4, 2021. [doi] [reference]
[4]On the Settling Depth of Meltwater Escaping from beneath Antarctic Ice Shelves (Arnscheidt, C., Marshall, J., Dutrieux, P., Rye, C., and Ramadhan, A.), Journal of Physical Oceanography, vol. 51, no. 7, pp. 2257–2270 , 2021. [doi] [reference]
[3]Interannual SAM Modulation of Antarctic Sea Ice Extent Does Not Account for Its Long-Term Trends, Pointing to a Limited Role for Ozone Depletion (Polvani, L.M., Banerjee, A., Chemke, R., Doddridge, E., Ferreira, D., Gnandesikan, A., Holland, M., Kostov, Y., Marshall, J., Sevior, W., Solomon, S., and Waugh, D.), Geophysical Resesarch Letters, vol. 48, no. 21, 2021. [doi] [reference]
[2]Suppressed pCO2 in the Southern Ocean due to the interaction between current and wind (Kwak, K., Song, H., Marshall, J., Seo, H., and McGillicuddy, D.), JGR Oceans, vol. 126, 2021. [doi] [reference]
[1]Water Mass Transformation and Overturning Circulation in the Arabian Gulf (Al-Shehhi, M., Song, H., Scott, J. and Marshall, J.), Journal of Physical Oceanography, pp. 3513-3527, 2021. [doi] [reference]